Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Rebase.Prelude
Description
This module reexports the non-conflicting definitions from the modules exported by this package, providing a much more featureful alternative to the standard Prelude.
For details check out the source.
Synopsis
- data RealWorld
- data Bool
- data Char
- data Double
- data Float
- data Int
- data Word
- data Ordering
- data Maybe a
- class a ~# b => (a :: k) ~ (b :: k)
- class a ~R# b => Coercible (a :: k) (b :: k)
- data Natural
- data Integer
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r where
- class Monad m => MonadState s (m :: Type -> Type) | m -> s where
- type Cont r = ContT r Identity
- class (Sieve p (Rep p), Strong p) => Representable (p :: Type -> Type -> Type) where
- type family Rep (p :: Type -> Type -> Type) :: Type -> Type
- newtype StateT s (m :: Type -> Type) a = StateT {
- runStateT :: s -> m (a, s)
- type State s = StateT s Identity
- newtype ReaderT r (m :: Type -> Type) a = ReaderT {
- runReaderT :: r -> m a
- type Reader r = ReaderT r Identity
- class Contravariant (f :: Type -> Type) where
- newtype Op a b = Op {
- getOp :: b -> a
- class Applicative m => Monad (m :: Type -> Type) where
- class Functor (f :: Type -> Type) where
- data Either a b
- data Void
- data NonEmpty a = a :| [a]
- class Semigroup a => Monoid a where
- class Semigroup a where
- class Functor f => Applicative (f :: Type -> Type) where
- type String = [Char]
- class Generic a
- class Ord a => Ix a where
- data ST s a
- data IO a
- data Word8
- data Handle
- data ForeignPtr a
- data TyCon
- newtype Any = Any {}
- data Word64
- data Word32
- data Word16
- class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where
- newtype AssertionFailed = AssertionFailed String
- class Typeable a => Data a where
- gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a
- gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a
- toConstr :: a -> Constr
- dataTypeOf :: a -> DataType
- dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a)
- dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a)
- gmapT :: (forall b. Data b => b -> b) -> a -> a
- gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
- gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u
- gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- newtype STM a = STM (State# RealWorld -> (# State# RealWorld, a #))
- newtype Sum a = Sum {
- getSum :: a
- newtype Product a = Product {
- getProduct :: a
- class (Real a, Enum a) => Integral a where
- type Rational = Ratio Integer
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- class Read a where
- class Show a where
- class Storable a where
- data Int8
- data Int16
- data Int32
- data Int64
- data StablePtr a
- data Ptr a
- newtype Last a = Last {
- getLast :: a
- newtype First a = First {
- getFirst :: a
- data MVar a
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- displayException :: e -> String
- data STRef s a
- type IOError = IOException
- class Monad m => MonadIO (m :: Type -> Type) where
- data Chan a
- data IOException = IOError {}
- newtype Compose (f :: k -> Type) (g :: k1 -> k) (a :: k1) = Compose {
- getCompose :: f (g a)
- data BlockedIndefinitelyOnMVar = BlockedIndefinitelyOnMVar
- class IsList l where
- class Bounded a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Eq a where
