Safe Haskell | None |
---|---|
Language | Haskell2010 |
Nonlinear transient computing
This module was developed as a part of author's PhD project: https://www.researchgate.net/project/Theory-and-Modeling-of-Complex-Nonlinear-Delay-Dynamics-Applied-to-Neuromorphic-Computing
- new :: StdGen -> NTCParameters -> (Int, Int, Int) -> NTC
- learn :: NTC -> Int -> Matrix Double -> Matrix Double -> Either String NTC
- predict :: NTC -> Int -> Matrix Double -> Either String (Matrix Double)
- par0 :: NTCParameters
- data NTCParameters = Par {
- _preprocess :: Matrix Double -> Matrix Double
- _inputWeightsRange :: (Double, Double)
- _inputWeightsGenerator :: StdGen -> (Int, Int) -> (Double, Double) -> Matrix Double
- _postprocess :: Matrix Double -> Matrix Double
- _reservoirModel :: Par
- data Par :: *
- data BandpassFiltering :: * = BandpassFiltering {}
Documentation
:: StdGen | |
-> NTCParameters | |
-> (Int, Int, Int) | Input dimension, network nodes, and output dimension |
-> NTC |
Creates an untrained NTC network
:: NTC | |
-> Int | Discard the first N points |
-> Matrix Double | Input matrix of features rows and observations columns |
-> Matrix Double | Desired output matrix of observations columns |
-> Either String NTC |
NTC training: learn the readout weights offline
:: NTC | Trained network |
-> Int | Washout (forget) points |
-> Matrix Double | Input matrix where measurements are columns and features are rows |
-> Either String (Matrix Double) | Either error string or predicted output |
Run prediction using a "clean" (uninitialized) reservoir and then forget the reservoir's state. This can be used for both forecasting and classification tasks.
par0 :: NTCParameters Source #
Default NTC parameters
data NTCParameters Source #
Customizable NTC parameters
Par | |
|
Model parameters