Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
HasParser
can be considered a dual to Pretty
like Read
is to Show
.
The class provides Data.Parsec parsers for its instances that construct
the type from its textual representation. Combined with the parseM
and
parse
convenience functions, this class makes parsing simple. Unlike
Read
, Parsec parsers return reasonable error messages in case of failure.
Also, there is a rich set of combinators and additional libraries available
for re-use.
Synopsis
- type CharParser st input m a = Stream st m Char => ParsecT st input m a
- class HasParser a where
- parser :: CharParser st input m a
- type ErrorContext = String
- parseM :: (MonadFail m, Stream input m Char, HasParser a) => ErrorContext -> input -> m a
- parse :: (Stream input Identity Char, HasParser a) => ErrorContext -> input -> a
- class Monad m => Stream s (m :: Type -> Type) t | s -> t where
- data State s u = State {
- stateInput :: s
- statePos :: !SourcePos
- stateUser :: !u
- data SourcePos
- type Column = Int
- type Line = Int
- type SourceName = String
- data ParseError
- data Reply s u a
- = Ok a !(State s u) ParseError
- | Error ParseError
- data Consumed a
- type Parsec s u = ParsecT s u Identity
- data ParsecT s u (m :: Type -> Type) a
- try :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a
- (<|>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
- many :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a]
- satisfy :: forall s (m :: Type -> Type) u. Stream s m Char => (Char -> Bool) -> ParsecT s u m Char
- char :: forall s (m :: Type -> Type) u. Stream s m Char => Char -> ParsecT s u m Char
- eof :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m ()
- string :: forall s (m :: Type -> Type) u. Stream s m Char => String -> ParsecT s u m String
- choice :: forall s (m :: Type -> Type) t u a. Stream s m t => [ParsecT s u m a] -> ParsecT s u m a
- count :: forall s (m :: Type -> Type) t u a. Stream s m t => Int -> ParsecT s u m a -> ParsecT s u m [a]
- between :: forall s (m :: Type -> Type) t u open close a. Stream s m t => ParsecT s u m open -> ParsecT s u m close -> ParsecT s u m a -> ParsecT s u m a
- option :: forall s (m :: Type -> Type) t a u. Stream s m t => a -> ParsecT s u m a -> ParsecT s u m a
- optional :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m ()
- many1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m [a]
- skipMany :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m ()
- skipMany1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m ()
- sepBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- sepBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- endBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- endBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- chainr :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a
- chainl :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a
- chainr1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a
- chainl1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a
- manyTill :: forall s (m :: Type -> Type) t u a end. Stream s m t => ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a]
- getState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m u
- setState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m ()
- sourceLine :: SourcePos -> Line
- sourceColumn :: SourcePos -> Column
- label :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a
- lookAhead :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m a
- unexpected :: forall s (m :: Type -> Type) t u a. Stream s m t => String -> ParsecT s u m a
- (<?>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a
- notFollowedBy :: forall s (m :: Type -> Type) t a u. (Stream s m t, Show a) => ParsecT s u m a -> ParsecT s u m ()
- sourceName :: SourcePos -> SourceName
- incSourceLine :: SourcePos -> Line -> SourcePos
- incSourceColumn :: SourcePos -> Column -> SourcePos
- setSourceName :: SourcePos -> SourceName -> SourcePos
- setSourceLine :: SourcePos -> Line -> SourcePos
- setSourceColumn :: SourcePos -> Column -> SourcePos
- errorPos :: ParseError -> SourcePos
- unknownError :: State s u -> ParseError
- sysUnExpectError :: String -> SourcePos -> Reply s u a
- runParsecT :: Monad m => ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a)))
- mkPT :: Monad m => (State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a
- parsecMap :: forall a b s u (m :: Type -> Type). (a -> b) -> ParsecT s u m a -> ParsecT s u m b
- parserReturn :: forall a s u (m :: Type -> Type). a -> ParsecT s u m a
- parserBind :: forall s u (m :: Type -> Type) a b. ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b
- mergeErrorReply :: ParseError -> Reply s u a -> Reply s u a
- parserFail :: forall s u (m :: Type -> Type) a. String -> ParsecT s u m a
- parserZero :: forall s u (m :: Type -> Type) a. ParsecT s u m a
- parserPlus :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a
- labels :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> [String] -> ParsecT s u m a
- tokens :: forall s (m :: Type -> Type) t u. (Stream s m t, Eq t) => ([t] -> String) -> (SourcePos -> [t] -> SourcePos) -> [t] -> ParsecT s u m [t]
