rc-0.1.0.1: Reservoir Computing, fast RNNs

Safe HaskellNone
LanguageHaskell2010

RC.NTC

Description

Nonlinear transient computing

This module was developed as a part of author's PhD project: https://www.researchgate.net/project/Theory-and-Modeling-of-Complex-Nonlinear-Delay-Dynamics-Applied-to-Neuromorphic-Computing

Synopsis

Documentation

new Source #

Arguments

:: StdGen 
-> NTCParameters 
-> (Int, Int, Int)

Input dimension, network nodes, and output dimension

-> NTC 

Creates an untrained NTC network

learn Source #

Arguments

:: NTC 
-> Int

Discard the first N points

-> Matrix Double

Input matrix of features rows and observations columns

-> Matrix Double

Desired output matrix of observations columns

-> Either String NTC 

NTC training: learn the readout weights offline

predict Source #

Arguments

:: NTC

Trained network

-> Int

Washout (forget) points

-> Matrix Double

Input matrix where measurements are columns and features are rows

-> Either String (Matrix Double)

Either error string or predicted output

Run prediction using a "clean" (uninitialized) reservoir and then forget the reservoir's state. This can be used for both forecasting and classification tasks.

par0 :: NTCParameters Source #

Default NTC parameters

data NTCParameters Source #

Customizable NTC parameters

Constructors

Par 

Fields

data Par :: * #

Model parameters

Constructors

MackeyGlass

Mackey-Glass model (no external input)

Fields

RC 

Fields

data BandpassFiltering :: * #

Bandpass filter (linear) parameters

Constructors

BandpassFiltering 

Fields

  • _tau :: Double

    System response time, s (epsilon = tau / tau_D)

  • _theta :: Double

    Integration time, s (delta = tau_D / theta)