- class Fractional a => Floating a where
- pi :: a
- exp :: a -> a
- log :: a -> a
- sqrt :: a -> a
- (**) :: a -> a -> a
- logBase :: a -> a -> a
- sin :: a -> a
- cos :: a -> a
- tan :: a -> a
- asin :: a -> a
- acos :: a -> a
- atan :: a -> a
- sinh :: a -> a
- cosh :: a -> a
- tanh :: a -> a
- asinh :: a -> a
- acosh :: a -> a
- atanh :: a -> a
- log1p :: a -> a
- expm1 :: a -> a
- log1pexp :: a -> a
- log1mexp :: a -> a
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class Num a where
- class Eq a => Ord a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Typeable (a :: k)
- class Monad m => MonadFix (m :: Type -> Type) where
- mfix :: (a -> m a) -> m a
- class Monad m => MonadFail (m :: Type -> Type) where
- class IsString a where
- fromString :: String -> a
- class Foldable (t :: Type -> Type) where
- fold :: Monoid m => t m -> m
- foldMap :: Monoid m => (a -> m) -> t a -> m
- foldMap' :: Monoid m => (a -> m) -> t a -> m
- foldr :: (a -> b -> b) -> b -> t a -> b
- foldr' :: (a -> b -> b) -> b -> t a -> b
- foldl :: (b -> a -> b) -> b -> t a -> b
- foldl' :: (b -> a -> b) -> b -> t a -> b
- foldr1 :: (a -> a -> a) -> t a -> a
- foldl1 :: (a -> a -> a) -> t a -> a
- null :: t a -> Bool
- length :: t a -> Int
- elem :: Eq a => a -> t a -> Bool
- maximum :: Ord a => t a -> a
- minimum :: Ord a => t a -> a
- sum :: Num a => t a -> a
- product :: Num a => t a -> a
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- class HasField (x :: k) r a | x r -> a where
- getField :: r -> a
- data Ratio a
- data FunPtr a
- newtype TypeError = TypeError String
- type TypeRep = SomeTypeRep
- data UnsafeEquality (a :: k) (b :: k) where
- UnsafeRefl :: forall {k} (a :: k). UnsafeEquality a a
- data Text
- data SomeException = Exception e => SomeException e
- class Applicative f => Alternative (f :: Type -> Type) where
- data Version = Version {
- versionBranch :: [Int]
- versionTags :: [String]
- type ShowS = String -> String
- class Bits b => FiniteBits b where
- finiteBitSize :: b -> Int
- countLeadingZeros :: b -> Int
- countTrailingZeros :: b -> Int
- class Eq a => Bits a where
- (.&.) :: a -> a -> a
- (.|.) :: a -> a -> a
- xor :: a -> a -> a
- complement :: a -> a
- shift :: a -> Int -> a
- rotate :: a -> Int -> a
- zeroBits :: a
- bit :: Int -> a
- setBit :: a -> Int -> a
- clearBit :: a -> Int -> a
- complementBit :: a -> Int -> a
- testBit :: a -> Int -> Bool
- bitSizeMaybe :: a -> Maybe Int
- bitSize :: a -> Int
- isSigned :: a -> Bool
- shiftL :: a -> Int -> a
- unsafeShiftL :: a -> Int -> a
- shiftR :: a -> Int -> a
- unsafeShiftR :: a -> Int -> a
- rotateL :: a -> Int -> a
- rotateR :: a -> Int -> a
- popCount :: a -> Int
- data GeneralCategory
- = UppercaseLetter
- | LowercaseLetter
- | TitlecaseLetter
- | ModifierLetter
- | OtherLetter
- | NonSpacingMark
- | SpacingCombiningMark
- | EnclosingMark
- | DecimalNumber
- | LetterNumber
- | OtherNumber
- | ConnectorPunctuation
- | DashPunctuation
- | OpenPunctuation
- | ClosePunctuation
- | InitialQuote
- | FinalQuote
- | OtherPunctuation
- | MathSymbol
- | CurrencySymbol
- | ModifierSymbol
- | OtherSymbol
- | Space
- | LineSeparator
- | ParagraphSeparator
- | Control
- | Format
- | Surrogate
- | PrivateUse
- | NotAssigned
- type ReadS a = String -> [(a, String)]
- data ReadPrec a
- data ThreadStatus
- data BlockReason
- data TVar a = TVar (TVar# RealWorld a)