- token :: Stream s Identity t => (t -> String) -> (t -> SourcePos) -> (t -> Maybe a) -> Parsec s u a
- tokenPrim :: forall s (m :: Type -> Type) t a u. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> (t -> Maybe a) -> ParsecT s u m a
- tokenPrimEx :: forall s (m :: Type -> Type) t u a. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> Maybe (SourcePos -> t -> s -> u -> u) -> (t -> Maybe a) -> ParsecT s u m a
- manyAccum :: forall a s u (m :: Type -> Type). (a -> [a] -> [a]) -> ParsecT s u m a -> ParsecT s u m [a]
- runPT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a)
- runP :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a
- runParserT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a)
- runParser :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a
- parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO ()
- getPosition :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m SourcePos
- getInput :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m s
- setPosition :: forall (m :: Type -> Type) s u. Monad m => SourcePos -> ParsecT s u m ()
- setInput :: forall (m :: Type -> Type) s u. Monad m => s -> ParsecT s u m ()
- getParserState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m (State s u)
- setParserState :: forall (m :: Type -> Type) s u. Monad m => State s u -> ParsecT s u m (State s u)
- updateParserState :: forall s u (m :: Type -> Type). (State s u -> State s u) -> ParsecT s u m (State s u)
- putState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m ()
- modifyState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m ()
- updateState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m ()
- optionMaybe :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (Maybe a)
- sepEndBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- sepEndBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a]
- anyToken :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m t
- parserTrace :: forall t s (m :: Type -> Type) u. (Show t, Stream s m t) => String -> ParsecT s u m ()
- parserTraced :: forall s (m :: Type -> Type) t u b. (Stream s m t, Show t) => String -> ParsecT s u m b -> ParsecT s u m b
- oneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char
- noneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char
- spaces :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m ()
- space :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- newline :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- crlf :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- endOfLine :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- tab :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- upper :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- lower :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- alphaNum :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- letter :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- digit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- hexDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- octDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- anyChar :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char
- string' :: forall s (m :: Type -> Type) u. Stream s m Char => String -> ParsecT s u m String
Documentation
type CharParser st input m a = Stream st m Char => ParsecT st input m a Source #
A simplified ParsecT
parser that consumes some kind of character stream
without requiring any particular state state.
class HasParser a where Source #
Types that are instances of this class can be parsed and constructed from some character based text representation.
parser :: CharParser st input m a Source #
type ErrorContext = String Source #
Parsers functions like parse
or parseM
use this type to provide a
helpful context in case the parser failes. Parsec uses the synonym
SourceName
for the same purpose, but in fact this type doesn't necessarily
have to be a file name. It can be any name or identifier. Oftentimes, it
it's useful to pass the name of the type that the parser attempted to parse.
parseM :: (MonadFail m, Stream input m Char, HasParser a) => ErrorContext -> input -> m a Source #
Convenience wrapper around runParserT
that uses the HasParser
class to
determine the desired parser for the given result type. The function reports
syntax errors via fail
.
>>>
parseM "Natural" "987654321" :: IO Natural
987654321>>>
parseM "Natural" "123456789" :: Maybe Natural
Just 123456789
Please note that parsers run this way do not ignore any white space:
>>>
parseM "Natural" " 1" :: Maybe Natural
Nothing>>>
parseM "Natural" "1 " :: Maybe Natural
Nothing
parse :: (Stream input Identity Char, HasParser a) => ErrorContext -> input -> a Source #
Convenience wrapper around runParser
that uses the HasParser
class to
determine the desired parser for the given result type. The function reports
syntax errors by throw
ing ParseError
. This approach is inherently impure
and complicates error handling greatly. Use this function only on occasions
where parser errors are fatal errors that your code cannot recover from. In
almost all cases, parseM
is the better choice.
