random-fu-0.2.7.7: Random number generation

Data.Random.Distribution

Synopsis

# Documentation

class Distribution d t where Source #

A Distribution is a data representation of a random variable's probability structure. For example, in Data.Random.Distribution.Normal, the Normal distribution is defined as:

data Normal a
= StdNormal
| Normal a a

Where the two parameters of the Normal data constructor are the mean and standard deviation of the random variable, respectively. To make use of the Normal type, one can convert it to an rvar and manipulate it or sample it directly:

x <- sample (rvar (Normal 10 2))
x <- sample (Normal 10 2)

A Distribution is typically more transparent than an RVar but less composable (precisely because of that transparency). There are several practical uses for types implementing Distribution:

• Typically, a Distribution will expose several parameters of a standard mathematical model of a probability distribution, such as mean and std deviation for the normal distribution. Thus, they can be manipulated analytically using mathematical insights about the distributions they represent. For example, a collection of bernoulli variables could be simplified into a (hopefully) smaller collection of binomial variables.
• Because they are generally just containers for parameters, they can be easily serialized to persistent storage or read from user-supplied configurations (eg, initialization data for a simulation).
• If a type additionally implements the CDF subclass, which extends Distribution with a cumulative density function, an arbitrary random variable x can be tested against the distribution by testing fmap (cdf dist) x for uniformity.

On the other hand, most Distributions will not be closed under all the same operations as RVar (which, being a monad, has a fully turing-complete internal computational model). The sum of two uniformly-distributed variables, for example, is not uniformly distributed. To support general composition, the Distribution class defines a function rvar to construct the more-abstract and more-composable RVar representation of a random variable.

Minimal complete definition

Nothing

Methods

rvar :: d t -> RVar t Source #

Return a random variable with this distribution.

rvarT :: d t -> RVarT n t Source #

Return a random variable with the given distribution, pre-lifted to an arbitrary RVarT. Any arbitrary RVar can also be converted to an 'RVarT m' for an arbitrary m, using either lift or sample.

Instances
 Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodsrvar :: StdUniform () -> RVar () Source #rvarT :: StdUniform () -> RVarT n () Source # Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodsrvar :: Uniform () -> RVar () Source #rvarT :: Uniform () -> RVarT n () Source # Source # Instance detailsDefined in Data.Random.Distribution.Weibull Methodsrvar :: Weibull a -> RVar a Source #rvarT :: Weibull a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Triangular Methodsrvar :: Triangular a -> RVar a Source #rvarT :: Triangular a -> RVarT n a Source # Source # Instance details Methods Source # Instance detailsDefined in Data.Random.Distribution.Rayleigh Methodsrvar :: Rayleigh a -> RVar a Source #rvarT :: Rayleigh a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Normal Methods Source # Instance detailsDefined in Data.Random.Distribution.Normal Methods Source # Instance detailsDefined in Data.Random.Distribution.Gamma Methodsrvar :: Gamma a -> RVar a Source #rvarT :: Gamma a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Exponential Methodsrvar :: Exponential a -> RVar a Source #rvarT :: Exponential a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.ChiSquare Methodsrvar :: ChiSquare t -> RVar t Source #rvarT :: ChiSquare t -> RVarT n t Source # Source # Instance detailsDefined in Data.Random.Distribution.T Methodsrvar :: T a -> RVar a Source #rvarT :: T a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Beta Methods Source # Instance detailsDefined in Data.Random.Distribution.Beta Methods Source # Instance detailsDefined in Data.Random.Distribution.Pareto Methodsrvar :: Pareto a -> RVar a Source #rvarT :: Pareto a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodsrvar :: StdUniform (Fixed r) -> RVar (Fixed r) Source #rvarT :: StdUniform (Fixed r) -> RVarT n (Fixed r) Source # Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodsrvar :: Uniform (Fixed r) -> RVar (Fixed r) Source #rvarT :: Uniform (Fixed r) -> RVarT n (Fixed r) Source # Source # Instance detailsDefined in Data.Random.Distribution.Simplex Methodsrvar :: StdSimplex [a] -> RVar [a] Source #rvarT :: StdSimplex [a] -> RVarT n [a] Source # Source # Instance detailsDefined in Data.Random.Distribution.Dirichlet Methodsrvar :: Dirichlet [a] -> RVar [a] Source #rvarT :: Dirichlet [a] -> RVarT n [a] Source # (Num t, Ord t, Vector v t) => Distribution (Ziggurat v) t Source # Instance detailsDefined in Data.Random.Distribution.Ziggurat Methodsrvar :: Ziggurat v t -> RVar t Source #rvarT :: Ziggurat v t -> RVarT n t Source # Source # Instance detailsDefined in Data.Random.Distribution.Gamma Methodsrvar :: Erlang a b -> RVar b Source #rvarT :: Erlang a b -> RVarT n b Source # (Fractional p, Ord p, Distribution Uniform p) => Distribution (Categorical p) a Source # Instance detailsDefined in Data.Random.Distribution.Categorical Methodsrvar :: Categorical p a -> RVar a Source #rvarT :: Categorical p a -> RVarT n a Source # Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods (Num a, Eq a, Fractional p, Distribution (Binomial p) a) => Distribution (Multinomial p) [a] Source # Instance detailsDefined in Data.Random.Distribution.Multinomial Methodsrvar :: Multinomial p [a] -> RVar [a] Source #rvarT :: Multinomial p [a] -> RVarT n [a] Source # (Distribution (Bernoulli b) Bool, RealFloat a) => Distribution (Bernoulli b) (Complex a) Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methodsrvar :: Bernoulli b (Complex a) -> RVar (Complex a) Source #rvarT :: Bernoulli b (Complex a) -> RVarT n (Complex a) Source # (Distribution (Bernoulli b) Bool, Integral a) => Distribution (Bernoulli b) (Ratio a) Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methodsrvar :: Bernoulli b (Ratio a) -> RVar (Ratio a) Source #rvarT :: Bernoulli b (Ratio a) -> RVarT n (Ratio a) Source #

