| Safe Haskell | Safe |
|---|---|
| Language | Haskell2010 |
Optic.Fold
Contents
Synopsis
- type Fold s a = forall (f :: * -> *). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s
- (^..) :: s -> Getting (Endo [a]) s a -> [a]
- (^?) :: s -> Getting (First a) s a -> Maybe a
- pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a)
- preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a)
- previews :: MonadReader s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a)
- preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r)
- has :: Getting Any s a -> s -> Bool
- hasn't :: Getting All s a -> s -> Bool
- folding :: Foldable f => (s -> f a) -> Fold s a
- folded :: Foldable f => IndexedFold Int (f a) a
- folded64 :: Foldable f => IndexedFold Int64 (f a) a
- unfolded :: (b -> Maybe (a, b)) -> Fold b a
- iterated :: Apply f => (a -> a) -> LensLike' f a a
- filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a
- backwards :: (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b
- repeated :: Apply f => LensLike' f a a
- replicated :: Int -> Fold a a
- cycled :: Apply f => LensLike f s t a b -> LensLike f s t a b
- takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a
- droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a
- foldMapOf :: Getting r s a -> (a -> r) -> s -> r
- foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
- foldOf :: Getting a s a -> s -> a
- foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a
- foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r
- foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r
- foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r
- foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r
- foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r
- toListOf :: Getting (Endo [a]) s a -> s -> [a]
- toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a
- anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- allOf :: Getting All s a -> (a -> Bool) -> s -> Bool
- noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool
- andOf :: Getting All s Bool -> s -> Bool
- orOf :: Getting Any s Bool -> s -> Bool
- productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a
- traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f ()
- forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f ()
- sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f ()
- asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a
- msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a
- concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r]
- elemOf :: Eq a => Getting Any s a -> a -> s -> Bool
- notElemOf :: Eq a => Getting All s a -> a -> s -> Bool
- lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int
- nullOf :: Getting All s a -> s -> Bool
- notNullOf :: Getting Any s a -> s -> Bool
- firstOf :: Getting (Leftmost a) s a -> s -> Maybe a
- lastOf :: Getting (Rightmost a) s a -> s -> Maybe a
- maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a
- maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a
- findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a
- findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a)
- lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v
Fold
type Fold s a = forall (f :: * -> *). (Contravariant f, Applicative f) => (a -> f a) -> s -> f s #
A Fold describes how to retrieve multiple values in a way that can be composed
with other LensLike constructions.
A provides a structure with operations very similar to those of the Fold s aFoldable
typeclass, see foldMapOf and the other Fold combinators.
By convention, if there exists a foo method that expects a , then there should be a
Foldable (f a)fooOf method that takes a and a value of type Fold s as.
A Getter is a legal Fold that just ignores the supplied Monoid.
Unlike a Traversal a Fold is read-only. Since a Fold cannot be used to write back
there are no Lens laws that apply.
(^..) :: s -> Getting (Endo [a]) s a -> [a] infixl 8 #
A convenient infix (flipped) version of toListOf.
>>>[[1,2],[3]]^..id[[[1,2],[3]]]>>>[[1,2],[3]]^..traverse[[1,2],[3]]>>>[[1,2],[3]]^..traverse.traverse[1,2,3]
>>>(1,2)^..both[1,2]
toListxs ≡ xs^..folded(^..) ≡fliptoListOf
(^..) :: s ->Getters a -> a :: s ->Folds a -> a :: s ->Lens's a -> a :: s ->Iso's a -> a :: s ->Traversal's a -> a :: s ->Prism's a -> [a]
(^?) :: s -> Getting (First a) s a -> Maybe a infixl 8 #
Perform a safe head of a Fold or Traversal or retrieve Just the result
from a Getter or Lens.
When using a Traversal as a partial Lens, or a Fold as a partial Getter this can be a convenient
way to extract the optional value.
Note: if you get stack overflows due to this, you may want to use firstOf instead, which can deal
more gracefully with heavily left-biased trees.
>>>Left 4 ^?_LeftJust 4
>>>Right 4 ^?_LeftNothing
>>>"world" ^? ix 3Just 'l'
>>>"world" ^? ix 20Nothing
(^?) ≡flippreview
(^?) :: s ->Getters a ->Maybea (^?) :: s ->Folds a ->Maybea (^?) :: s ->Lens's a ->Maybea (^?) :: s ->Iso's a ->Maybea (^?) :: s ->Traversal's a ->Maybea
pre :: Getting (First a) s a -> IndexPreservingGetter s (Maybe a) #
This converts a Fold to a IndexPreservingGetter that returns the first element, if it
exists, as a Maybe.
pre::Getters a ->IndexPreservingGetters (Maybea)pre::Folds a ->IndexPreservingGetters (Maybea)pre::Traversal's a ->IndexPreservingGetters (Maybea)pre::Lens's a ->IndexPreservingGetters (Maybea)pre::Iso's a ->IndexPreservingGetters (Maybea)pre::Prism's a ->IndexPreservingGetters (Maybea)
preview :: MonadReader s m => Getting (First a) s a -> m (Maybe a) #
Retrieve the first value targeted by a Fold or Traversal (or Just the result
from a Getter or Lens). See also (^?).
listToMaybe.toList≡previewfolded
This is usually applied in the Reader
Monad (->) s.