>>>
parse "Natural" "12345" :: Natural
12345
Like parseM
, this function does not skip over any white space. Use
Parsec's primitive runParser
or runParserT
functions if you don't like
this behavior:
>>>
runParser (spaces >> parser) () "Natural" " 1 " :: Either ParseError Natural
Right 1
Re-exports from Text.Parsec
class Monad m => Stream s (m :: Type -> Type) t | s -> t where #
An instance of Stream
has stream type s
, underlying monad m
and token type t
determined by the stream
Some rough guidelines for a "correct" instance of Stream:
- unfoldM uncons gives the [t] corresponding to the stream
- A
Stream
instance is responsible for maintaining the "position within the stream" in the stream states
. This is trivial unless you are using the monad in a non-trivial way.
Instances
Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim uncons :: ByteString -> m (Maybe (Char, ByteString)) # | |
Monad m => Stream ByteString m Char | |
Defined in Text.Parsec.Prim uncons :: ByteString -> m (Maybe (Char, ByteString)) # | |
Monad m => Stream Text m Char | |
Monad m => Stream Text m Char | |
Monad m => Stream [tok] m tok | |
Defined in Text.Parsec.Prim |
The abstract data type SourcePos
represents source positions. It
contains the name of the source (i.e. file name), a line number and
a column number. SourcePos
is an instance of the Show
, Eq
and
Ord
class.
Instances
Data SourcePos | |
Defined in Text.Parsec.Pos gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourcePos -> c SourcePos # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourcePos # toConstr :: SourcePos -> Constr # dataTypeOf :: SourcePos -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourcePos) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourcePos) # gmapT :: (forall b. Data b => b -> b) -> SourcePos -> SourcePos # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourcePos -> r # gmapQ :: (forall d. Data d => d -> u) -> SourcePos -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourcePos -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourcePos -> m SourcePos # | |
Show SourcePos | |
Eq SourcePos | |
Ord SourcePos | |
Defined in Text.Parsec.Pos |
type SourceName = String #
data ParseError #
The abstract data type ParseError
represents parse errors. It
provides the source position (SourcePos
) of the error
and a list of error messages (Message
). A ParseError
can be returned by the function parse
. ParseError
is an
instance of the Show
and Eq
classes.
Instances
Exception ParseError Source # | |
Defined in Text.Parsec.Class.Orphans toException :: ParseError -> SomeException # fromException :: SomeException -> Maybe ParseError # displayException :: ParseError -> String # | |
Show ParseError | |
Defined in Text.Parsec.Error showsPrec :: Int -> ParseError -> ShowS # show :: ParseError -> String # showList :: [ParseError] -> ShowS # | |
Eq ParseError | |
Defined in Text.Parsec.Error (==) :: ParseError -> ParseError -> Bool # (/=) :: ParseError -> ParseError -> Bool # |
Ok a !(State s u) ParseError | |
Error ParseError |
data ParsecT s u (m :: Type -> Type) a #
ParserT monad transformer and Parser type
ParsecT s u m a
is a parser with stream type s
, user state type u
,
underlying monad m
and return type a
. Parsec is strict in the user state.
If this is undesirable, simply use a data type like data Box a = Box a
and
the state type Box YourStateType
to add a level of indirection.
