Copyright | (c) Galois Inc 2017-2019 |
---|---|
Maintainer | Joe Hendrix <jhendrix@galois.com> |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
This module defines a list over two parameters. The first
is a fixed type-level function k -> *
for some kind k
, and the
second is a list of types with kind k
that provide the indices for
the values in the list.
This type is closely related to the
Assignment
type in
Data.Parameterized.Context.
Motivating example - the List
type
For this example, we need the following extensions:
{-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TypeOperators #-}
We also require the following imports:
import Data.Parameterized import Data.Parameterized.List import GHC.TypeLits
Suppose we have a bitvector type:
data BitVector (w :: Nat) :: * where BV :: NatRepr w -> Integer -> BitVector w
This type contains a NatRepr
, a value-level
representative of the vector width, and an Integer
, containing the
actual value of the bitvector. We can create values of this type as
follows:
BV (knownNat @8) 0xAB
We can also create a smart constructor to handle the
NatRepr
automatically, when the width is known
from the type context:
bitVector :: KnownNat w => Integer -> BitVector w bitVector x = BV knownNat x
Note that this does not check that the value can be represented in the given number of bits; that is not important for this example.
If we wish to construct a list of BitVector
s of a particular length,
we can do:
[bitVector 0xAB, bitVector 0xFF, bitVector 0] :: BitVector 8
However, what if we wish to construct a list of BitVector
s of
different lengths? We could try:
[bitVector 0xAB :: BitVector 8, bitVector 0x1234 :: BitVector 16]
However, this gives us an error:
<interactive>:3:33: error: • Couldn't match type ‘16’ with ‘8’ Expected type: BitVector 8 Actual type: BitVector 16 • In the expression: bitVector 0x1234 :: BitVector 16 In the expression: [bitVector 0xAB :: BitVector 8, bitVector 0x1234 :: BitVector 16] In an equation for ‘it’: it = [bitVector 0xAB :: BitVector 8, bitVector 0x1234 :: BitVector 16]
A vanilla Haskell list cannot contain two elements of different types,
and even though the two elements here are both BitVector
s, they do
not have the same type! One solution is to use the
Some
type:
[Some (bitVector 0xAB :: BitVector 8), Some (bitVector 0x1234 :: BitVector 16)]
The type of the above expression is [Some BitVector]
, which may be
perfectly acceptable. However, there is nothing in this type that
tells us what the widths of the bitvectors are, or what the length of
the overall list is. If we want to actually track that information on
the type level, we can use the List
type from this module.
(bitVector 0xAB :: BitVector 8) :< (bitVector 0x1234 :: BitVector 16) :< Nil
The type of the above expression is List BitVector '[8, 16]
-- That
is, a two-element list of BitVector
s, where the first element has
width 8 and the second has width 16.
Summary
In general, if we have a type constructor Foo
of kind k -> *
(in
our example, Foo
is just BitVector
, and we want to create a list
of Foo
s where the parameter k
varies, and we wish to keep track
of what each value of k
is inside the list at compile time, we can
use the List
type for this purpose.