preview=view.pre
preview::Getters a -> s ->Maybeapreview::Folds a -> s ->Maybeapreview::Lens's a -> s ->Maybeapreview::Iso's a -> s ->Maybeapreview::Traversal's a -> s ->Maybea
However, it may be useful to think of its full generality when working with
a Monad transformer stack:
preview::MonadReaders m =>Getters a -> m (Maybea)preview::MonadReaders m =>Folds a -> m (Maybea)preview::MonadReaders m =>Lens's a -> m (Maybea)preview::MonadReaders m =>Iso's a -> m (Maybea)preview::MonadReaders m =>Traversal's a -> m (Maybea)
preuse :: MonadState s m => Getting (First a) s a -> m (Maybe a) #
Retrieve the first value targeted by a Fold or Traversal (or Just the result
from a Getter or Lens) into the current state.
preuse=use.pre
preuse::MonadStates m =>Getters a -> m (Maybea)preuse::MonadStates m =>Folds a -> m (Maybea)preuse::MonadStates m =>Lens's a -> m (Maybea)preuse::MonadStates m =>Iso's a -> m (Maybea)preuse::MonadStates m =>Traversal's a -> m (Maybea)
preuses :: MonadState s m => Getting (First r) s a -> (a -> r) -> m (Maybe r) #
Retrieve a function of the first value targeted by a Fold or
Traversal (or Just the result from a Getter or Lens) into the current state.
preuses=uses.pre
preuses::MonadStates m =>Getters a -> (a -> r) -> m (Mayber)preuses::MonadStates m =>Folds a -> (a -> r) -> m (Mayber)preuses::MonadStates m =>Lens's a -> (a -> r) -> m (Mayber)preuses::MonadStates m =>Iso's a -> (a -> r) -> m (Mayber)preuses::MonadStates m =>Traversal's a -> (a -> r) -> m (Mayber)
has :: Getting Any s a -> s -> Bool #
Check to see if this Fold or Traversal matches 1 or more entries.
>>>has (element 0) []False
>>>has _Left (Left 12)True
>>>has _Right (Left 12)False
This will always return True for a Lens or Getter.
>>>has _1 ("hello","world")True
has::Getters a -> s ->Boolhas::Folds a -> s ->Boolhas::Iso's a -> s ->Boolhas::Lens's a -> s ->Boolhas::Traversal's a -> s ->Bool
folded :: Foldable f => IndexedFold Int (f a) a #
folded64 :: Foldable f => IndexedFold Int64 (f a) a #
filtered :: (Choice p, Applicative f) => (a -> Bool) -> Optic' p f a a #
Obtain an Fold that can be composed with to filter another Lens, Iso, Getter, Fold (or Traversal).
Note: This is not a legal Traversal, unless you are very careful not to invalidate the predicate on the target.
Note: This is also not a legal Prism, unless you are very careful not to inject a value that matches the predicate.
As a counter example, consider that given evens = the second filtered evenTraversal law is violated:
overevenssucc.overevenssucc/=overevens (succ.succ)
So, in order for this to qualify as a legal Traversal you can only use it for actions that preserve the result of the predicate!
>>>[1..10]^..folded.filtered even[2,4,6,8,10]
This will preserve an index if it is present.
backwards :: (Profunctor p, Profunctor q) => Optical p q (Backwards f) s t a b -> Optical p q f s t a b #
This allows you to traverse the elements of a pretty much any LensLike construction in the opposite order.
This will preserve indexes on Indexed types and will give you the elements of a (finite) Fold or Traversal in the opposite order.
This has no practical impact on a Getter, Setter, Lens or Iso.
NB: To write back through an Iso, you want to use from.
Similarly, to write back through an Prism, you want to use re.
replicated :: Int -> Fold a a #
A Fold that replicates its input n times.
replicaten ≡toListOf(replicatedn)
>>>5^..replicated 20[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5]
takingWhile :: (Conjoined p, Applicative f) => (a -> Bool) -> Over p (TakingWhile p f a a) s t a a -> Over p f s t a a #
Obtain a Fold by taking elements from another Fold, Lens, Iso, Getter or Traversal while a predicate holds.
takeWhilep ≡toListOf(takingWhilepfolded)
>>>timingOut $ toListOf (takingWhile (<=3) folded) [1..][1,2,3]
takingWhile:: (a ->Bool) ->Folds a ->Folds atakingWhile:: (a ->Bool) ->Getters a ->Folds atakingWhile:: (a ->Bool) ->Traversal's a ->Folds a -- * See note belowtakingWhile:: (a ->Bool) ->Lens's a ->Folds a -- * See note belowtakingWhile:: (a ->Bool) ->Prism's a ->Folds a -- * See note belowtakingWhile:: (a ->Bool) ->Iso's a ->Folds a -- * See note belowtakingWhile:: (a ->Bool) ->IndexedTraversal'i s a ->IndexedFoldi s a -- * See note belowtakingWhile:: (a ->Bool) ->IndexedLens'i s a ->IndexedFoldi s a -- * See note belowtakingWhile:: (a ->Bool) ->IndexedFoldi s a ->IndexedFoldi s atakingWhile:: (a ->Bool) ->IndexedGetteri s a ->IndexedFoldi s a
Note: When applied to a Traversal, takingWhile yields something that can be used as if it were a Traversal, but
which is not a Traversal per the laws, unless you are careful to ensure that you do not invalidate the predicate when
writing back through it.