- data ThreadId = ThreadId ThreadId#
- newtype Iff a = Iff {
- getIff :: a
- newtype Xor a = Xor {
- getXor :: a
- newtype Ior a = Ior {
- getIor :: a
- newtype And a = And {
- getAnd :: a
- newtype Down a = Down {
- getDown :: a
- data (a :: k1) :~~: (b :: k2) where
- data (a :: k) :~: (b :: k) where
- class Category (cat :: k -> k -> Type) where
- data KProxy t = KProxy
- data Proxy (t :: k) = Proxy
- newtype IntPtr = IntPtr Int
- newtype WordPtr = WordPtr Word
- newtype Min a = Min {
- getMin :: a
- newtype Max a = Max {
- getMax :: a
- data Fixity
- class Functor f => Alt (f :: Type -> Type) where
- (<!>) :: f a -> f a -> f a
- newtype All = All {}
- newtype Endo a = Endo {
- appEndo :: a -> a
- newtype Dual a = Dual {
- getDual :: a
- newtype Ap (f :: k -> Type) (a :: k) = Ap {
- getAp :: f a
- newtype Const a (b :: k) = Const {
- getConst :: a
- data ArithException
- data ErrorCall where
- data MaskingState
- type FilePath = String
- data IORef a
- type FinalizerEnvPtr env a = FunPtr (Ptr env -> Ptr a -> IO ())
- type FinalizerPtr a = FunPtr (Ptr a -> IO ())
- data Dynamic where
- data IOErrorType
- data ExitCode
- data FixIOException = FixIOException
- data ArrayException
- data AsyncException
- data SomeAsyncException = Exception e => SomeAsyncException e
- newtype CompactionFailed = CompactionFailed String
- data AllocationLimitExceeded = AllocationLimitExceeded
- data Deadlock = Deadlock
- data BlockedIndefinitelyOnSTM = BlockedIndefinitelyOnSTM
- data PrimMVar
- data NestedAtomically = NestedAtomically
- data NonTermination = NonTermination
- newtype NoMethodError = NoMethodError String
- newtype RecUpdError = RecUpdError String
- newtype RecConError = RecConError String
- newtype RecSelError = RecSelError String
- newtype PatternMatchFail = PatternMatchFail String
- data Handler a = Exception e => Handler (e -> IO a)
- type HandlerFun = ForeignPtr Word8 -> IO ()
- type Signal = CInt
- newtype Identity a = Identity {
- runIdentity :: a
- class Arrow a => ArrowLoop (a :: Type -> Type -> Type) where
- loop :: a (b, d) (c, d) -> a b c
- newtype ArrowMonad (a :: Type -> Type -> Type) b = ArrowMonad (a () b)
- class Arrow a => ArrowApply (a :: Type -> Type -> Type) where
- app :: a (a b c, b) c
- class Arrow a => ArrowChoice (a :: Type -> Type -> Type) where
- class ArrowZero a => ArrowPlus (a :: Type -> Type -> Type) where
- (<+>) :: a b c -> a b c -> a b c
- class Arrow a => ArrowZero (a :: Type -> Type -> Type) where
- zeroArrow :: a b c
- newtype Kleisli (m :: Type -> Type) a b = Kleisli {
- runKleisli :: a -> m b
- class Category a => Arrow (a :: Type -> Type -> Type) where
- newtype ZipList a = ZipList {
- getZipList :: [a]
- newtype WrappedArrow (a :: Type -> Type -> Type) b c = WrapArrow {
- unwrapArrow :: a b c
- newtype WrappedMonad (m :: Type -> Type) a = WrapMonad {
- unwrapMonad :: m a
- data StableName a
- class IsLabel (x :: Symbol) a where
- fromLabel :: a
- type family Item l
- data Unique
- data QSemN
- data QSem
- data Timeout
- type ConIndex = Int
- data ConstrRep
- data DataRep
- data Constr
- data DataType
- newtype WrappedMonoid m = WrapMonoid {
- unwrapMonoid :: m
- type ArgMax a b = Max (Arg a b)
- type ArgMin a b = Min (Arg a b)
- data Arg a b = Arg a b
- class Bifoldable t => Bifoldable1 (t :: Type -> Type -> Type) where
- bifold1 :: Semigroup m => t m m -> m