Instances
MonadError e m => MonadError e (ParsecT s u m) | |
Defined in Text.Parsec.Prim throwError :: e -> ParsecT s u m a # catchError :: ParsecT s u m a -> (e -> ParsecT s u m a) -> ParsecT s u m a # | |
MonadReader r m => MonadReader r (ParsecT s u m) | |
MonadState s m => MonadState s (ParsecT s' u m) | |
MonadTrans (ParsecT s u) | |
Defined in Text.Parsec.Prim | |
MonadFail (ParsecT s u m) | Since: parsec-3.1.12.0 |
Defined in Text.Parsec.Prim | |
MonadIO m => MonadIO (ParsecT s u m) | |
Defined in Text.Parsec.Prim | |
Alternative (ParsecT s u m) | |
Applicative (ParsecT s u m) | |
Defined in Text.Parsec.Prim pure :: a -> ParsecT s u m a # (<*>) :: ParsecT s u m (a -> b) -> ParsecT s u m a -> ParsecT s u m b # liftA2 :: (a -> b -> c) -> ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m c # (*>) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m b # (<*) :: ParsecT s u m a -> ParsecT s u m b -> ParsecT s u m a # | |
Functor (ParsecT s u m) | |
Monad (ParsecT s u m) | |
MonadPlus (ParsecT s u m) | |
MonadCont m => MonadCont (ParsecT s u m) | |
(Monoid a, Semigroup (ParsecT s u m a)) => Monoid (ParsecT s u m a) | The Since: parsec-3.1.12 |
Semigroup a => Semigroup (ParsecT s u m a) | The (many $ char The above will parse a string like (many $ char Since: parsec-3.1.12 |
try :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a #
The parser try p
behaves like parser p
, except that it
pretends that it hasn't consumed any input when an error occurs.
This combinator is used whenever arbitrary look ahead is needed.
Since it pretends that it hasn't consumed any input when p
fails,
the (<|>
) combinator will try its second alternative even when the
first parser failed while consuming input.
The try
combinator can for example be used to distinguish
identifiers and reserved words. Both reserved words and identifiers
are a sequence of letters. Whenever we expect a certain reserved
word where we can also expect an identifier we have to use the try
combinator. Suppose we write:
expr = letExpr <|> identifier <?> "expression" letExpr = do{ string "let"; ... } identifier = many1 letter
If the user writes "lexical", the parser fails with: unexpected
'x', expecting 't' in "let"
. Indeed, since the (<|>
) combinator
only tries alternatives when the first alternative hasn't consumed
input, the identifier
parser is never tried (because the prefix
"le" of the string "let"
parser is already consumed). The
right behaviour can be obtained by adding the try
combinator:
expr = letExpr <|> identifier <?> "expression" letExpr = do{ try (string "let"); ... } identifier = many1 letter
(<|>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a infixr 1 #
This combinator implements choice. The parser p <|> q
first
applies p
. If it succeeds, the value of p
is returned. If p
fails without consuming any input, parser q
is tried. This
combinator is defined equal to the mplus
member of the MonadPlus
class and the (<|>
) member of Alternative
.
The parser is called predictive since q
is only tried when
parser p
didn't consume any input (i.e.. the look ahead is 1).
This non-backtracking behaviour allows for both an efficient
implementation of the parser combinators and the generation of good
error messages.
many :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m [a] #
many p
applies the parser p
zero or more times. Returns a
list of the returned values of p
.
identifier = do{ c <- letter ; cs <- many (alphaNum <|> char '_') ; return (c:cs) }
satisfy :: forall s (m :: Type -> Type) u. Stream s m Char => (Char -> Bool) -> ParsecT s u m Char #
The parser satisfy f
succeeds for any character for which the
supplied function f
returns True
. Returns the character that is
actually parsed.
char :: forall s (m :: Type -> Type) u. Stream s m Char => Char -> ParsecT s u m Char #
char c
parses a single character c
. Returns the parsed
character (i.e. c
).
semiColon = char ';'
eof :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m () #
This parser only succeeds at the end of the input. This is not a
primitive parser but it is defined using notFollowedBy
.
eof = notFollowedBy anyToken <?> "end of input"
choice :: forall s (m :: Type -> Type) t u a. Stream s m t => [ParsecT s u m a] -> ParsecT s u m a #
choice ps
tries to apply the parsers in the list ps
in order,
until one of them succeeds. Returns the value of the succeeding
parser.
count :: forall s (m :: Type -> Type) t u a. Stream s m t => Int -> ParsecT s u m a -> ParsecT s u m [a] #
count n p
parses n
occurrences of p
. If n
is smaller or
equal to zero, the parser equals to return []
. Returns a list of
n
values returned by p
.
between :: forall s (m :: Type -> Type) t u open close a. Stream s m t => ParsecT s u m open -> ParsecT s u m close -> ParsecT s u m a -> ParsecT s u m a #
between open close p
parses open
, followed by p
and close
.
