Safe Haskell | Safe |
---|---|
Language | Haskell98 |
General purpose proxies
- mapD :: (Monad m, Proxy p) => (a -> b) -> x -> p x a x b m r
- mapU :: (Monad m, Proxy p) => (b' -> a') -> b' -> p a' x b' x m r
- mapB :: (Monad m, Proxy p) => (a -> b) -> (b' -> a') -> b' -> p a' a b' b m r
- mapMD :: (Monad m, Proxy p) => (a -> m b) -> x -> p x a x b m r
- mapMU :: (Monad m, Proxy p) => (b' -> m a') -> b' -> p a' x b' x m r
- mapMB :: (Monad m, Proxy p) => (a -> m b) -> (b' -> m a') -> b' -> p a' a b' b m r
- useD :: (Monad m, Proxy p) => (a -> m r1) -> x -> p x a x a m r
- useU :: (Monad m, Proxy p) => (a' -> m r2) -> a' -> p a' x a' x m r
- useB :: (Monad m, Proxy p) => (a -> m r1) -> (a' -> m r2) -> a' -> p a' a a' a m r
- execD :: (Monad m, Proxy p) => m r1 -> a' -> p a' a a' a m r
- execU :: (Monad m, Proxy p) => m r2 -> a' -> p a' a a' a m r
- execB :: (Monad m, Proxy p) => m r1 -> m r2 -> a' -> p a' a a' a m r
- takeB :: (Monad m, Proxy p) => Int -> a' -> p a' a a' a m a'
- takeB_ :: (Monad m, Proxy p) => Int -> a' -> p a' a a' a m ()
- takeWhileD :: (Monad m, Proxy p) => (a -> Bool) -> a' -> p a' a a' a m ()
- takeWhileU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' a a' a m ()
- dropD :: (Monad m, Proxy p) => Int -> () -> Pipe p a a m r
- dropU :: (Monad m, Proxy p) => Int -> a' -> CoPipe p a' a' m r
- dropWhileD :: (Monad m, Proxy p) => (a -> Bool) -> () -> Pipe p a a m r
- dropWhileU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> CoPipe p a' a' m r
- filterD :: (Monad m, Proxy p) => (a -> Bool) -> () -> Pipe p a a m r
- filterU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> CoPipe p a' a' m r
- fromListS :: (Monad m, Proxy p) => [b] -> () -> Producer p b m ()
- fromListC :: (Monad m, Proxy p) => [a'] -> () -> CoProducer p a' m ()
- enumFromS :: (Enum b, Monad m, Proxy p) => b -> () -> Producer p b m r
- enumFromC :: (Enum a', Monad m, Proxy p) => a' -> () -> CoProducer p a' m r
- enumFromToS :: (Enum b, Ord b, Monad m, Proxy p) => b -> b -> () -> Producer p b m ()
- enumFromToC :: (Enum a', Ord a', Monad m, Proxy p) => a' -> a' -> () -> CoProducer p a' m ()
- foldD :: (Monad m, Proxy p, Monoid w) => (a -> w) -> x -> p x a x a (WriterT w m) r
- foldU :: (Monad m, Proxy p, Monoid w) => (a' -> w) -> a' -> p a' x a' x (WriterT w m) r
- allD :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT All m) r
- allU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT All m) r
- allD_ :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT All m) ()
- allU_ :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT All m) ()
- anyD :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT Any m) r
- anyU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT Any m) r
- anyD_ :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT Any m) ()
- anyU_ :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT Any m) ()
- sumD :: (Monad m, Proxy p, Num a) => x -> p x a x a (WriterT (Sum a) m) r
- sumU :: (Monad m, Proxy p, Num a') => a' -> p a' x a' x (WriterT (Sum a') m) r
- productD :: (Monad m, Proxy p, Num a) => x -> p x a x a (WriterT (Product a) m) r
- productU :: (Monad m, Proxy p, Num a') => a' -> p a' x a' x (WriterT (Product a') m) r
- lengthD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (Sum Int) m) r
- lengthU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (Sum Int) m) r
- headD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (First a) m) r
- headD_ :: (Monad m, Proxy p) => x -> p x a x a (WriterT (First a) m) ()
- headU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (First a') m) r
- headU_ :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (First a') m) ()
- lastD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (Last a) m) r
- lastU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (Last a') m) r
- toListD :: (Monad m, Proxy p) => x -> p x a x a (WriterT [a] m) r
- toListU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT [a'] m) r
- foldrD :: (Monad m, Proxy p) => (a -> b -> b) -> x -> p x a x a (WriterT (Endo b) m) r
- foldrU :: (Monad m, Proxy p) => (a' -> b -> b) -> a' -> p a' x a' x (WriterT (Endo b) m) r
- foldlD' :: (Monad m, Proxy p) => (b -> a -> b) -> x -> p x a x a (StateT b m) r
- foldlU' :: (Monad m, Proxy p) => (b -> a' -> b) -> a' -> p a' x a' x (StateT b m) r
- zipD :: (Monad m, Proxy p1, Proxy p2, Proxy p3) => () -> Consumer p1 a (Consumer p2 b (Producer p3 (a, b) m)) r
- mergeD :: (Monad m, Proxy p1, Proxy p2, Proxy p3) => () -> Consumer p1 a (Consumer p2 a (Producer p3 a m)) r
- unitD :: (Monad m, Proxy p) => y' -> p x' x y' () m r
- unitU :: (Monad m, Proxy p) => y' -> p () x y' y m r
- module Control.Monad.Trans.State.Strict
- module Data.Monoid
Maps
mapD :: (Monad m, Proxy p) => (a -> b) -> x -> p x a x b m r Source #
(mapD f)
applies f
to all values going 'D
'ownstream.