class Distribution d t => PDF d t where Source #

Minimal complete definition

Nothing

Methods

pdf :: d t -> t -> Double Source #

logPdf :: d t -> t -> Double Source #

Instances
 Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods (Real a, Floating a, Distribution Normal a) => PDF Normal a Source # Instance detailsDefined in Data.Random.Distribution.Normal Methodspdf :: Normal a -> a -> Double Source #logPdf :: Normal a -> a -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.Beta Methods Source # Instance detailsDefined in Data.Random.Distribution.Beta Methods (Real b, Distribution (Binomial b) Integer) => PDF (Binomial b) Integer Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int) => PDF (Binomial b) Int Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int8) => PDF (Binomial b) Int8 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int16) => PDF (Binomial b) Int16 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int32) => PDF (Binomial b) Int32 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int64) => PDF (Binomial b) Int64 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word) => PDF (Binomial b) Word Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word8) => PDF (Binomial b) Word8 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word16) => PDF (Binomial b) Word16 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word32) => PDF (Binomial b) Word32 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word64) => PDF (Binomial b) Word64 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Poisson b) Integer) => PDF (Poisson b) Integer Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int) => PDF (Poisson b) Int Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int8) => PDF (Poisson b) Int8 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int16) => PDF (Poisson b) Int16 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int32) => PDF (Poisson b) Int32 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int64) => PDF (Poisson b) Int64 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word) => PDF (Poisson b) Word Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word8) => PDF (Poisson b) Word8 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word16) => PDF (Poisson b) Word16 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word32) => PDF (Poisson b) Word32 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word64) => PDF (Poisson b) Word64 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods PDF (Poisson b) Integer => PDF (Poisson b) Float Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods

class Distribution d t => CDF d t where Source #

Methods

cdf :: d t -> t -> Double Source #

Return the cumulative distribution function of this distribution. That is, a function taking x :: t to the probability that the next sample will return a value less than or equal to x, according to some order or partial order (not necessarily an obvious one).

In the case where t is an instance of Ord, cdf should correspond to the CDF with respect to that order.

In other cases, cdf is only required to satisfy the following law: fmap (cdf d) (rvar d) must be uniformly distributed over (0,1). Inclusion of either endpoint is optional, though the preferred range is (0,1].

Note that this definition requires that cdf for a product type should _not_ be a joint CDF as commonly defined, as that definition violates both conditions. Instead, it should be a univariate CDF over the product type. That is, it should represent the CDF with respect to the lexicographic order of the product.