Returns the value returned by p
.
braces = between (symbol "{") (symbol "}")
option :: forall s (m :: Type -> Type) t a u. Stream s m t => a -> ParsecT s u m a -> ParsecT s u m a #
option x p
tries to apply parser p
. If p
fails without
consuming input, it returns the value x
, otherwise the value
returned by p
.
priority = option 0 (do{ d <- digit ; return (digitToInt d) })
optional :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m () #
optional p
tries to apply parser p
. It will parse p
or nothing.
It only fails if p
fails after consuming input. It discards the result
of p
.
many1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m [a] #
many1 p
applies the parser p
one or more times. Returns a
list of the returned values of p
.
word = many1 letter
skipMany :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m () #
skipMany p
applies the parser p
zero or more times, skipping
its result.
spaces = skipMany space
skipMany1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m () #
skipMany1 p
applies the parser p
one or more times, skipping
its result.
sepBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepBy p sep
parses zero or more occurrences of p
, separated
by sep
. Returns a list of values returned by p
.
commaSep p = p `sepBy` (symbol ",")
sepBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepBy1 p sep
parses one or more occurrences of p
, separated
by sep
. Returns a list of values returned by p
.
endBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
endBy p sep
parses zero or more occurrences of p
, separated
and ended by sep
. Returns a list of values returned by p
.
cStatements = cStatement `endBy` semi
endBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
endBy1 p sep
parses one or more occurrences of p
, separated
and ended by sep
. Returns a list of values returned by p
.
chainr :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a #
chainr p op x
parses zero or more occurrences of p
,
separated by op
Returns a value obtained by a right associative
application of all functions returned by op
to the values returned
by p
. If there are no occurrences of p
, the value x
is
returned.
chainl :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> a -> ParsecT s u m a #
chainl p op x
parses zero or more occurrences of p
,
separated by op
. Returns a value obtained by a left associative
application of all functions returned by op
to the values returned
by p
. If there are zero occurrences of p
, the value x
is
returned.
chainr1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a #
chainr1 p op x
parses one or more occurrences of |p|,
separated by op
Returns a value obtained by a right associative
application of all functions returned by op
to the values returned
by p
.
chainl1 :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (a -> a -> a) -> ParsecT s u m a #
chainl1 p op
parses one or more occurrences of p
,
separated by op
Returns a value obtained by a left associative
application of all functions returned by op
to the values returned
by p
. This parser can for example be used to eliminate left
recursion which typically occurs in expression grammars.
expr = term `chainl1` addop term = factor `chainl1` mulop factor = parens expr <|> integer mulop = do{ symbol "*"; return (*) } <|> do{ symbol "/"; return (div) } addop = do{ symbol "+"; return (+) } <|> do{ symbol "-"; return (-) }
manyTill :: forall s (m :: Type -> Type) t u a end. Stream s m t => ParsecT s u m a -> ParsecT s u m end -> ParsecT s u m [a] #
manyTill p end
applies parser p
zero or more times until
parser end
succeeds. Returns the list of values returned by p
.
This parser can be used to scan comments:
simpleComment = do{ string "<!--" ; manyTill anyChar (try (string "-->")) }
Note the overlapping parsers anyChar
and string "-->"
, and
therefore the use of the try
combinator.
getState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m u #
Returns the current user state.
setState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m () #
An alias for putState for backwards compatibility.
sourceLine :: SourcePos -> Line #
Extracts the line number from a source position.
sourceColumn :: SourcePos -> Column #
Extracts the column number from a source position.
label :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a #
A synonym for <?>
, but as a function instead of an operator.
lookAhead :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m a #
lookAhead p
parses p
without consuming any input.
If p
fails and consumes some input, so does lookAhead
. Combine with try
if this is undesirable.
unexpected :: forall s (m :: Type -> Type) t u a. Stream s m t => String -> ParsecT s u m a #
The parser unexpected msg
always fails with an unexpected error
message msg
without consuming any input.