mapD f1 >-> mapD f2 = mapD (f2 . f1) mapD id = idT
mapU :: (Monad m, Proxy p) => (b' -> a') -> b' -> p a' x b' x m r Source #
(mapU g)
applies g
to all values going 'U
'pstream.
mapU g1 >-> mapU g2 = mapU (g1 . g2) mapU id = idT
mapB :: (Monad m, Proxy p) => (a -> b) -> (b' -> a') -> b' -> p a' a b' b m r Source #
(mapB f g)
applies f
to all values going downstream and g
to all
values going upstream.
Mnemonic: map 'B
'idirectional
mapB f1 g1 >-> mapB f2 g2 = mapB (f2 . f1) (g1 . g2) mapB id id = idT
mapMD :: (Monad m, Proxy p) => (a -> m b) -> x -> p x a x b m r Source #
(mapMD f)
applies the monadic function f
to all values going downstream
mapMD f1 >-> mapMD f2 = mapMD (f1 >=> f2) mapMD return = idT
mapMU :: (Monad m, Proxy p) => (b' -> m a') -> b' -> p a' x b' x m r Source #
(mapMU g)
applies the monadic function g
to all values going upstream
mapMU g1 >-> mapMU g2 = mapMU (g2 >=> g1) mapMU return = idT
mapMB :: (Monad m, Proxy p) => (a -> m b) -> (b' -> m a') -> b' -> p a' a b' b m r Source #
(mapMB f g)
applies the monadic function f
to all values going
downstream and the monadic function g
to all values going upstream.
mapMB f1 g1 >-> mapMB f2 g2 = mapMB (f1 >=> f2) (g2 >=> g1) mapMB return return = idT
useD :: (Monad m, Proxy p) => (a -> m r1) -> x -> p x a x a m r Source #
(useD f)
executes the monadic function f
on all values flowing
'D
'ownstream
useD f1 >-> useD f2 = useD (\a -> f1 a >> f2 a) useD (\_ -> return ()) = idT
useU :: (Monad m, Proxy p) => (a' -> m r2) -> a' -> p a' x a' x m r Source #
(useU g)
executes the monadic function g
on all values flowing
'U
'pstream
useU g1 >-> useU g2 = useU (\a' -> g2 a' >> g1 a') useU (\_ -> return ()) = idT
useB :: (Monad m, Proxy p) => (a -> m r1) -> (a' -> m r2) -> a' -> p a' a a' a m r Source #
(useB f g)
executes the monadic function f
on all values flowing
downstream and the monadic function g
on all values flowing upstream
useB f1 g1 >-> useB f2 g2 = useB (\a -> f1 a >> f2 a) (\a' -> g2 a' >> g1 a') useB (\_ -> return ()) (\_ -> return ()) = idT
execD :: (Monad m, Proxy p) => m r1 -> a' -> p a' a a' a m r Source #
(execD md)
executes md
every time values flow downstream through it.
execD md1 >-> execD md2 = execD (md1 >> md2) execD (return ()) = idT
execU :: (Monad m, Proxy p) => m r2 -> a' -> p a' a a' a m r Source #
(execU mu)
executes mu
every time values flow upstream through it.
execU mu1 >-> execU mu2 = execU (mu2 >> mu1) execU (return ()) = idT
execB :: (Monad m, Proxy p) => m r1 -> m r2 -> a' -> p a' a a' a m r Source #
(execB md mu)
executes mu
every time values flow upstream through it,
and executes md
every time values flow downstream through it.