droppingWhile :: (Conjoined p, Profunctor q, Applicative f) => (a -> Bool) -> Optical p q (Compose (State Bool) f) s t a a -> Optical p q f s t a a #
Obtain a Fold by dropping elements from another Fold, Lens, Iso, Getter or Traversal while a predicate holds.
dropWhilep ≡toListOf(droppingWhilepfolded)
>>>toListOf (droppingWhile (<=3) folded) [1..6][4,5,6]
>>>toListOf (droppingWhile (<=3) folded) [1,6,1][6,1]
droppingWhile:: (a ->Bool) ->Folds a ->Folds adroppingWhile:: (a ->Bool) ->Getters a ->Folds adroppingWhile:: (a ->Bool) ->Traversal's a ->Folds a -- see notesdroppingWhile:: (a ->Bool) ->Lens's a ->Folds a -- see notesdroppingWhile:: (a ->Bool) ->Prism's a ->Folds a -- see notesdroppingWhile:: (a ->Bool) ->Iso's a ->Folds a -- see notes
droppingWhile:: (a ->Bool) ->IndexPreservingTraversal's a ->IndexPreservingFolds a -- see notesdroppingWhile:: (a ->Bool) ->IndexPreservingLens's a ->IndexPreservingFolds a -- see notesdroppingWhile:: (a ->Bool) ->IndexPreservingGetters a ->IndexPreservingFolds adroppingWhile:: (a ->Bool) ->IndexPreservingFolds a ->IndexPreservingFolds a
droppingWhile:: (a ->Bool) ->IndexedTraversal'i s a ->IndexedFoldi s a -- see notesdroppingWhile:: (a ->Bool) ->IndexedLens'i s a ->IndexedFoldi s a -- see notesdroppingWhile:: (a ->Bool) ->IndexedGetteri s a ->IndexedFoldi s adroppingWhile:: (a ->Bool) ->IndexedFoldi s a ->IndexedFoldi s a
Note: Many uses of this combinator will yield something that meets the types, but not the laws of a valid
Traversal or IndexedTraversal. The Traversal and IndexedTraversal laws are only satisfied if the
new values you assign to the first target also does not pass the predicate! Otherwise subsequent traversals
will visit fewer elements and Traversal fusion is not sound.
So for any traversal t and predicate p, may not be lawful, but
droppingWhile p t( is. For example:dropping 1 . droppingWhile p) t
>>>let l :: Traversal' [Int] Int; l = droppingWhile (<= 1) traverse>>>let l' :: Traversal' [Int] Int; l' = dropping 1 l
l is not a lawful setter because :over l f .
over l g ≢ over l (f . g)
>>>[1,2,3] & l .~ 0 & l .~ 4[1,0,0]>>>[1,2,3] & l .~ 4[1,4,4]
l' on the other hand behaves lawfully:
>>>[1,2,3] & l' .~ 0 & l' .~ 4[1,2,4]>>>[1,2,3] & l' .~ 4[1,2,4]
foldMapOf :: Getting r s a -> (a -> r) -> s -> r #
Map each part of a structure viewed through a Lens, Getter,
Fold or Traversal to a monoid and combine the results.
>>>foldMapOf (folded . both . _Just) Sum [(Just 21, Just 21)]Sum {getSum = 42}
foldMap=foldMapOffolded
foldMapOf≡viewsifoldMapOfl =foldMapOfl.Indexed
foldMapOf::Getters a -> (a -> r) -> s -> rfoldMapOf::Monoidr =>Folds a -> (a -> r) -> s -> rfoldMapOf::Semigroupr =>Fold1s a -> (a -> r) -> s -> rfoldMapOf::Lens's a -> (a -> r) -> s -> rfoldMapOf::Iso's a -> (a -> r) -> s -> rfoldMapOf::Monoidr =>Traversal's a -> (a -> r) -> s -> rfoldMapOf::Semigroupr =>Traversal1's a -> (a -> r) -> s -> rfoldMapOf::Monoidr =>Prism's a -> (a -> r) -> s -> r
foldMapOf::Gettingr s a -> (a -> r) -> s -> r
foldMapByOf :: Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r #
Fold a value using a specified Fold and Monoid operations.
This is like foldMapBy where the Foldable instance can be
manually specified.
foldMapByOffolded≡foldMapBy
foldMapByOf::Getters a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf::Folds a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf::Traversal's a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf::Lens's a -> (r -> r -> r) -> r -> (a -> r) -> s -> rfoldMapByOf::Iso's a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
>>>foldMapByOf both (+) 0 length ("hello","world")10
foldOf :: Getting a s a -> s -> a #
Combine the elements of a structure viewed through a Lens, Getter,
Fold or Traversal using a monoid.
>>>foldOf (folded.folded) [[Sum 1,Sum 4],[Sum 8, Sum 8],[Sum 21]]Sum {getSum = 42}
fold=foldOffolded
foldOf≡view
foldOf::Getters m -> s -> mfoldOf::Monoidm =>Folds m -> s -> mfoldOf::Lens's m -> s -> mfoldOf::Iso's m -> s -> mfoldOf::Monoidm =>Traversal's m -> s -> mfoldOf::Monoidm =>Prism's m -> s -> m
foldByOf :: Fold s a -> (a -> a -> a) -> a -> s -> a #
Fold a value using a specified Fold and Monoid operations.
