Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
newtype UT ct cu t u a Source #
Instances
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) (-->) (:*:) (:*:) t, Monoidal (-->) (-->) (:*:) (:*:) u) => Monoidal (-->) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Semigroupoid m, Covariant m m u, Covariant m m t, Covariant m (Betwixt m m) t, Covariant (Betwixt m m) m u, Interpreted m (t <.:> u)) => Covariant m m (t <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT (<-|-) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|--) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|---) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|----) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|-----) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|------) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|-------) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|--------) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|--) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|---) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|----) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|-----) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|------) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|-------) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u0, Covariant (Betwixt (Betwixt m m) m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 (v a))) ((t <.:> u) (u0 (v b))) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) u, Semimonoidal (-->) (:*:) (:+:) t) => Semimonoidal (-->) (:*:) (:+:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Monoidal (-->) (-->) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Catchable e (Conclusion e <.:> u :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion catch :: forall (a :: k). (Conclusion e <.:> u) a -> (e -> (Conclusion e <.:> u) a) -> (Conclusion e <.:> u) a Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <:.> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <:.> u) Source # | |
Defined in Pandora.Paradigm.Schemes (-|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # (|-) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|--------) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|-------) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|------) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|-----) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|----) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|---) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (|--) :: (a -> (w <:.> u) b) -> (t <.:> v) a -> b Source # (--------|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # (-------|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # (------|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # (-----|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # (----|) :: ((t <.:> v) a -> b) -> a -> (w <:.> u) b Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes (-|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # (|-) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|--------) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|-------) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|------) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|-----) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|----) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|---) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (|--) :: (a -> (w <.:> u) b) -> (t <.:> v) a -> b Source # (--------|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # (-------|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # (------|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # (-----|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # (----|) :: ((t <.:> v) a -> b) -> a -> (w <.:> u) b Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (w <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes (-|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # (|-) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|--------) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|-------) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|------) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|-----) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|----) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|---) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (|--) :: (a -> (w <.:> u) b) -> (v <:.> t) a -> b Source # (--------|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # (-------|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # (------|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # (-----|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # (----|) :: ((v <:.> t) a -> b) -> a -> (w <.:> u) b Source # | |
(Semigroup e, Extendable ((->) :: Type -> Type -> Type) u) => Extendable ((->) :: Type -> Type -> Type) (((->) e :: Type -> Type) <.:> u) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Imprint (<<=) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<==) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<===) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<====) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<=====) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<======) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<=======) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # (<<========) :: (((->) e <.:> u) a -> b) -> ((->) e <.:> u) a -> ((->) e <.:> u) b Source # | |
(Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Bindable ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) (-->) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) (t <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT (=<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (==<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (===<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (====<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (=====<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (======<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # (=======<<) :: (a -> (t <.:> u) b) -> (t <.:> u) a -> (t <.:> u) b Source # | |
Monoidal (-->) (-->) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (UT ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT run :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # unite :: ((->) < Primary (UT ct cu t u) a) < UT ct cu t u a Source # (<~~~~~~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~~~~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~~~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (<~) :: ((->) < UT ct cu t u a) < Primary (UT ct cu t u) a Source # (=#-) :: (Semigroupoid (->), Interpreted (->) u0) => (((->) < Primary (UT ct cu t u) a) < Primary u0 b) -> ((->) < UT ct cu t u a) < u0 b Source # (-#=) :: (Semigroupoid (->), Interpreted (->) u0) => (((->) < UT ct cu t u a) < u0 b) -> ((->) < Primary (UT ct cu t u) a) < Primary u0 b Source # (<$=#-) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (((->) < Primary (UT ct cu t u) a) < Primary u0 b) -> (j > UT ct cu t u a) -> (j > u0 b) Source # (-#=$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (((->) < UT ct cu t u a) < u0 b) -> (j > Primary (UT ct cu t u) a) -> (j > Primary u0 b) Source # | |
type Primary (UT ct cu t u) a Source # | |
Defined in Pandora.Paradigm.Schemes.UT |
type (>.:<) = UT Contravariant Contravariant infixr 3 Source #