execB md1 mu1 >-> execB md2 mu2 = execB (md1 >> md2) (mu2 >> mu1) execB (return ()) = idT
Filters
takeB :: (Monad m, Proxy p) => Int -> a' -> p a' a a' a m a' Source #
(takeB n)
allows n
upstream/downstream roundtrips to pass through
takeB n1 >=> takeB n2 = takeB (n1 + n2) -- n1 >= 0 && n2 >= 0 takeB 0 = return
takeWhileD :: (Monad m, Proxy p) => (a -> Bool) -> a' -> p a' a a' a m () Source #
(takeWhileD p)
allows values to pass downstream so long as they satisfy
the predicate p
.
-- Using the "All" monoid over functions: mempty = \_ -> True (p1 <> p2) a = p1 a && p2 a takeWhileD p1 >-> takeWhileD p2 = takeWhileD (p1 <> p2) takeWhileD mempty = idT
takeWhileU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' a a' a m () Source #
(takeWhileU p)
allows values to pass upstream so long as they satisfy the
predicate p
.
takeWhileU p1 >-> takeWhileU p2 = takeWhileU (p1 <> p2) takeWhileD mempty = idT
dropD :: (Monad m, Proxy p) => Int -> () -> Pipe p a a m r Source #
(dropD n)
discards n
values going downstream
dropD n1 >-> dropD n2 = dropD (n1 + n2) -- n2 >= 0 && n2 >= 0 dropD 0 = idT
dropU :: (Monad m, Proxy p) => Int -> a' -> CoPipe p a' a' m r Source #
(dropU n)
discards n
values going upstream
dropU n1 >-> dropU n2 = dropU (n1 + n2) -- n2 >= 0 && n2 >= 0 dropU 0 = idT
dropWhileD :: (Monad m, Proxy p) => (a -> Bool) -> () -> Pipe p a a m r Source #
(dropWhileD p)
discards values going downstream until one violates the
predicate p
.
-- Using the "Any" monoid over functions: mempty = \_ -> False (p1 <> p2) a = p1 a || p2 a dropWhileD p1 >-> dropWhileD p2 = dropWhileD (p1 <> p2) dropWhileD mempty = idT
dropWhileU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> CoPipe p a' a' m r Source #
(dropWhileU p)
discards values going upstream until one violates the
predicate p
.
dropWhileU p1 >-> dropWhileU p2 = dropWhileU (p1 <> p2) dropWhileU mempty = idT
filterD :: (Monad m, Proxy p) => (a -> Bool) -> () -> Pipe p a a m r Source #
(filterD p)
discards values going downstream if they fail the predicate
p
-- Using the "All" monoid over functions: mempty = \_ -> True (p1 <> p2) a = p1 a && p2 a filterD p1 >-> filterD p2 = filterD (p1 <> p2) filterD mempty = idT
filterU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> CoPipe p a' a' m r Source #
(filterU p)
discards values going upstream if they fail the predicate p
filterU p1 >-> filterU p2 = filterU (p1 <> p2) filterU mempty = idT
Lists
fromListS :: (Monad m, Proxy p) => [b] -> () -> Producer p b m () Source #
Convert a list into a Producer
fromListS xs >=> fromListS ys = fromListS (xs ++ ys) fromListS [] = return
fromListC :: (Monad m, Proxy p) => [a'] -> () -> CoProducer p a' m () Source #
Convert a list into a CoProducer
fromListC xs >=> fromListC ys = fromListC (xs ++ ys) fromListC [] = return
Enumerations
enumFromC :: (Enum a', Monad m, Proxy p) => a' -> () -> CoProducer p a' m r Source #
CoProducer
version of enumFrom
enumFromToS :: (Enum b, Ord b, Monad m, Proxy p) => b -> b -> () -> Producer p b m () Source #
Producer
version of enumFromTo
enumFromToC :: (Enum a', Ord a', Monad m, Proxy p) => a' -> a' -> () -> CoProducer p a' m () Source #
CoProducer
version of enumFromTo
Folds
foldD :: (Monad m, Proxy p, Monoid w) => (a -> w) -> x -> p x a x a (WriterT w m) r Source #
Fold values flowing 'D
'ownstream
foldD f >-> foldD g = foldD (f <> g) foldD mempty = idT
foldU :: (Monad m, Proxy p, Monoid w) => (a' -> w) -> a' -> p a' x a' x (WriterT w m) r Source #
Fold values flowing 'U
'pstream
foldU f >-> foldU g = foldU (g <> f) foldU mempty = idT
allD :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT All m) r Source #
Fold that returns whether All
values flowing 'D
'ownstream satisfy the
predicate
allU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT All m) r Source #
Fold that returns whether All
values flowing 'U
'pstream satisfy the