This is like foldBy where the Foldable instance can be
manually specified.
foldByOffolded≡foldBy
foldByOf::Getters a -> (a -> a -> a) -> a -> s -> afoldByOf::Folds a -> (a -> a -> a) -> a -> s -> afoldByOf::Lens's a -> (a -> a -> a) -> a -> s -> afoldByOf::Traversal's a -> (a -> a -> a) -> a -> s -> afoldByOf::Iso's a -> (a -> a -> a) -> a -> s -> a
>>>foldByOf both (++) [] ("hello","world")"helloworld"
foldrOf :: Getting (Endo r) s a -> (a -> r -> r) -> r -> s -> r #
Right-associative fold of parts of a structure that are viewed through a Lens, Getter, Fold or Traversal.
foldr≡foldrOffolded
foldrOf::Getters a -> (a -> r -> r) -> r -> s -> rfoldrOf::Folds a -> (a -> r -> r) -> r -> s -> rfoldrOf::Lens's a -> (a -> r -> r) -> r -> s -> rfoldrOf::Iso's a -> (a -> r -> r) -> r -> s -> rfoldrOf::Traversal's a -> (a -> r -> r) -> r -> s -> rfoldrOf::Prism's a -> (a -> r -> r) -> r -> s -> r
ifoldrOfl ≡foldrOfl.Indexed
foldrOf::Getting(Endor) s a -> (a -> r -> r) -> r -> s -> r
foldrOf' :: Getting (Dual (Endo (Endo r))) s a -> (a -> r -> r) -> r -> s -> r #
Strictly fold right over the elements of a structure.
foldr'≡foldrOf'folded
foldrOf'::Getters a -> (a -> r -> r) -> r -> s -> rfoldrOf'::Folds a -> (a -> r -> r) -> r -> s -> rfoldrOf'::Iso's a -> (a -> r -> r) -> r -> s -> rfoldrOf'::Lens's a -> (a -> r -> r) -> r -> s -> rfoldrOf'::Traversal's a -> (a -> r -> r) -> r -> s -> r
foldrMOf :: Monad m => Getting (Dual (Endo (r -> m r))) s a -> (a -> r -> m r) -> r -> s -> m r #
Monadic fold over the elements of a structure, associating to the right, i.e. from right to left.
foldrM≡foldrMOffolded
foldrMOf::Monadm =>Getters a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf::Monadm =>Folds a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf::Monadm =>Iso's a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf::Monadm =>Lens's a -> (a -> r -> m r) -> r -> s -> m rfoldrMOf::Monadm =>Traversal's a -> (a -> r -> m r) -> r -> s -> m r
foldlOf' :: Getting (Endo (Endo r)) s a -> (r -> a -> r) -> r -> s -> r #
Fold over the elements of a structure, associating to the left, but strictly.
foldl'≡foldlOf'folded
foldlOf'::Getters a -> (r -> a -> r) -> r -> s -> rfoldlOf'::Folds a -> (r -> a -> r) -> r -> s -> rfoldlOf'::Iso's a -> (r -> a -> r) -> r -> s -> rfoldlOf'::Lens's a -> (r -> a -> r) -> r -> s -> rfoldlOf'::Traversal's a -> (r -> a -> r) -> r -> s -> r
foldlMOf :: Monad m => Getting (Endo (r -> m r)) s a -> (r -> a -> m r) -> r -> s -> m r #
Monadic fold over the elements of a structure, associating to the left, i.e. from left to right.
foldlM≡foldlMOffolded
foldlMOf::Monadm =>Getters a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf::Monadm =>Folds a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf::Monadm =>Iso's a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf::Monadm =>Lens's a -> (r -> a -> m r) -> r -> s -> m rfoldlMOf::Monadm =>Traversal's a -> (r -> a -> m r) -> r -> s -> m r
toNonEmptyOf :: Getting (NonEmptyDList a) s a -> s -> NonEmpty a #
Extract a NonEmpty of the targets of Fold1.
>>>toNonEmptyOf both1 ("hello", "world")"hello" :| ["world"]
toNonEmptyOf::Getters a -> s -> NonEmpty atoNonEmptyOf::Fold1s a -> s -> NonEmpty atoNonEmptyOf::Lens's a -> s -> NonEmpty atoNonEmptyOf::Iso's a -> s -> NonEmpty atoNonEmptyOf::Traversal1's a -> s -> NonEmpty atoNonEmptyOf::Prism's a -> s -> NonEmpty a
anyOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #
Returns True if any target of a Fold satisfies a predicate.
>>>anyOf both (=='x') ('x','y')True>>>import Data.Data.Lens>>>anyOf biplate (== "world") (((),2::Int),"hello",("world",11::Int))True
any≡anyOffolded
ianyOfl ≡anyOfl.Indexed
anyOf::Getters a -> (a ->Bool) -> s ->BoolanyOf::Folds a -> (a ->Bool) -> s ->BoolanyOf::Lens's a -> (a ->Bool) -> s ->BoolanyOf::Iso's a -> (a ->Bool) -> s ->BoolanyOf::Traversal's a -> (a ->Bool) -> s ->BoolanyOf::Prism's a -> (a ->Bool) -> s ->Bool
allOf :: Getting All s a -> (a -> Bool) -> s -> Bool #
Returns True if every target of a Fold satisfies a predicate.