The parsers fail
, (<?>
) and unexpected
are the three parsers
used to generate error messages. Of these, only (<?>
) is commonly
used. For an example of the use of unexpected
, see the definition
of notFollowedBy
.
(<?>) :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> String -> ParsecT s u m a infix 0 #
The parser p <?> msg
behaves as parser p
, but whenever the
parser p
fails without consuming any input, it replaces expect
error messages with the expect error message msg
.
This is normally used at the end of a set alternatives where we want
to return an error message in terms of a higher level construct
rather than returning all possible characters. For example, if the
expr
parser from the try
example would fail, the error
message is: '...: expecting expression'. Without the (<?>)
combinator, the message would be like '...: expecting "let" or
letter', which is less friendly.
notFollowedBy :: forall s (m :: Type -> Type) t a u. (Stream s m t, Show a) => ParsecT s u m a -> ParsecT s u m () #
notFollowedBy p
only succeeds when parser p
fails. This parser
does not consume any input. This parser can be used to implement the
'longest match' rule. For example, when recognizing keywords (for
example let
), we want to make sure that a keyword is not followed
by a legal identifier character, in which case the keyword is
actually an identifier (for example lets
). We can program this
behaviour as follows:
keywordLet = try (do{ string "let" ; notFollowedBy alphaNum })
NOTE: Currently, notFollowedBy
exhibits surprising behaviour
when applied to a parser p
that doesn't consume any input;
specifically
is not equivalent tonotFollowedBy
.notFollowedBy
lookAhead
, and
never fails.notFollowedBy
eof
See haskell/parsec#8 for more details.
sourceName :: SourcePos -> SourceName #
Extracts the name of the source from a source position.
incSourceLine :: SourcePos -> Line -> SourcePos #
Increments the line number of a source position.
incSourceColumn :: SourcePos -> Column -> SourcePos #
Increments the column number of a source position.
setSourceName :: SourcePos -> SourceName -> SourcePos #
Set the name of the source.
setSourceLine :: SourcePos -> Line -> SourcePos #
Set the line number of a source position.
setSourceColumn :: SourcePos -> Column -> SourcePos #
Set the column number of a source position.
errorPos :: ParseError -> SourcePos #
Extracts the source position from the parse error
unknownError :: State s u -> ParseError #
sysUnExpectError :: String -> SourcePos -> Reply s u a #
runParsecT :: Monad m => ParsecT s u m a -> State s u -> m (Consumed (m (Reply s u a))) #
Low-level unpacking of the ParsecT type. To run your parser, please look to runPT, runP, runParserT, runParser and other such functions.
mkPT :: Monad m => (State s u -> m (Consumed (m (Reply s u a)))) -> ParsecT s u m a #
Low-level creation of the ParsecT type. You really shouldn't have to do this.
parserReturn :: forall a s u (m :: Type -> Type). a -> ParsecT s u m a #
parserBind :: forall s u (m :: Type -> Type) a b. ParsecT s u m a -> (a -> ParsecT s u m b) -> ParsecT s u m b #
mergeErrorReply :: ParseError -> Reply s u a -> Reply s u a #
parserZero :: forall s u (m :: Type -> Type) a. ParsecT s u m a #
parserZero
always fails without consuming any input. parserZero
is defined
equal to the mzero
member of the MonadPlus
class and to the empty
member
of the Alternative
class.
parserPlus :: forall s u (m :: Type -> Type) a. ParsecT s u m a -> ParsecT s u m a -> ParsecT s u m a #
tokens :: forall s (m :: Type -> Type) t u. (Stream s m t, Eq t) => ([t] -> String) -> (SourcePos -> [t] -> SourcePos) -> [t] -> ParsecT s u m [t] #
:: Stream s Identity t | |
=> (t -> String) | Token pretty-printing function. |
-> (t -> SourcePos) | Computes the position of a token. |
-> (t -> Maybe a) | Matching function for the token to parse. |
-> Parsec s u a |
The parser token showTok posFromTok testTok
accepts a token t
with result x
when the function testTok t
returns
. The
source position of the Just
xt
should be returned by posFromTok t
and
the token can be shown using showTok t
.