Synopsis
- data List :: (k -> Type) -> [k] -> Type where
- fromSomeList :: [Some f] -> Some (List f)
- fromListWith :: forall a f. (a -> Some f) -> [a] -> Some (List f)
- fromListWithM :: forall a f m. Monad m => (a -> m (Some f)) -> [a] -> m (Some (List f))
- data Index :: [k] -> k -> Type where
- IndexHere :: Index (x : r) x
- IndexThere :: !(Index r y) -> Index (x : r) y
- indexValue :: Index l tp -> Integer
- (!!) :: List f l -> Index l x -> f x
- update :: List f l -> Index l s -> (f s -> f s) -> List f l
- indexed :: Index l x -> Lens' (List f l) (f x)
- imap :: forall f g l. (forall x. Index l x -> f x -> g x) -> List f l -> List g l
- ifoldlM :: forall sh a b m. Monad m => (forall tp. b -> Index sh tp -> a tp -> m b) -> b -> List a sh -> m b
- ifoldr :: forall sh a b. (forall tp. Index sh tp -> a tp -> b -> b) -> b -> List a sh -> b
- izipWith :: forall a b c sh. (forall tp. Index sh tp -> a tp -> b tp -> c tp) -> List a sh -> List b sh -> List c sh
- itraverse :: forall a b sh t. Applicative t => (forall tp. Index sh tp -> a tp -> t (b tp)) -> List a sh -> t (List b sh)
- index0 :: Index (x : r) x
- index1 :: Index (x0 : (x1 : r)) x1
- index2 :: Index (x0 : (x1 : (x2 : r))) x2
- index3 :: Index (x0 : (x1 : (x2 : (x3 : r)))) x3
Documentation
data List :: (k -> Type) -> [k] -> Type where Source #
Parameterized list of elements.
Instances
FoldableFC (List :: (k -> Type) -> [k] -> Type) Source # | |
Defined in Data.Parameterized.List foldMapFC :: forall f m. Monoid m => (forall (x :: k0). f x -> m) -> forall (x :: l). List f x -> m Source # foldrFC :: (forall (x :: k0). f x -> b -> b) -> forall (x :: l). b -> List f x -> b Source # foldlFC :: forall f b. (forall (x :: k0). b -> f x -> b) -> forall (x :: l). b -> List f x -> b Source # foldrFC' :: (forall (x :: k0). f x -> b -> b) -> forall (x :: l). b -> List f x -> b Source # foldlFC' :: forall f b. (forall (x :: k0). b -> f x -> b) -> forall (x :: l). b -> List f x -> b Source # toListFC :: (forall (x :: k0). f x -> a) -> forall (x :: l). List f x -> [a] Source # | |
FunctorFC (List :: (k -> Type) -> [k] -> Type) Source # | |
TraversableFC (List :: (k -> Type) -> [k] -> Type) Source # | |
Defined in Data.Parameterized.List traverseFC :: forall f g m. Applicative m => (forall (x :: k0). f x -> m (g x)) -> forall (x :: l). List f x -> m (List g x) Source # | |
FoldableFCWithIndex (List :: (k -> Type) -> [k] -> Type) Source # | |
Defined in Data.Parameterized.List ifoldMapFC :: forall f m (z :: l). Monoid m => (forall (x :: k0). IndexF (List f z) x -> f x -> m) -> List f z -> m Source # ifoldrFC :: forall (z :: l) f b. (forall (x :: k0). IndexF (List f z) x -> f x -> b -> b) -> b -> List f z -> b Source # ifoldlFC :: forall f b (z :: l). (forall (x :: k0). IndexF (List f z) x -> b -> f x -> b) -> b -> List f z -> b Source # ifoldrFC' :: forall f b (z :: l). (forall (x :: k0). IndexF (List f z) x -> f x -> b -> b) -> b -> List f z -> b Source # ifoldlFC' :: forall f b. (forall (x :: k0). b -> f x -> b) -> forall (x :: l). b -> List f x -> b Source # itoListFC :: forall f a (z :: l). (forall (x :: k0). IndexF (List f z) x -> f x -> a) -> List f z -> [a] Source # | |
FunctorFCWithIndex (List :: (k -> Type) -> [k] -> Type) Source # | |
TraversableFCWithIndex (List :: (k -> Type) -> [k] -> Type) Source # | |
Defined in Data.Parameterized.List itraverseFC :: forall m (z :: l) f g. Applicative m => (forall (x :: k0). IndexF (List f z) x -> f x -> m (g x)) -> List f z -> m (List g z) Source # | |
TestEquality f => TestEquality (List f :: [k] -> Type) Source # | |