>>>allOf both (>=3) (4,5)True>>>allOf folded (>=2) [1..10]False
all≡allOffolded
iallOfl =allOfl.Indexed
allOf::Getters a -> (a ->Bool) -> s ->BoolallOf::Folds a -> (a ->Bool) -> s ->BoolallOf::Lens's a -> (a ->Bool) -> s ->BoolallOf::Iso's a -> (a ->Bool) -> s ->BoolallOf::Traversal's a -> (a ->Bool) -> s ->BoolallOf::Prism's a -> (a ->Bool) -> s ->Bool
noneOf :: Getting Any s a -> (a -> Bool) -> s -> Bool #
Returns True only if no targets of a Fold satisfy a predicate.
>>>noneOf each (is _Nothing) (Just 3, Just 4, Just 5)True>>>noneOf (folded.folded) (<10) [[13,99,20],[3,71,42]]False
inoneOfl =noneOfl.Indexed
noneOf::Getters a -> (a ->Bool) -> s ->BoolnoneOf::Folds a -> (a ->Bool) -> s ->BoolnoneOf::Lens's a -> (a ->Bool) -> s ->BoolnoneOf::Iso's a -> (a ->Bool) -> s ->BoolnoneOf::Traversal's a -> (a ->Bool) -> s ->BoolnoneOf::Prism's a -> (a ->Bool) -> s ->Bool
andOf :: Getting All s Bool -> s -> Bool #
Returns True if every target of a Fold is True.
>>>andOf both (True,False)False>>>andOf both (True,True)True
and≡andOffolded
andOf::GettersBool-> s ->BoolandOf::FoldsBool-> s ->BoolandOf::Lens'sBool-> s ->BoolandOf::Iso'sBool-> s ->BoolandOf::Traversal'sBool-> s ->BoolandOf::Prism'sBool-> s ->Bool
orOf :: Getting Any s Bool -> s -> Bool #
Returns True if any target of a Fold is True.
>>>orOf both (True,False)True>>>orOf both (False,False)False
or≡orOffolded
orOf::GettersBool-> s ->BoolorOf::FoldsBool-> s ->BoolorOf::Lens'sBool-> s ->BoolorOf::Iso'sBool-> s ->BoolorOf::Traversal'sBool-> s ->BoolorOf::Prism'sBool-> s ->Bool
productOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #
Calculate the Product of every number targeted by a Fold.
>>>productOf both (4,5)20>>>productOf folded [1,2,3,4,5]120
product≡productOffolded
This operation may be more strict than you would expect. If you
want a lazier version use ala Product . foldMapOf
productOf::Numa =>Getters a -> s -> aproductOf::Numa =>Folds a -> s -> aproductOf::Numa =>Lens's a -> s -> aproductOf::Numa =>Iso's a -> s -> aproductOf::Numa =>Traversal's a -> s -> aproductOf::Numa =>Prism's a -> s -> a
sumOf :: Num a => Getting (Endo (Endo a)) s a -> s -> a #
Calculate the Sum of every number targeted by a Fold.
>>>sumOf both (5,6)11>>>sumOf folded [1,2,3,4]10>>>sumOf (folded.both) [(1,2),(3,4)]10>>>import Data.Data.Lens>>>sumOf biplate [(1::Int,[]),(2,[(3::Int,4::Int)])] :: Int10
sum≡sumOffolded
This operation may be more strict than you would expect. If you
want a lazier version use ala Sum . foldMapOf
sumOf_1::Numa => (a, b) -> asumOf(folded._1) :: (Foldablef,Numa) => f (a, b) -> a
sumOf::Numa =>Getters a -> s -> asumOf::Numa =>Folds a -> s -> asumOf::Numa =>Lens's a -> s -> asumOf::Numa =>Iso's a -> s -> asumOf::Numa =>Traversal's a -> s -> asumOf::Numa =>Prism's a -> s -> a
traverseOf_ :: Functor f => Getting (Traversed r f) s a -> (a -> f r) -> s -> f () #
Traverse over all of the targets of a Fold (or Getter), computing an Applicative (or Functor)-based answer,
but unlike traverseOf do not construct a new structure. traverseOf_ generalizes
traverse_ to work over any Fold.
When passed a Getter, traverseOf_ can work over any Functor, but when passed a Fold, traverseOf_ requires
an Applicative.
>>>traverseOf_ both putStrLn ("hello","world")hello world
traverse_≡traverseOf_folded
traverseOf__2::Functorf => (c -> f r) -> (d, c) -> f ()traverseOf__Left::Applicativef => (a -> f b) ->Eithera c -> f ()
itraverseOf_l ≡traverseOf_l.Indexed
The rather specific signature of traverseOf_ allows it to be used as if the signature was any of:
traverseOf_::Functorf =>Getters a -> (a -> f r) -> s -> f ()traverseOf_::Applicativef =>Folds a -> (a -> f r) -> s -> f ()traverseOf_::Functorf =>Lens's a -> (a -> f r) -> s -> f ()traverseOf_::Functorf =>Iso's a -> (a -> f r) -> s -> f ()traverseOf_::Applicativef =>Traversal's a -> (a -> f r) -> s -> f ()traverseOf_::Applicativef =>Prism's a -> (a -> f r) -> s -> f ()
forOf_ :: Functor f => Getting (Traversed r f) s a -> s -> (a -> f r) -> f () #
Traverse over all of the targets of a Fold (or Getter), computing an Applicative (or Functor)-based answer,
but unlike forOf do not construct a new structure. forOf_ generalizes
for_ to work over any Fold.