This combinator is expressed in terms of tokenPrim
.
It is used to accept user defined token streams. For example,
suppose that we have a stream of basic tokens tupled with source
positions. We can then define a parser that accepts single tokens as:
mytoken x = token showTok posFromTok testTok where showTok (pos,t) = show t posFromTok (pos,t) = pos testTok (pos,t) = if x == t then Just t else Nothing
:: forall s (m :: Type -> Type) t a u. Stream s m t | |
=> (t -> String) | Token pretty-printing function. |
-> (SourcePos -> t -> s -> SourcePos) | Next position calculating function. |
-> (t -> Maybe a) | Matching function for the token to parse. |
-> ParsecT s u m a |
The parser tokenPrim showTok nextPos testTok
accepts a token t
with result x
when the function testTok t
returns
. The
token can be shown using Just
xshowTok t
. The position of the next
token should be returned when nextPos
is called with the current
source position pos
, the current token t
and the rest of the
tokens toks
, nextPos pos t toks
.
This is the most primitive combinator for accepting tokens. For
example, the char
parser could be implemented as:
char c = tokenPrim showChar nextPos testChar where showChar x = "'" ++ x ++ "'" testChar x = if x == c then Just x else Nothing nextPos pos x xs = updatePosChar pos x
tokenPrimEx :: forall s (m :: Type -> Type) t u a. Stream s m t => (t -> String) -> (SourcePos -> t -> s -> SourcePos) -> Maybe (SourcePos -> t -> s -> u -> u) -> (t -> Maybe a) -> ParsecT s u m a #
manyAccum :: forall a s u (m :: Type -> Type). (a -> [a] -> [a]) -> ParsecT s u m a -> ParsecT s u m [a] #
runPT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a) #
runP :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a #
runParserT :: Stream s m t => ParsecT s u m a -> u -> SourceName -> s -> m (Either ParseError a) #
The most general way to run a parser. runParserT p state filePath
input
runs parser p
on the input list of tokens input
,
obtained from source filePath
with the initial user state st
.
The filePath
is only used in error messages and may be the empty
string. Returns a computation in the underlying monad m
that return either a ParseError
(Left
) or a
value of type a
(Right
).
runParser :: Stream s Identity t => Parsec s u a -> u -> SourceName -> s -> Either ParseError a #
The most general way to run a parser over the Identity monad. runParser p state filePath
input
runs parser p
on the input list of tokens input
,
obtained from source filePath
with the initial user state st
.
The filePath
is only used in error messages and may be the empty
string. Returns either a ParseError
(Left
) or a
value of type a
(Right
).
parseFromFile p fname = do{ input <- readFile fname ; return (runParser p () fname input) }
parseTest :: (Stream s Identity t, Show a) => Parsec s () a -> s -> IO () #
The expression parseTest p input
applies a parser p
against
input input
and prints the result to stdout. Used for testing
parsers.
getPosition :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m SourcePos #
Returns the current source position. See also SourcePos
.
setPosition :: forall (m :: Type -> Type) s u. Monad m => SourcePos -> ParsecT s u m () #
setPosition pos
sets the current source position to pos
.
setInput :: forall (m :: Type -> Type) s u. Monad m => s -> ParsecT s u m () #
setInput input
continues parsing with input
. The getInput
and
setInput
functions can for example be used to deal with #include
files.
getParserState :: forall (m :: Type -> Type) s u. Monad m => ParsecT s u m (State s u) #
Returns the full parser state as a State
record.
setParserState :: forall (m :: Type -> Type) s u. Monad m => State s u -> ParsecT s u m (State s u) #
setParserState st
set the full parser state to st
.
updateParserState :: forall s u (m :: Type -> Type). (State s u -> State s u) -> ParsecT s u m (State s u) #
updateParserState f
applies function f
to the parser state.
putState :: forall (m :: Type -> Type) u s. Monad m => u -> ParsecT s u m () #
putState st
set the user state to st
.
