| Copyright | (c) 2020 Andrew Lelechenko |
|---|---|
| License | BSD3 |
| Maintainer | Andrew Lelechenko <andrew.lelechenko@gmail.com> |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Poly.Multi.Semiring
Description
Sparse multivariate polynomials with Semiring instance.
Synopsis
- data MultiPoly (v :: Type -> Type) (n :: Nat) (a :: Type)
- type VMultiPoly (n :: Nat) (a :: Type) = MultiPoly Vector n a
- type UMultiPoly (n :: Nat) (a :: Type) = MultiPoly Vector n a
- unMultiPoly :: MultiPoly v n a -> v (Vector n Word, a)
- toMultiPoly :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => v (Vector n Word, a) -> MultiPoly v n a
- monomial :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => Vector n Word -> a -> MultiPoly v n a
- scale :: (Eq a, Semiring a, KnownNat n, Vector v (Vector n Word, a)) => Vector n Word -> a -> MultiPoly v n a -> MultiPoly v n a
- pattern X :: (Eq a, Semiring a, KnownNat n, 1 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a
- pattern Y :: (Eq a, Semiring a, KnownNat n, 2 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a
- pattern Z :: (Eq a, Semiring a, KnownNat n, 3 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a
- eval :: (Semiring a, Vector v (Vector n Word, a), Vector u a) => MultiPoly v n a -> Vector u n a -> a
- subst :: (Eq a, Semiring a, KnownNat m, Vector v (Vector n Word, a), Vector w (Vector m Word, a)) => MultiPoly v n a -> Vector n (MultiPoly w m a) -> MultiPoly w m a
- deriv :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => Finite n -> MultiPoly v n a -> MultiPoly v n a
- integral :: (Field a, Vector v (Vector n Word, a)) => Finite n -> MultiPoly v n a -> MultiPoly v n a
- segregate :: (Vector v (Vector (1 + m) Word, a), Vector v (Vector m Word, a)) => MultiPoly v (1 + m) a -> VPoly (MultiPoly v m a)
- unsegregate :: (Vector v (Vector (1 + m) Word, a), Vector v (Vector m Word, a)) => VPoly (MultiPoly v m a) -> MultiPoly v (1 + m) a
Documentation
data MultiPoly (v :: Type -> Type) (n :: Nat) (a :: Type) Source #
Sparse polynomials of n variables with coefficients from a,
backed by a Vector v (boxed, unboxed, storable, etc.).
Use patterns X,
Y and
Z for construction:
>>>:set -XDataKinds>>>(X + 1) + (Y - 1) + Z :: VMultiPoly 3 Integer1 * X + 1 * Y + 1 * Z>>>(X + 1) * (Y - 1) :: UMultiPoly 2 Int1 * X * Y + (-1) * X + 1 * Y + (-1)
Polynomials are stored normalized, without
zero coefficients, so 0 * X + 1 equals to 1.
Ord instance does not make much sense mathematically,
it is defined only for the sake of Set, Map, etc.
Instances
type VMultiPoly (n :: Nat) (a :: Type) = MultiPoly Vector n a Source #
Multivariate polynomials backed by boxed vectors.
type UMultiPoly (n :: Nat) (a :: Type) = MultiPoly Vector n a Source #
Multivariate polynomials backed by unboxed vectors.
unMultiPoly :: MultiPoly v n a -> v (Vector n Word, a) Source #
Convert MultiPoly to a vector of (powers, coefficient) pairs.
toMultiPoly :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => v (Vector n Word, a) -> MultiPoly v n a Source #
Make MultiPoly from a list of (powers, coefficient) pairs.