When passed a Getter, forOf_ can work over any Functor, but when passed a Fold, forOf_ requires
an Applicative.
for_≡forOf_folded
>>>forOf_ both ("hello","world") putStrLnhello world
The rather specific signature of forOf_ allows it to be used as if the signature was any of:
iforOf_l s ≡forOf_l s.Indexed
forOf_::Functorf =>Getters a -> s -> (a -> f r) -> f ()forOf_::Applicativef =>Folds a -> s -> (a -> f r) -> f ()forOf_::Functorf =>Lens's a -> s -> (a -> f r) -> f ()forOf_::Functorf =>Iso's a -> s -> (a -> f r) -> f ()forOf_::Applicativef =>Traversal's a -> s -> (a -> f r) -> f ()forOf_::Applicativef =>Prism's a -> s -> (a -> f r) -> f ()
sequenceAOf_ :: Functor f => Getting (Traversed a f) s (f a) -> s -> f () #
Evaluate each action in observed by a Fold on a structure from left to right, ignoring the results.
sequenceA_≡sequenceAOf_folded
>>>sequenceAOf_ both (putStrLn "hello",putStrLn "world")hello world
sequenceAOf_::Functorf =>Getters (f a) -> s -> f ()sequenceAOf_::Applicativef =>Folds (f a) -> s -> f ()sequenceAOf_::Functorf =>Lens's (f a) -> s -> f ()sequenceAOf_::Functorf =>Iso's (f a) -> s -> f ()sequenceAOf_::Applicativef =>Traversal's (f a) -> s -> f ()sequenceAOf_::Applicativef =>Prism's (f a) -> s -> f ()
asumOf :: Alternative f => Getting (Endo (f a)) s (f a) -> s -> f a #
The sum of a collection of actions, generalizing concatOf.
>>>asumOf both ("hello","world")"helloworld"
>>>asumOf each (Nothing, Just "hello", Nothing)Just "hello"
asum≡asumOffolded
asumOf::Alternativef =>Getters (f a) -> s -> f aasumOf::Alternativef =>Folds (f a) -> s -> f aasumOf::Alternativef =>Lens's (f a) -> s -> f aasumOf::Alternativef =>Iso's (f a) -> s -> f aasumOf::Alternativef =>Traversal's (f a) -> s -> f aasumOf::Alternativef =>Prism's (f a) -> s -> f a
msumOf :: MonadPlus m => Getting (Endo (m a)) s (m a) -> s -> m a #
The sum of a collection of actions, generalizing concatOf.
>>>msumOf both ("hello","world")"helloworld"
>>>msumOf each (Nothing, Just "hello", Nothing)Just "hello"
msum≡msumOffolded
msumOf::MonadPlusm =>Getters (m a) -> s -> m amsumOf::MonadPlusm =>Folds (m a) -> s -> m amsumOf::MonadPlusm =>Lens's (m a) -> s -> m amsumOf::MonadPlusm =>Iso's (m a) -> s -> m amsumOf::MonadPlusm =>Traversal's (m a) -> s -> m amsumOf::MonadPlusm =>Prism's (m a) -> s -> m a
concatMapOf :: Getting [r] s a -> (a -> [r]) -> s -> [r] #
Map a function over all the targets of a Fold of a container and concatenate the resulting lists.
>>>concatMapOf both (\x -> [x, x + 1]) (1,3)[1,2,3,4]
concatMap≡concatMapOffolded
concatMapOf::Getters a -> (a -> [r]) -> s -> [r]concatMapOf::Folds a -> (a -> [r]) -> s -> [r]concatMapOf::Lens's a -> (a -> [r]) -> s -> [r]concatMapOf::Iso's a -> (a -> [r]) -> s -> [r]concatMapOf::Traversal's a -> (a -> [r]) -> s -> [r]
elemOf :: Eq a => Getting Any s a -> a -> s -> Bool #
Does the element occur anywhere within a given Fold of the structure?
>>>elemOf both "hello" ("hello","world")True
elem≡elemOffolded
elemOf::Eqa =>Getters a -> a -> s ->BoolelemOf::Eqa =>Folds a -> a -> s ->BoolelemOf::Eqa =>Lens's a -> a -> s ->BoolelemOf::Eqa =>Iso's a -> a -> s ->BoolelemOf::Eqa =>Traversal's a -> a -> s ->BoolelemOf::Eqa =>Prism's a -> a -> s ->Bool
notElemOf :: Eq a => Getting All s a -> a -> s -> Bool #
Does the element not occur anywhere within a given Fold of the structure?
>>>notElemOf each 'd' ('a','b','c')True
>>>notElemOf each 'a' ('a','b','c')False
notElem≡notElemOffolded
notElemOf::Eqa =>Getters a -> a -> s ->BoolnotElemOf::Eqa =>Folds a -> a -> s ->BoolnotElemOf::Eqa =>Iso's a -> a -> s ->BoolnotElemOf::Eqa =>Lens's a -> a -> s ->BoolnotElemOf::Eqa =>Traversal's a -> a -> s ->BoolnotElemOf::Eqa =>Prism's a -> a -> s ->Bool
lengthOf :: Getting (Endo (Endo Int)) s a -> s -> Int #
Calculate the number of targets there are for a Fold in a given container.