modifyState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m () #
modifyState f
applies function f
to the user state. Suppose
that we want to count identifiers in a source, we could use the user
state as:
expr = do{ x <- identifier ; modifyState (+1) ; return (Id x) }
updateState :: forall (m :: Type -> Type) u s. Monad m => (u -> u) -> ParsecT s u m () #
An alias for modifyState for backwards compatibility.
optionMaybe :: forall s (m :: Type -> Type) t u a. Stream s m t => ParsecT s u m a -> ParsecT s u m (Maybe a) #
sepEndBy1 :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepEndBy1 p sep
parses one or more occurrences of p
,
separated and optionally ended by sep
. Returns a list of values
returned by p
.
sepEndBy :: forall s (m :: Type -> Type) t u a sep. Stream s m t => ParsecT s u m a -> ParsecT s u m sep -> ParsecT s u m [a] #
sepEndBy p sep
parses zero or more occurrences of p
,
separated and optionally ended by sep
, ie. haskell style
statements. Returns a list of values returned by p
.
haskellStatements = haskellStatement `sepEndBy` semi
anyToken :: forall s (m :: Type -> Type) t u. (Stream s m t, Show t) => ParsecT s u m t #
The parser anyToken
accepts any kind of token. It is for example
used to implement eof
. Returns the accepted token.
parserTrace :: forall t s (m :: Type -> Type) u. (Show t, Stream s m t) => String -> ParsecT s u m () #
parserTrace label
is an impure function, implemented with Debug.Trace that
prints to the console the remaining parser state at the time it is invoked.
It is intended to be used for debugging parsers by inspecting their intermediate states.
*> parseTest (oneOf "aeiou" >> parserTrace "label") "atest" label: "test" ...
Since: parsec-3.1.12.0
parserTraced :: forall s (m :: Type -> Type) t u b. (Stream s m t, Show t) => String -> ParsecT s u m b -> ParsecT s u m b #
parserTraced label p
is an impure function, implemented with Debug.Trace that
prints to the console the remaining parser state at the time it is invoked.
It then continues to apply parser p
, and if p
fails will indicate that
the label has been backtracked.
It is intended to be used for debugging parsers by inspecting their intermediate states.
*> parseTest (oneOf "aeiou" >> parserTraced "label" (oneOf "nope")) "atest" label: "test" label backtracked parse error at (line 1, column 2): ...
Since: parsec-3.1.12.0
oneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char #
oneOf cs
succeeds if the current character is in the supplied
list of characters cs
. Returns the parsed character. See also
satisfy
.
vowel = oneOf "aeiou"
noneOf :: forall s (m :: Type -> Type) u. Stream s m Char => [Char] -> ParsecT s u m Char #
As the dual of oneOf
, noneOf cs
succeeds if the current
character not in the supplied list of characters cs
. Returns the
parsed character.
consonant = noneOf "aeiou"
spaces :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m () #
Skips zero or more white space characters. See also skipMany
.
space :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a white space character (any character which satisfies isSpace
)
Returns the parsed character.
newline :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a newline character ('\n'). Returns a newline character.
crlf :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a carriage return character ('\r') followed by a newline character ('\n'). Returns a newline character.
tab :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a tab character ('\t'). Returns a tab character.
upper :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an upper case letter (according to isUpper
).
Returns the parsed character.
lower :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a lower case character (according to isLower
).
Returns the parsed character.
alphaNum :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a alphabetic or numeric Unicode characters
according to isAlphaNum
. Returns the parsed character.
Note that numeric digits outside the ASCII range (such as arabic-indic digits like e.g. "٤" or U+0664
),
as well as numeric characters which aren't digits, are parsed by this function
but not by digit
.
letter :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an alphabetic Unicode characters (lower-case, upper-case and title-case letters,
plus letters of caseless scripts and modifiers letters according to isAlpha
).
Returns the parsed character.
digit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an ASCII digit. Returns the parsed character.
hexDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses a hexadecimal digit (a digit or a letter between 'a' and 'f' or 'A' and 'F'). Returns the parsed character.
octDigit :: forall s (m :: Type -> Type) u. Stream s m Char => ParsecT s u m Char #
Parses an octal digit (a character between '0' and '7'). Returns the parsed character.