- bifoldMap1 :: Semigroup m => (a -> m) -> (b -> m) -> t a b -> m
- type Pico = Fixed E12
- data E12
- type Nano = Fixed E9
- data E9
- type Micro = Fixed E6
- data E6
- type Milli = Fixed E3
- data E3
- type Centi = Fixed E2
- data E2
- type Deci = Fixed E1
- data E1
- type Uni = Fixed E0
- data E0
- class HasResolution (a :: k) where
- resolution :: p a -> Integer
- newtype Fixed (a :: k) = MkFixed Integer
- data Complex a = !a :+ !a
- class (forall a. Show a => Show1 (f a)) => Show2 (f :: Type -> Type -> Type) where
- class (forall a. Read a => Read1 (f a)) => Read2 (f :: Type -> Type -> Type) where
- liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (f a b)
- liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [f a b]
- liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (f a b)
- liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [f a b]
- class (Eq2 f, forall a. Ord a => Ord1 (f a)) => Ord2 (f :: Type -> Type -> Type) where
- liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> f a c -> f b d -> Ordering
- class (forall a. Eq a => Eq1 (f a)) => Eq2 (f :: Type -> Type -> Type) where
- class (forall a. Show a => Show (f a)) => Show1 (f :: Type -> Type) where
- class (forall a. Read a => Read (f a)) => Read1 (f :: Type -> Type) where
- liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
- liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
- liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (f a)
- liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [f a]
- class (Eq1 f, forall a. Ord a => Ord (f a)) => Ord1 (f :: Type -> Type) where
- liftCompare :: (a -> b -> Ordering) -> f a -> f b -> Ordering
- class (forall a. Eq a => Eq (f a)) => Eq1 (f :: Type -> Type) where
- newtype Equivalence a = Equivalence {
- getEquivalence :: a -> a -> Bool
- newtype Comparison a = Comparison {
- getComparison :: a -> a -> Ordering
- newtype Predicate a = Predicate {
- getPredicate :: a -> Bool
- class Foldable t => Foldable1 (t :: Type -> Type) where
- type (:->) (p :: k -> k1 -> Type) (q :: k -> k1 -> Type) = forall (a :: k) (b :: k1). p a b -> q a b
- newtype WrappedBifunctor (p :: k -> k1 -> Type) (a :: k) (b :: k1) = WrapBifunctor {
- unwrapBifunctor :: p a b
- data ByteString
- data ShortByteString
- newtype Cokleisli (w :: k -> Type) (a :: k) b = Cokleisli {
- runCokleisli :: w a -> b
- class Comonad w => ComonadApply (w :: Type -> Type) where
- class Functor w => Comonad (w :: Type -> Type) where
- data Map k a
- data Set a
- data Seq a
- data IntSet
- data IntMap a
- class Divisible f => Decidable (f :: Type -> Type) where
- class Contravariant f => Divisible (f :: Type -> Type) where
- class NFData2 (p :: Type -> Type -> Type) where
- liftRnf2 :: (a -> ()) -> (b -> ()) -> p a b -> ()
- class NFData1 (f :: Type -> Type) where
- liftRnf :: (a -> ()) -> f a -> ()
- class NFData a where
- rnf :: a -> ()
- data DList a
- data Validation e a
- newtype ExceptT e (m :: Type -> Type) a = ExceptT (m (Either e a))
- newtype MaybeT (m :: Type -> Type) a = MaybeT (m (Maybe a))
- class Group a => Cyclic a where
- generator :: a
- class Group g => Abelian g
- class Monoid m => Group m where
- data Hashed a
- class Eq a => Hashable a where
- hashWithSalt :: Int -> a -> Int
- hash :: a -> Int
- class Invariant (f :: Type -> Type) where
- invmap :: (a -> b) -> (b -> a) -> f a -> f b
