| Copyright | (C) 2015 Christopher Chalmers |
|---|---|
| License | BSD-style (see the file LICENSE) |
| Maintainer | Christopher Chalmers |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Diagrams.Coordinates.Polar
Description
This module defines a polar coordinate data type. This type can be used as an axis space for polar plots.
- newtype Polar a = Polar (V2 a)
- mkPolar :: n -> Angle n -> Polar n
- polar :: (n, Angle n) -> Polar n
- unpolar :: Polar n -> (n, Angle n)
- polarIso :: Iso' (Polar n) (n, Angle n)
- polarV2 :: RealFloat n => Iso' (Polar n) (V2 n)
- interpPolar :: Num n => n -> Polar n -> Polar n -> Polar n
- class Radial t where
- class Radial t => Circle t where
- class HasX t where
- class HasX t => HasY t where
- class HasR t where
- er :: Radial v => E v
- eθ :: Circle v => E v
- etheta :: Circle v => E v
Polar type
Instances
| Monad Polar Source # | |
| Functor Polar Source # | |
| MonadFix Polar Source # | |
| Applicative Polar Source # | |
| Foldable Polar Source # | |
| Traversable Polar Source # | |
| Generic1 Polar Source # | |
| Distributive Polar Source # | |
| Representable Polar Source # | |
| MonadZip Polar Source # | |
| HasR Polar Source # | |
| HasY Polar Source # | |
| HasX Polar Source # | |
| Circle Polar Source # | |
| Radial Polar Source # | |
| (TypeableFloat n, Renderable (Path V2 n) b) => RenderAxis b Polar n Source # | |
| RealFloat n => PointLike V2 n (Polar n) Source # | Does not satify lens laws. |
| Wrapped (Polar a0) Source # | |
| (~) * (Polar a0) t0 => Rewrapped (Polar a1) t0 Source # | |
| type Rep1 Polar Source # | |
| type Rep Polar Source # | |
| type BaseSpace Polar Source # | |
| type Unwrapped (Polar a0) Source # | |
| type MainOpts (Axis b Polar n) # | |
Polar functions
interpPolar :: Num n => n -> Polar n -> Polar n -> Polar n Source #
Polar interpolation between two polar coordinates.
Classes
Space which has a radial length basis. For Polar and Cylindrical this is the radius of the circle in the xy-plane. For Spherical this is the distance from the origin.
Coordinate with at least one dimension where the x coordinate can be
retreived numerically. Note this differs slightly from R1 which requires
a lens for all values. This allows instances for different coordinates
such as Polar, where the x coordinate can only be retreived numerically.
Minimal complete definition
class HasX t => HasY t where Source #
Coordinate with at least two dimensions where the x and y coordinates can be retreived numerically.
Minimal complete definition
A space which has magnitude _r that can be calculated numerically.