{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE RecordWildCards, FlexibleContexts, PatternGuards, TupleSections, MultiParamTypeClasses, FlexibleInstances #-}
module QuickSpec.Internal.Explore.Schemas where
import qualified Data.Map.Strict as Map
import Data.Map(Map)
import QuickSpec.Internal.Prop
import QuickSpec.Internal.Pruning
import QuickSpec.Internal.Term
import QuickSpec.Internal.Type
import QuickSpec.Internal.Testing
import QuickSpec.Internal.Utils
import qualified QuickSpec.Internal.Explore.Terms as Terms
import QuickSpec.Internal.Explore.Terms(Terms)
import Control.Monad.Trans.State.Strict hiding (State)
import Data.List
import Data.Ord
import Data.Lens.Light
import qualified Data.Set as Set
import Data.Set(Set)
import Data.Maybe
import Control.Monad
import Twee.Label
data Schemas testcase result fun norm =
Schemas {
sc_single_use :: Type -> Bool,
sc_instantiate_singleton :: Term fun -> Bool,
sc_empty :: Terms testcase result (Term fun) norm,
sc_classes :: Terms testcase result (Term fun) norm,
sc_instantiated :: Set (Term fun),
sc_instances :: Map (Term fun) (Terms testcase result (Term fun) norm) }
classes = lens sc_classes (\x y -> y { sc_classes = x })
single_use = lens sc_single_use (\x y -> y { sc_single_use = x })
instances = lens sc_instances (\x y -> y { sc_instances = x })
instantiated = lens sc_instantiated (\x y -> y { sc_instantiated = x })
instance_ :: Ord fun => Term fun -> Lens (Schemas testcase result fun norm) (Terms testcase result (Term fun) norm)
instance_ t = reading (\Schemas{..} -> keyDefault t sc_empty # instances)
initialState ::
(Type -> Bool) ->
(Term fun -> Bool) ->
(Term fun -> testcase -> result) ->
Schemas testcase result fun norm
initialState singleUse inst eval =
Schemas {
sc_single_use = singleUse,
sc_instantiate_singleton = inst,
sc_empty = Terms.initialState eval,
sc_classes = Terms.initialState eval,
sc_instantiated = Set.empty,
sc_instances = Map.empty }
data Result fun =
Accepted { result_props :: [Prop (Term fun)] }
| Rejected { result_props :: [Prop (Term fun)] }
explore ::
(PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun,
MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m) =>
Term fun -> StateT (Schemas testcase result fun norm) m (Result fun)
explore t0 = do
let t = mostSpecific t0
res <- zoom classes (Terms.explore t)
singleUse <- access single_use
case res of
Terms.Singleton -> do
inst <- gets sc_instantiate_singleton
if inst t then
instantiateRep t
else do
zoom (instance_ t) (Terms.explore (mostGeneral singleUse t0))
return (Accepted [])
Terms.Discovered ([] :=>: _ :=: u) ->
exploreIn u t
Terms.Knew ([] :=>: _ :=: u) ->
exploreIn u t
_ -> error "term layer returned non-equational property"
{-# INLINEABLE exploreIn #-}
exploreIn ::
(PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun,
MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m) =>
Term fun -> Term fun ->
StateT (Schemas testcase result fun norm) m (Result fun)
exploreIn rep t = do
singleUse <- access single_use
res <- zoom (instance_ rep) (Terms.explore (mostGeneral singleUse t))
case res of
Terms.Discovered prop -> do
add prop
return (Rejected [prop])
Terms.Knew _ ->
return (Rejected [])
Terms.Singleton -> do
inst <- access instantiated
props <-
if Set.notMember rep inst
then result_props <$> instantiateRep rep
else return []
res <- instantiate rep t
return res { result_props = props ++ result_props res }
{-# INLINEABLE instantiateRep #-}
instantiateRep ::
(PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun,
MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m) =>
Term fun ->
StateT (Schemas testcase result fun norm) m (Result fun)
instantiateRep t = do
instantiated %= Set.insert t
instantiate t t
{-# INLINEABLE instantiate #-}
instantiate ::
(PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun,
MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m) =>
Term fun -> Term fun ->
StateT (Schemas testcase result fun norm) m (Result fun)
instantiate rep t = do
singleUse <- access single_use
zoom (instance_ rep) $ do
let instances = sortBy (comparing generality) (allUnifications singleUse (mostGeneral singleUse t))
Accepted <$> catMaybes <$> forM instances (\t -> do
res <- Terms.explore t
case res of
Terms.Discovered prop -> do
add prop
return (Just prop)
_ -> return Nothing)
generality :: Term f -> (Int, [Var])
generality t = (-length (usort (vars t)), vars t)
mostGeneral :: (Type -> Bool) -> Term f -> Term f
mostGeneral singleUse s = evalState (aux s) Map.empty
where
aux (Var (V ty _)) = do
m <- get
let n :: Int
n = Map.findWithDefault 0 ty m
unless (singleUse ty) $
put $! Map.insert ty (n+1) m
let m = fromIntegral (labelNum (label (ty, n)))
return (Var (V ty m))
aux (Fun f) = return (Fun f)
aux (t :$: u) = liftM2 (:$:) (aux t) (aux u)
mostSpecific :: Term f -> Term f
mostSpecific = subst (\(V ty _) -> Var (V ty 0))
allUnifications :: (Type -> Bool) -> Term fun -> [Term fun]
allUnifications singleUse t = map f ss
where
vs = [ map (x,) (select xs) | xs <- partitionBy typ (usort (vars t)), x <- xs ]
ss = map Map.fromList (sequence vs)
go s x = Map.findWithDefault undefined x s
f s = subst (Var . go s) t
select [V ty x] | not (singleUse ty) = [V ty x, V ty (succ x)]
select xs = take 4 xs