- class Invariant2 (f :: Type -> Type -> Type) where
- invmap2 :: (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d
- newtype InvariantArrow (c :: k -> k -> Type) (a :: k) = InvariantArrow (c a a)
- newtype InvariantProfunctor (p :: k -> k -> Type) (a :: k) = InvariantProfunctor (p a a)
- newtype WrappedProfunctor (p :: k -> k1 -> Type) (a :: k) (b :: k1) = WrapProfunctor {
- unwrapProfunctor :: p a b
- newtype WrappedContravariant (f :: k -> Type) (a :: k) = WrapContravariant {
- unwrapContravariant :: f a
- newtype WrappedFunctor (f :: k -> Type) (a :: k) = WrapFunctor {
- unwrapFunctor :: f a
- class Profunctor (p :: Type -> Type -> Type) where
- newtype Rift (p :: k -> k1 -> Type) (q :: k2 -> k1 -> Type) (a :: k2) (b :: k) = Rift {
- runRift :: forall (x :: k1). p b x -> q a x
- data Coyoneda (p :: Type -> Type -> Type) a b where
- newtype Day = ModifiedJulianDay {}
- newtype Yoneda (p :: Type -> Type -> Type) a b = Yoneda {
- runYoneda :: forall x y. (x -> a) -> (b -> y) -> p x y
- newtype Ran (p :: k -> k1 -> Type) (q :: k -> k2 -> Type) (a :: k1) (b :: k2) = Ran {
- runRan :: forall (x :: k). p x a -> q x b
- newtype Codensity (p :: k -> k1 -> Type) (a :: k1) (b :: k1) = Codensity {
- runCodensity :: forall (x :: k). p x a -> p x b
- class (Monoid w, Monad m) => MonadWriter w (m :: Type -> Type) | m -> w where
- type Except e = ExceptT e Identity
- newtype ContT (r :: k) (m :: k -> Type) a = ContT {
- runContT :: (a -> m r) -> m r
- newtype WriterT w (m :: Type -> Type) a = WriterT (m (a, w))
- type Writer w = WriterT w Identity
- class Monad m => MonadCont (m :: Type -> Type) where
- callCC :: ((a -> m b) -> m a) -> m a
- class Monad m => MonadError e (m :: Type -> Type) | m -> e where
- throwError :: e -> m a
- catchError :: m a -> (e -> m a) -> m a
- class (forall (m :: Type -> Type). Monad m => Monad (t m)) => MonadTrans (t :: (Type -> Type) -> Type -> Type) where
- newtype Tambara (p :: Type -> Type -> Type) a b = Tambara {
- runTambara :: forall c. p (a, c) (b, c)
- newtype Forget r a (b :: k) = Forget {
- runForget :: a -> r
- newtype Costar (f :: k -> Type) (d :: k) c = Costar {
- runCostar :: f d -> c
- newtype Star (f :: k -> Type) d (c :: k) = Star {
- runStar :: d -> f c
- class ProfunctorFunctor t => ProfunctorComonad (t :: (Type -> Type -> Type) -> Type -> Type -> Type) where
- proextract :: forall (p :: Type -> Type -> Type). Profunctor p => t p :-> p
- produplicate :: forall (p :: Type -> Type -> Type). Profunctor p => t p :-> t (t p)
- class ProfunctorFunctor t => ProfunctorMonad (t :: (Type -> Type -> Type) -> Type -> Type -> Type) where
- class ProfunctorFunctor (t :: (Type -> Type -> Type) -> k -> k1 -> Type) where
- class (ProfunctorFunctor f, ProfunctorFunctor u) => ProfunctorAdjunction (f :: (Type -> Type -> Type) -> Type -> Type -> Type) (u :: (Type -> Type -> Type) -> Type -> Type -> Type) | f -> u, u -> f where
- newtype Copastro (p :: Type -> Type -> Type) a b = Copastro {
- runCopastro :: forall (r :: Type -> Type -> Type). Costrong r => (forall x y. p x y -> r x y) -> r a b
- data Cotambara (q :: Type -> Type -> Type) a b where
- class Profunctor p => Costrong (p :: Type -> Type -> Type) where
- data Pastro (p :: Type -> Type -> Type) a b where
- class Profunctor p => Strong (p :: Type -> Type -> Type) where
- data Environment (p :: Type -> Type -> Type) a b where