>>>:set -XOverloadedLists -XDataKinds>>>import Data.Vector.Generic.Sized (fromTuple)>>>toMultiPoly [(fromTuple (0,0),1),(fromTuple (0,1),2),(fromTuple (1,0),3)] :: VMultiPoly 2 Integer3 * X + 2 * Y + 1>>>toMultiPoly [(fromTuple (0,0),0),(fromTuple (0,1),0),(fromTuple (1,0),0)] :: UMultiPoly 2 Int0
monomial :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => Vector n Word -> a -> MultiPoly v n a Source #
Create a monomial from powers and a coefficient.
scale :: (Eq a, Semiring a, KnownNat n, Vector v (Vector n Word, a)) => Vector n Word -> a -> MultiPoly v n a -> MultiPoly v n a Source #
Multiply a polynomial by a monomial, expressed as powers and a coefficient.
>>>:set -XDataKinds>>>import Data.Vector.Generic.Sized (fromTuple)>>>scale (fromTuple (1, 1)) 3 (X^2 + Y) :: UMultiPoly 2 Int3 * X^3 * Y + 3 * X * Y^2
pattern X :: (Eq a, Semiring a, KnownNat n, 1 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a Source #
Create a polynomial equal to the first variable.
pattern Y :: (Eq a, Semiring a, KnownNat n, 2 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a Source #
Create a polynomial equal to the second variable.
pattern Z :: (Eq a, Semiring a, KnownNat n, 3 <= n, Vector v (Vector n Word, a)) => MultiPoly v n a Source #
Create a polynomial equal to the third variable.
eval :: (Semiring a, Vector v (Vector n Word, a), Vector u a) => MultiPoly v n a -> Vector u n a -> a Source #
Evaluate at a given point.
>>>:set -XDataKinds>>>import Data.Vector.Generic.Sized (fromTuple)>>>eval (X^2 + Y^2 :: UMultiPoly 2 Int) (fromTuple (3, 4) :: Data.Vector.Sized.Vector 2 Int)25
subst :: (Eq a, Semiring a, KnownNat m, Vector v (Vector n Word, a), Vector w (Vector m Word, a)) => MultiPoly v n a -> Vector n (MultiPoly w m a) -> MultiPoly w m a Source #
Substitute another polynomials instead of variables.
>>>:set -XDataKinds>>>import Data.Vector.Generic.Sized (fromTuple)>>>subst (X^2 + Y^2 + Z^2 :: UMultiPoly 3 Int) (fromTuple (X + 1, Y + 1, X + Y :: UMultiPoly 2 Int))2 * X^2 + 2 * X * Y + 2 * X + 2 * Y^2 + 2 * Y + 2
deriv :: (Eq a, Semiring a, Vector v (Vector n Word, a)) => Finite n -> MultiPoly v n a -> MultiPoly v n a Source #
Take a derivative with respect to the i-th variable.
>>>:set -XDataKinds>>>deriv 0 (X^3 + 3 * Y) :: UMultiPoly 2 Int3 * X^2>>>deriv 1 (X^3 + 3 * Y) :: UMultiPoly 2 Int3
integral :: (Field a, Vector v (Vector n Word, a)) => Finite n -> MultiPoly v n a -> MultiPoly v n a Source #
Compute an indefinite integral of a polynomial by the i-th variable, setting constant term to zero.
>>>:set -XDataKinds>>>integral 0 (3 * X^2 + 2 * Y) :: UMultiPoly 2 Double1.0 * X^3 + 2.0 * X * Y>>>integral 1 (3 * X^2 + 2 * Y) :: UMultiPoly 2 Double3.0 * X^2 * Y + 1.0 * Y^2
segregate :: (Vector v (Vector (1 + m) Word, a), Vector v (Vector m Word, a)) => MultiPoly v (1 + m) a -> VPoly (MultiPoly v m a) Source #
Interpret a multivariate polynomial over 1+m variables as a univariate polynomial, whose coefficients are multivariate polynomials over the last m variables.
unsegregate :: (Vector v (Vector (1 + m) Word, a), Vector v (Vector m Word, a)) => VPoly (MultiPoly v m a) -> MultiPoly v (1 + m) a Source #
Interpret a univariate polynomials, whose coefficients are multivariate polynomials over the first m variables, as a multivariate polynomial over 1+m variables.