Defined in Data.Parameterized.List | |
OrdF f => OrdF (List f :: [k] -> Type) Source # | |
Defined in Data.Parameterized.List compareF :: forall (x :: k0) (y :: k0). List f x -> List f y -> OrderingF x y Source # leqF :: forall (x :: k0) (y :: k0). List f x -> List f y -> Bool Source # ltF :: forall (x :: k0) (y :: k0). List f x -> List f y -> Bool Source # geqF :: forall (x :: k0) (y :: k0). List f x -> List f y -> Bool Source # gtF :: forall (x :: k0) (y :: k0). List f x -> List f y -> Bool Source # | |
ShowF f => ShowF (List f :: [k] -> Type) Source # | |
IsRepr f => IsRepr (List f :: [k] -> Type) Source # | |
KnownRepr (List f :: [k] -> Type) ('[] :: [k]) Source # | |
Defined in Data.Parameterized.List | |
(KnownRepr f s, KnownRepr (List f) sh) => KnownRepr (List f :: [a] -> Type) (s ': sh :: [a]) Source # | |
Defined in Data.Parameterized.List | |
ShowF f => Show (List f sh) Source # | |
type IndexF (List f sh) Source # | |
Defined in Data.Parameterized.List | |
type IxValueF (List f sh) Source # | |
Defined in Data.Parameterized.List |
fromListWith :: forall a f. (a -> Some f) -> [a] -> Some (List f) Source #
Apply function to list to yield a parameterized list.
fromListWithM :: forall a f m. Monad m => (a -> m (Some f)) -> [a] -> m (Some (List f)) Source #
Apply monadic action to list to yield a parameterized list.
data Index :: [k] -> k -> Type where Source #
Represents an index into a type-level list. Used in place of integers to 1. ensure that the given index *does* exist in the list 2. guarantee that it has the given kind
IndexHere :: Index (x : r) x | |
IndexThere :: !(Index r y) -> Index (x : r) y |
Instances
TestEquality (Index l :: k -> Type) Source # | |
Defined in Data.Parameterized.List | |
OrdF (Index l :: k -> Type) Source # | |
Defined in Data.Parameterized.List compareF :: forall (x :: k0) (y :: k0). Index l x -> Index l y -> OrderingF x y Source # leqF :: forall (x :: k0) (y :: k0). Index l x -> Index l y -> Bool Source # ltF :: forall (x :: k0) (y :: k0). Index l x -> Index l y -> Bool Source # geqF :: forall (x :: k0) (y :: k0). Index l x -> Index l y -> Bool Source # gtF :: forall (x :: k0) (y :: k0). Index l x -> Index l y -> Bool Source # | |
ShowF (Index l :: k -> Type) Source # | |
Show (Index l x) Source # | |
Eq (Index l x) Source # | |
Ord (Index sh x) Source # | |
Hashable (Index l x) Source # | |
Defined in Data.Parameterized.List |
indexValue :: Index l tp -> Integer Source #
Return the index as an integer.
indexed :: Index l x -> Lens' (List f l) (f x) Source #
Provides a lens for manipulating the element at the given index.
imap :: forall f g l. (forall x. Index l x -> f x -> g x) -> List f l -> List g l Source #
Map over the elements in the list, and provide the index into each element along with the element itself.
This is a specialization of imapFC
.
ifoldlM :: forall sh a b m. Monad m => (forall tp. b -> Index sh tp -> a tp -> m b) -> b -> List a sh -> m b Source #
Left fold with an additional index.
ifoldr :: forall sh a b. (forall tp. Index sh tp -> a tp -> b -> b) -> b -> List a sh -> b Source #
Right-fold with an additional index.
This is a specialization of ifoldrFC
.
izipWith :: forall a b c sh. (forall tp. Index sh tp -> a tp -> b tp -> c tp) -> List a sh -> List b sh -> List c sh Source #
Zip up two lists with a zipper function, which can use the index.
itraverse :: forall a b sh t. Applicative t => (forall tp. Index sh tp -> a tp -> t (b tp)) -> List a sh -> t (List b sh) Source #
Traverse with an additional index.
This is a specialization of itraverseFC
.