- Environment :: forall z y b (p :: Type -> Type -> Type) x a. ((z -> y) -> b) -> p x y -> (a -> z -> x) -> Environment p a b
- newtype Closure (p :: Type -> Type -> Type) a b = Closure {
- runClosure :: forall x. p (x -> a) (x -> b)
- class Profunctor p => Closed (p :: Type -> Type -> Type) where
- closed :: p a b -> p (x -> a) (x -> b)
- newtype CopastroSum (p :: Type -> Type -> Type) a b = CopastroSum {
- runCopastroSum :: forall (r :: Type -> Type -> Type). Cochoice r => (forall x y. p x y -> r x y) -> r a b
- data CotambaraSum (q :: Type -> Type -> Type) a b where
- CotambaraSum :: forall (r :: Type -> Type -> Type) (q :: Type -> Type -> Type) a b. Cochoice r => (r :-> q) -> r a b -> CotambaraSum q a b
- class Profunctor p => Cochoice (p :: Type -> Type -> Type) where
- data PastroSum (p :: Type -> Type -> Type) a b where
- newtype TambaraSum (p :: Type -> Type -> Type) a b = TambaraSum {
- runTambaraSum :: forall c. p (Either a c) (Either b c)
- class Profunctor p => Choice (p :: Type -> Type -> Type) where
- data FreeTraversing (p :: Type -> Type -> Type) a b where
- FreeTraversing :: forall (f :: Type -> Type) y b (p :: Type -> Type -> Type) x a. Traversable f => (f y -> b) -> p x y -> (a -> f x) -> FreeTraversing p a b
- newtype CofreeTraversing (p :: Type -> Type -> Type) a b = CofreeTraversing {
- runCofreeTraversing :: forall (f :: Type -> Type). Traversable f => p (f a) (f b)
- class (Choice p, Strong p) => Traversing (p :: Type -> Type -> Type) where
- traverse' :: Traversable f => p a b -> p (f a) (f b)
- wander :: (forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t) -> p a b -> p s t
- data FreeMapping (p :: Type -> Type -> Type) a b where
- FreeMapping :: forall (f :: Type -> Type) y b (p :: Type -> Type -> Type) x a. Functor f => (f y -> b) -> p x y -> (a -> f x) -> FreeMapping p a b
- newtype CofreeMapping (p :: Type -> Type -> Type) a b = CofreeMapping {
- runCofreeMapping :: forall (f :: Type -> Type). Functor f => p (f a) (f b)
- class (Traversing p, Closed p) => Mapping (p :: Type -> Type -> Type) where
- class (Profunctor p, Functor f) => Cosieve (p :: Type -> Type -> Type) (f :: Type -> Type) | p -> f where
- cosieve :: p a b -> f a -> b
- class (Profunctor p, Functor f) => Sieve (p :: Type -> Type -> Type) (f :: Type -> Type) | p -> f where
- sieve :: p a b -> a -> f b
- newtype Coprep (p :: k -> Type -> Type) (a :: k) = Coprep {
- runCoprep :: forall r. p a r -> r
- data Prep (p :: Type -> k -> Type) (a :: k) where
- class (Cosieve p (Corep p), Costrong p) => Corepresentable (p :: Type -> Type -> Type) where
- type family Corep (p :: Type -> Type -> Type) :: Type -> Type
- data Procompose (p :: k -> k1 -> Type) (q :: k2 -> k -> Type) (d :: k2) (c :: k1) where
- Procompose :: forall {k} {k1} {k2} (p :: k -> k1 -> Type) (x :: k) (c :: k1) (q :: k2 -> k -> Type) (d :: k2). p x c -> q d x -> Procompose p q d c
- newtype Cayley (f :: k -> Type) (p :: k1 -> k2 -> k) (a :: k1) (b :: k2) = Cayley {
- runCayley :: f (p a b)
- data Scientific
- newtype ComposeEither (f :: Type -> Type) e a = ComposeEither (f (Either e a))
- newtype ComposeTraversable (f :: Type -> Type) (g :: Type -> Type) a = ComposeTraversable (f (g a))
- newtype Under m a = Under {
- getUnder :: m
- newtype Over m a = Over {
- getOver :: m
- newtype SelectM (f :: Type -> Type) a = SelectM {
- getSelectM :: f a