The present specification is probably only really useful for testing conformance of a variable to its target distribution, and I am open to suggestions for more-useful specifications (especially with regard to the interaction with product types).

Instances
 Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodscdf :: StdUniform () -> () -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methods Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodscdf :: Uniform () -> () -> Double Source # (Real a, Distribution Weibull a) => CDF Weibull a Source # Instance detailsDefined in Data.Random.Distribution.Weibull Methodscdf :: Weibull a -> a -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.Triangular Methodscdf :: Triangular a -> a -> Double Source # Source # Instance details Methodscdf :: StretchedExponential a -> a -> Double Source # (Real a, Distribution Rayleigh a) => CDF Rayleigh a Source # Instance detailsDefined in Data.Random.Distribution.Rayleigh Methodscdf :: Rayleigh a -> a -> Double Source # (Real a, Distribution Normal a) => CDF Normal a Source # Instance detailsDefined in Data.Random.Distribution.Normal Methodscdf :: Normal a -> a -> Double Source # (Real a, Distribution Gamma a) => CDF Gamma a Source # Instance detailsDefined in Data.Random.Distribution.Gamma Methodscdf :: Gamma a -> a -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.Exponential Methodscdf :: Exponential a -> a -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.ChiSquare Methodscdf :: ChiSquare t -> t -> Double Source # (Real a, Distribution T a) => CDF T a Source # Instance detailsDefined in Data.Random.Distribution.T Methodscdf :: T a -> a -> Double Source # (Real a, Distribution Pareto a) => CDF Pareto a Source # Instance detailsDefined in Data.Random.Distribution.Pareto Methodscdf :: Pareto a -> a -> Double Source # Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodscdf :: StdUniform (Fixed r) -> Fixed r -> Double Source # HasResolution r => CDF Uniform (Fixed r) Source # Instance detailsDefined in Data.Random.Distribution.Uniform Methodscdf :: Uniform (Fixed r) -> Fixed r -> Double Source # (Integral a, Real b, Distribution (Erlang a) b) => CDF (Erlang a) b Source # Instance detailsDefined in Data.Random.Distribution.Gamma Methodscdf :: Erlang a b -> b -> Double Source # (Real b, Distribution (Binomial b) Integer) => CDF (Binomial b) Integer Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int) => CDF (Binomial b) Int Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int8) => CDF (Binomial b) Int8 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int16) => CDF (Binomial b) Int16 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int32) => CDF (Binomial b) Int32 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Int64) => CDF (Binomial b) Int64 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word) => CDF (Binomial b) Word Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word8) => CDF (Binomial b) Word8 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word16) => CDF (Binomial b) Word16 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word32) => CDF (Binomial b) Word32 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Binomial b) Word64) => CDF (Binomial b) Word64 Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods Source # Instance detailsDefined in Data.Random.Distribution.Binomial Methods (Real b, Distribution (Poisson b) Integer) => CDF (Poisson b) Integer Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int) => CDF (Poisson b) Int Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int8) => CDF (Poisson b) Int8 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int16) => CDF (Poisson b) Int16 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int32) => CDF (Poisson b) Int32 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Int64) => CDF (Poisson b) Int64 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word) => CDF (Poisson b) Word Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word8) => CDF (Poisson b) Word8 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word16) => CDF (Poisson b) Word16 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word32) => CDF (Poisson b) Word32 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Real b, Distribution (Poisson b) Word64) => CDF (Poisson b) Word64 Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods CDF (Poisson b) Integer => CDF (Poisson b) Float Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods Source # Instance detailsDefined in Data.Random.Distribution.Poisson Methods (Distribution (Bernoulli b) Bool, Real b) => CDF (Bernoulli b) Bool Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods CDF (Bernoulli b) Bool => CDF (Bernoulli b) Int8 Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods CDF (Bernoulli b) Bool => CDF (Bernoulli b) Word Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methods (CDF (Bernoulli b) Bool, RealFloat a) => CDF (Bernoulli b) (Complex a) Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methodscdf :: Bernoulli b (Complex a) -> Complex a -> Double Source # (CDF (Bernoulli b) Bool, Integral a) => CDF (Bernoulli b) (Ratio a) Source # Instance detailsDefined in Data.Random.Distribution.Bernoulli Methodscdf :: Bernoulli b (Ratio a) -> Ratio a -> Double Source #