Note: This can be rather inefficient for large containers and just like length,
this will not terminate for infinite folds.
length≡lengthOffolded
>>>lengthOf _1 ("hello",())1
>>>lengthOf traverse [1..10]10
>>>lengthOf (traverse.traverse) [[1,2],[3,4],[5,6]]6
lengthOf(folded.folded) :: (Foldablef,Foldableg) => f (g a) ->Int
lengthOf::Getters a -> s ->IntlengthOf::Folds a -> s ->IntlengthOf::Lens's a -> s ->IntlengthOf::Iso's a -> s ->IntlengthOf::Traversal's a -> s ->Int
nullOf :: Getting All s a -> s -> Bool #
Returns True if this Fold or Traversal has no targets in the given container.
Note: nullOf on a valid Iso, Lens or Getter should always return False.
null≡nullOffolded
This may be rather inefficient compared to the null check of many containers.
>>>nullOf _1 (1,2)False
>>>nullOf ignored ()True
>>>nullOf traverse []True
>>>nullOf (element 20) [1..10]True
nullOf(folded._1.folded) :: (Foldablef,Foldableg) => f (g a, b) ->Bool
nullOf::Getters a -> s ->BoolnullOf::Folds a -> s ->BoolnullOf::Iso's a -> s ->BoolnullOf::Lens's a -> s ->BoolnullOf::Traversal's a -> s ->Bool
notNullOf :: Getting Any s a -> s -> Bool #
Returns True if this Fold or Traversal has any targets in the given container.
A more "conversational" alias for this combinator is has.
Note: notNullOf on a valid Iso, Lens or Getter should always return True.
not.null≡notNullOffolded
This may be rather inefficient compared to the check of many containers.not . null
>>>notNullOf _1 (1,2)True
>>>notNullOf traverse [1..10]True
>>>notNullOf folded []False
>>>notNullOf (element 20) [1..10]False
notNullOf(folded._1.folded) :: (Foldablef,Foldableg) => f (g a, b) ->Bool
notNullOf::Getters a -> s ->BoolnotNullOf::Folds a -> s ->BoolnotNullOf::Iso's a -> s ->BoolnotNullOf::Lens's a -> s ->BoolnotNullOf::Traversal's a -> s ->Bool
firstOf :: Getting (Leftmost a) s a -> s -> Maybe a #
Retrieve the First entry of a Fold or Traversal or retrieve Just the result
from a Getter or Lens.
The answer is computed in a manner that leaks space less than
and gives you back access to the outermost ala First . foldMapOfJust constructor more quickly, but may have worse
constant factors.
Note: this could been named headOf.
>>>firstOf traverse [1..10]Just 1
>>>firstOf both (1,2)Just 1
>>>firstOf ignored ()Nothing
firstOf::Getters a -> s ->MaybeafirstOf::Folds a -> s ->MaybeafirstOf::Lens's a -> s ->MaybeafirstOf::Iso's a -> s ->MaybeafirstOf::Traversal's a -> s ->Maybea
lastOf :: Getting (Rightmost a) s a -> s -> Maybe a #
Retrieve the Last entry of a Fold or Traversal or retrieve Just the result
from a Getter or Lens.
The answer is computed in a manner that leaks space less than
and gives you back access to the outermost ala Last . foldMapOfJust constructor more quickly, but may have worse
constant factors.
>>>lastOf traverse [1..10]Just 10
>>>lastOf both (1,2)Just 2
>>>lastOf ignored ()Nothing
lastOf::Getters a -> s ->MaybealastOf::Folds a -> s ->MaybealastOf::Lens's a -> s ->MaybealastOf::Iso's a -> s ->MaybealastOf::Traversal's a -> s ->Maybea
maximumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #
Obtain the maximum element (if any) targeted by a Fold or Traversal safely.
Note: maximumOf on a valid Iso, Lens or Getter will always return Just a value.
>>>maximumOf traverse [1..10]Just 10
>>>maximumOf traverse []Nothing
>>>maximumOf (folded.filtered even) [1,4,3,6,7,9,2]Just 6
maximum≡fromMaybe(error"empty").maximumOffolded
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
has lazier semantics but could leak memory.rmap getMax (foldMapOf l Max)
maximumOf::Orda =>Getters a -> s ->MaybeamaximumOf::Orda =>Folds a -> s ->MaybeamaximumOf::Orda =>Iso's a -> s ->MaybeamaximumOf::Orda =>Lens's a -> s ->MaybeamaximumOf::Orda =>Traversal's a -> s ->Maybea
minimumOf :: Ord a => Getting (Endo (Endo (Maybe a))) s a -> s -> Maybe a #
Obtain the minimum element (if any) targeted by a Fold or Traversal safely.
Note: minimumOf on a valid Iso, Lens or Getter will always return Just a value.
>>>minimumOf traverse [1..10]Just 1
>>>minimumOf traverse []Nothing
>>>minimumOf (folded.filtered even) [1,4,3,6,7,9,2]Just 2
minimum≡fromMaybe(error"empty").minimumOffolded
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
has lazier semantics but could leak memory.rmap getMin (foldMapOf l Min)
minimumOf::Orda =>Getters a -> s ->MaybeaminimumOf::Orda =>Folds a -> s ->MaybeaminimumOf::Orda =>Iso's a -> s ->MaybeaminimumOf::Orda =>Lens's a -> s ->MaybeaminimumOf::Orda =>Traversal's a -> s ->Maybea
maximumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #
Obtain the maximum element (if any) targeted by a Fold, Traversal, Lens, Iso,
or Getter according to a user supplied Ordering.
