parsec-free-3.1.11.1: Parsec API encoded as a deeply-embedded DSL, for debugging and analysis

Copyright(c) Daan Leijen 1999-2001, (c) Paolo Martini 2007
LicenseBSD-style (see the LICENSE file)
Maintainerderek.a.elkins@gmail.com
Stabilityprovisional
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Text.Parsec.Expr

Description

A helper module to parse "expressions". Builds a parser given a table of operators and associativities.

Synopsis

Documentation

data Assoc Source #

This data type specifies the associativity of operators: left, right or none.

data Operator s u m a Source #

This data type specifies operators that work on values of type a. An operator is either binary infix or unary prefix or postfix. A binary operator has also an associated associativity.

Constructors

Infix (ParsecT s u m (a -> a -> a)) Assoc 
Prefix (ParsecT s u m (a -> a)) 
Postfix (ParsecT s u m (a -> a)) 

type OperatorTable s u m a = [[Operator s u m a]] Source #

An OperatorTable s u m a is a list of Operator s u m a lists. The list is ordered in descending precedence. All operators in one list have the same precedence (but may have a different associativity).

buildExpressionParser :: Stream s m t => OperatorTable s u m a -> ParsecT s u m a -> ParsecT s u m a Source #

buildExpressionParser table term builds an expression parser for terms term with operators from table, taking the associativity and precedence specified in table into account. Prefix and postfix operators of the same precedence can only occur once (i.e. --2 is not allowed if - is prefix negate). Prefix and postfix operators of the same precedence associate to the left (i.e. if ++ is postfix increment, than -2++ equals -1, not -3).

The buildExpressionParser takes care of all the complexity involved in building expression parser. Here is an example of an expression parser that handles prefix signs, postfix increment and basic arithmetic.

 expr    = buildExpressionParser table term
         <?> "expression"

 term    =  parens expr 
         <|> natural
         <?> "simple expression"

 table   = [ [prefix "-" negate, prefix "+" id ]
           , [postfix "++" (+1)]
           , [binary "*" (*) AssocLeft, binary "/" (div) AssocLeft ]
           , [binary "+" (+) AssocLeft, binary "-" (-)   AssocLeft ]
           ]
         
 binary  name fun assoc = Infix (do{ reservedOp name; return fun }) assoc
 prefix  name fun       = Prefix (do{ reservedOp name; return fun })
 postfix name fun       = Postfix (do{ reservedOp name; return fun })