| Maintainer | brad.larsen@gmail.com |
|---|
Data.PurePriorityQueue.Internal
Description
This module exposes the internals of a pure priority queue, implemented on top of Data.Map.
Estimates of worst-case time complexity are given. The value n is the number of elements in the queue. The value p is the cardinality of the set of priorities of the elements in the queue. p is never greater than n.
- newtype MinMaxQueue p a = MinMaxQueue {
- unMinMaxQueue :: Map p [a]
- empty :: MinMaxQueue p a
- null :: MinMaxQueue p a -> Bool
- singleton :: Ord p => a -> p -> MinMaxQueue p a
- insert :: Ord p => a -> p -> MinMaxQueue p a -> MinMaxQueue p a
- deleteMin :: Ord p => MinMaxQueue p a -> MinMaxQueue p a
- deleteMax :: Ord p => MinMaxQueue p a -> MinMaxQueue p a
- viewWith :: Ord p => (Map p [a] -> Maybe ((p, [a]), Map p [a])) -> MinMaxQueue p a -> Maybe ((a, p), MinMaxQueue p a)
- minView :: Ord p => MinMaxQueue p a -> Maybe ((a, p), MinMaxQueue p a)
- maxView :: Ord p => MinMaxQueue p a -> Maybe ((a, p), MinMaxQueue p a)
- minPriority :: Ord p => MinMaxQueue p a -> Maybe p
- maxPriority :: Ord p => MinMaxQueue p a -> Maybe p
- foldWithPriority :: Ord p => (p -> a -> b -> b) -> b -> MinMaxQueue p a -> b
- splitByPriority :: Ord p => p -> MinMaxQueue p a -> (MinMaxQueue p a, MinMaxQueue p a)
- size :: Ord p => MinMaxQueue p a -> Int
- filter :: Ord p => (a -> Bool) -> MinMaxQueue p a -> MinMaxQueue p a
- filterWithPriority :: Ord p => (a -> p -> Bool) -> MinMaxQueue p a -> MinMaxQueue p a
- toAscList :: Ord p => MinMaxQueue p a -> [(a, p)]
Documentation
newtype MinMaxQueue p a Source
A queue of values of type a with priority of type p.
Constructors
| MinMaxQueue | |
Fields
| |
Instances
| Functor (MinMaxQueue p) | |
| Foldable (MinMaxQueue p) | |
| (Eq p, Eq a) => Eq (MinMaxQueue p a) | |
| (Ord p, Ord a) => Ord (MinMaxQueue p a) | |
| Ord p => Monoid (MinMaxQueue p a) |
empty :: MinMaxQueue p aSource
O(1) An empty priority queue.
null :: MinMaxQueue p a -> BoolSource
O(1) Test whether a priority queue is empty.
singleton :: Ord p => a -> p -> MinMaxQueue p aSource
O(1) A priority queue with a single entry.
insert :: Ord p => a -> p -> MinMaxQueue p a -> MinMaxQueue p aSource
O(log p) Insert a value with given priority into a priority queue.
deleteMin :: Ord p => MinMaxQueue p a -> MinMaxQueue p aSource
deleteMax :: Ord p => MinMaxQueue p a -> MinMaxQueue p aSource
Arguments
| :: Ord p | |
| => (Map p [a] -> Maybe ((p, [a]), Map p [a])) | The view function |
| -> MinMaxQueue p a | The priority queue |
| -> Maybe ((a, p), MinMaxQueue p a) |
Applies a Data.Map.Map view function to a given priority queue.
minView :: Ord p => MinMaxQueue p a -> Maybe ((a, p), MinMaxQueue p a)Source
O(log p) View a priority queue to get the (value, priority) pair with the lowest priority and the remainder of the queue.
Ties are broken arbitrarily.
maxView :: Ord p => MinMaxQueue p a -> Maybe ((a, p), MinMaxQueue p a)Source
O(log p) View a priority queue to get the (value, priority) pair with the highest priority and the remainder of the queue.
Ties are broken arbitrarily.
minPriority :: Ord p => MinMaxQueue p a -> Maybe pSource
O(log p) Get the minimum priority of the elements in the queue.
maxPriority :: Ord p => MinMaxQueue p a -> Maybe pSource
O(log p) Get the maximum priority of the elements in the queue.
foldWithPriority :: Ord p => (p -> a -> b -> b) -> b -> MinMaxQueue p a -> bSource
O(n) Fold the priorities and values of a priority queue.
splitByPriority :: Ord p => p -> MinMaxQueue p a -> (MinMaxQueue p a, MinMaxQueue p a)Source
O(log p) Split a priority queue q into two queues (q1, q2)
by the given priority p, such that q1 contains exactly the
entries with priority less than p, and q2 containes exactly the
entries with priority greater than or equal to p.
size :: Ord p => MinMaxQueue p a -> IntSource
O(n) The number of entries in a priority queue.
filter :: Ord p => (a -> Bool) -> MinMaxQueue p a -> MinMaxQueue p aSource
O(n log p) Filter all values that satisfy the predicate.
filterWithPriority :: Ord p => (a -> p -> Bool) -> MinMaxQueue p a -> MinMaxQueue p aSource
O(n log p) Filter all entries that satisfy the predicate.
toAscList :: Ord p => MinMaxQueue p a -> [(a, p)]Source
O(n) Convert the priority queue into a list of (value, priority) pairs in ascending priority.
Ties are broken in an arbitrary manner.