predicate
anyD :: (Monad m, Proxy p) => (a -> Bool) -> x -> p x a x a (WriterT Any m) r Source #
Fold that returns whether Any
value flowing 'D
'ownstream satisfies
the predicate
anyU :: (Monad m, Proxy p) => (a' -> Bool) -> a' -> p a' x a' x (WriterT Any m) r Source #
Fold that returns whether Any
value flowing 'U
'pstream satisfies
the predicate
sumD :: (Monad m, Proxy p, Num a) => x -> p x a x a (WriterT (Sum a) m) r Source #
Compute the Sum
of all values that flow 'D
'ownstream
sumU :: (Monad m, Proxy p, Num a') => a' -> p a' x a' x (WriterT (Sum a') m) r Source #
Compute the Sum
of all values that flow 'U
'pstream
productD :: (Monad m, Proxy p, Num a) => x -> p x a x a (WriterT (Product a) m) r Source #
Compute the Product
of all values that flow 'D
'ownstream
productU :: (Monad m, Proxy p, Num a') => a' -> p a' x a' x (WriterT (Product a') m) r Source #
Compute the Product
of all values that flow 'U
'pstream
lengthD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (Sum Int) m) r Source #
Count how many values flow 'D
'ownstream
lengthU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (Sum Int) m) r Source #
Count how many values flow 'U
'pstream
headD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (First a) m) r Source #
Retrieve the first value going 'D
'ownstream
headD_ :: (Monad m, Proxy p) => x -> p x a x a (WriterT (First a) m) () Source #
Retrieve the first value going 'D
'ownstream
headD_
terminates on the first value it receives
headU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (First a') m) r Source #
Retrieve the first value going 'U
'pstream
headU_ :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (First a') m) () Source #
Retrieve the first value going 'U
'pstream
headU_
terminates on the first value it receives
lastD :: (Monad m, Proxy p) => x -> p x a x a (WriterT (Last a) m) r Source #
Retrieve the last value going 'D
'ownstream
lastU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT (Last a') m) r Source #
Retrieve the last value going 'U
'pstream
toListD :: (Monad m, Proxy p) => x -> p x a x a (WriterT [a] m) r Source #
Fold the values flowing 'D
'ownstream into a list
toListU :: (Monad m, Proxy p) => a' -> p a' x a' x (WriterT [a'] m) r Source #
Fold the values flowing 'U
'pstream into a list
foldrU :: (Monad m, Proxy p) => (a' -> b -> b) -> a' -> p a' x a' x (WriterT (Endo b) m) r Source #
Fold equivalent to foldr
foldlD' :: (Monad m, Proxy p) => (b -> a -> b) -> x -> p x a x a (StateT b m) r Source #
Left strict fold over 'D
'ownstream values
foldlU' :: (Monad m, Proxy p) => (b -> a' -> b) -> a' -> p a' x a' x (StateT b m) r Source #
Left strict fold over 'U
'pstream values
Zips and Merges
zipD :: (Monad m, Proxy p1, Proxy p2, Proxy p3) => () -> Consumer p1 a (Consumer p2 b (Producer p3 (a, b) m)) r Source #
Zip values flowing downstream
mergeD :: (Monad m, Proxy p1, Proxy p2, Proxy p3) => () -> Consumer p1 a (Consumer p2 a (Producer p3 a m)) r Source #
Interleave values flowing downstream using simple alternation
Closed Adapters
Use the unit
functions when you need to embed a proxy with a closed end
within an open proxy. For example, the following code will not type-check
because fromListS [1..]
is a Producer
and has a closed upstream end,
which conflicts with the request
statement preceding it:
p () = do request () fromList [1..] ()
You fix this by composing unitD
upstream of it, which replaces its closed
upstream end with an open polymorphic end:
p () = do request () (fromList [1..] <-< unitD) ()
unitD :: (Monad m, Proxy p) => y' -> p x' x y' () m r Source #
Compose unitD
with a closed upstream end to create a polymorphic end
unitU :: (Monad m, Proxy p) => y' -> p () x y' y m r Source #
Compose unitU
with a closed downstream end to create a polymorphic end
Modules
These modules help you build, run, and extract folds
module Data.Monoid