>>>maximumByOf traverse (compare `on` length) ["mustard","relish","ham"]Just "mustard"
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
maximumBycmp ≡fromMaybe(error"empty").maximumByOffoldedcmp
maximumByOf::Getters a -> (a -> a ->Ordering) -> s ->MaybeamaximumByOf::Folds a -> (a -> a ->Ordering) -> s ->MaybeamaximumByOf::Iso's a -> (a -> a ->Ordering) -> s ->MaybeamaximumByOf::Lens's a -> (a -> a ->Ordering) -> s ->MaybeamaximumByOf::Traversal's a -> (a -> a ->Ordering) -> s ->Maybea
minimumByOf :: Getting (Endo (Endo (Maybe a))) s a -> (a -> a -> Ordering) -> s -> Maybe a #
Obtain the minimum element (if any) targeted by a Fold, Traversal, Lens, Iso
or Getter according to a user supplied Ordering.
In the interest of efficiency, This operation has semantics more strict than strictly necessary.
>>>minimumByOf traverse (compare `on` length) ["mustard","relish","ham"]Just "ham"
minimumBycmp ≡fromMaybe(error"empty").minimumByOffoldedcmp
minimumByOf::Getters a -> (a -> a ->Ordering) -> s ->MaybeaminimumByOf::Folds a -> (a -> a ->Ordering) -> s ->MaybeaminimumByOf::Iso's a -> (a -> a ->Ordering) -> s ->MaybeaminimumByOf::Lens's a -> (a -> a ->Ordering) -> s ->MaybeaminimumByOf::Traversal's a -> (a -> a ->Ordering) -> s ->Maybea
findOf :: Getting (Endo (Maybe a)) s a -> (a -> Bool) -> s -> Maybe a #
The findOf function takes a Lens (or Getter, Iso, Fold, or Traversal),
a predicate and a structure and returns the leftmost element of the structure
matching the predicate, or Nothing if there is no such element.
>>>findOf each even (1,3,4,6)Just 4
>>>findOf folded even [1,3,5,7]Nothing
findOf::Getters a -> (a ->Bool) -> s ->MaybeafindOf::Folds a -> (a ->Bool) -> s ->MaybeafindOf::Iso's a -> (a ->Bool) -> s ->MaybeafindOf::Lens's a -> (a ->Bool) -> s ->MaybeafindOf::Traversal's a -> (a ->Bool) -> s ->Maybea
find≡findOffoldedifindOfl ≡findOfl.Indexed
A simpler version that didn't permit indexing, would be:
findOf::Getting(Endo(Maybea)) s a -> (a ->Bool) -> s ->MaybeafindOfl p =foldrOfl (a y -> if p a thenJusta else y)Nothing
findMOf :: Monad m => Getting (Endo (m (Maybe a))) s a -> (a -> m Bool) -> s -> m (Maybe a) #
The findMOf function takes a Lens (or Getter, Iso, Fold, or Traversal),
a monadic predicate and a structure and returns in the monad the leftmost element of the structure
matching the predicate, or Nothing if there is no such element.
>>>findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,4,6)"Checking 1" "Checking 3" "Checking 4" Just 4
>>>findMOf each ( \x -> print ("Checking " ++ show x) >> return (even x)) (1,3,5,7)"Checking 1" "Checking 3" "Checking 5" "Checking 7" Nothing
findMOf:: (Monadm,Getters a) -> (a -> mBool) -> s -> m (Maybea)findMOf:: (Monadm,Folds a) -> (a -> mBool) -> s -> m (Maybea)findMOf:: (Monadm,Iso's a) -> (a -> mBool) -> s -> m (Maybea)findMOf:: (Monadm,Lens's a) -> (a -> mBool) -> s -> m (Maybea)findMOf:: (Monadm,Traversal's a) -> (a -> mBool) -> s -> m (Maybea)
findMOffolded:: (Monad m, Foldable f) => (a -> m Bool) -> f a -> m (Maybe a)ifindMOfl ≡findMOfl.Indexed
A simpler version that didn't permit indexing, would be:
findMOf:: Monad m =>Getting(Endo(m (Maybea))) s a -> (a -> mBool) -> s -> m (Maybea)findMOfl p =foldrOfl (a y -> p a >>= x -> if x then return (Justa) else y) $ returnNothing
lookupOf :: Eq k => Getting (Endo (Maybe v)) s (k, v) -> k -> s -> Maybe v #
The lookupOf function takes a Fold (or Getter, Traversal,
Lens, Iso, etc.), a key, and a structure containing key/value pairs.
It returns the first value corresponding to the given key. This function
generalizes lookup to work on an arbitrary Fold instead of lists.
>>>lookupOf folded 4 [(2, 'a'), (4, 'b'), (4, 'c')]Just 'b'
>>>lookupOf each 2 [(2, 'a'), (4, 'b'), (4, 'c')]Just 'a'
lookupOf::Eqk =>Folds (k,v) -> k -> s ->Maybev