- newtype SelectA (f :: Type -> Type) a = SelectA {
- getSelectA :: f a
- data Cases a
- class Applicative f => Selective (f :: Type -> Type) where
- class Functor w => Extend (w :: Type -> Type) where
- duplicated :: w a -> w (w a)
- extended :: (w a -> b) -> w a -> w b
- class Bifunctor p => Biapply (p :: Type -> Type -> Type) where
- class Apply m => Bind (m :: Type -> Type) where
- (>>-) :: m a -> (a -> m b) -> m b
- newtype MaybeApply (f :: Type -> Type) a = MaybeApply {
- runMaybeApply :: Either (f a) a
- newtype WrappedApplicative (f :: Type -> Type) a = WrapApplicative {
- unwrapApplicative :: f a
- class Functor f => Apply (f :: Type -> Type) where
- newtype Semi m (a :: k) (b :: k1) = Semi {
- getSemi :: m
- newtype WrappedCategory (k2 :: k -> k1 -> Type) (a :: k) (b :: k1) = WrapCategory {
- unwrapCategory :: k2 a b
- class Semigroupoid (c :: k -> k -> Type) where
- o :: forall (j :: k) (k1 :: k) (i :: k). c j k1 -> c i j -> c i k1
- class Semigroupoid k1 => Groupoid (k1 :: k -> k -> Type) where
- inv :: forall (a :: k) (b :: k). k1 a b -> k1 b a
- class (Foldable1 t, Traversable t) => Traversable1 (t :: Type -> Type) where
- class (Bifoldable1 t, Bitraversable t) => Bitraversable1 (t :: Type -> Type -> Type) where
- bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> t a c -> f (t b d)
- bisequence1 :: Apply f => t (f a) (f b) -> f (t a b)
- class Alt f => Plus (f :: Type -> Type) where
- zero :: f a
- data TBQueue a
- data TChan a
- data TMVar a
- data TQueue a
- data TArray i e
- data CalendarDiffDays = CalendarDiffDays {}
- class Ord p => DayPeriod p where
- periodFirstDay :: p -> Day
- periodLastDay :: p -> Day
- dayPeriod :: Day -> p
- type DayOfMonth = Int
- type MonthOfYear = Int
- type Year = Integer
- data DayOfWeek
- data DiffTime
- data NominalDiffTime
- type POSIXTime = NominalDiffTime
- data SystemTime = MkSystemTime {}
- data UTCTime = UTCTime {
- utctDay :: Day
- utctDayTime :: DiffTime
- newtype UniversalTime = ModJulianDate {}
- data CalendarDiffTime = CalendarDiffTime {}
- data TimeZone = TimeZone {}
- data TimeOfDay = TimeOfDay {}
- data LocalTime = LocalTime {}
- data TimeLocale = TimeLocale {}
- class ParseTime t
- class FormatTime t
- data ZonedTime = ZonedTime {}
- class ISO8601 t where
- iso8601Format :: Format t
- data HashMap k v
- data HashSet a
- data UUID
- data Vector a
- pattern Solo :: a -> (a)
- pattern December :: MonthOfYear
- pattern November :: MonthOfYear
- pattern October :: MonthOfYear
- pattern September :: MonthOfYear
- pattern August :: MonthOfYear
- pattern July :: MonthOfYear
- pattern June :: MonthOfYear
- pattern May :: MonthOfYear
- pattern April :: MonthOfYear
- pattern March :: MonthOfYear
- pattern February :: MonthOfYear
- pattern January :: MonthOfYear
- pattern BeforeCommonEra :: Integer -> Year
- pattern CommonEra :: Integer -> Year
- pattern YearMonthDay :: Year -> MonthOfYear -> DayOfMonth -> Day
- assoc :: forall {k1} {k2} {k3} {k4} {k5} {k6} (p1 :: k1 -> k2 -> Type) (q :: k3 -> k1 -> Type) (r :: k4 -> k3 -> Type) (a :: k4) (b :: k2) (x :: k5 -> k2 -> Type) (y :: k6 -> k5 -> Type) (z :: k4 -> k6 -> Type) p2 f. (Profunctor p2, Functor f) => p2 (Procompose (Procompose p1 q) r a b) (f (Procompose (Procompose x y) z a b)) -> p2 (Procompose p1 (Procompose q r) a b) (f (Procompose x (Procompose y z) a b))
- deepseq :: NFData a => a -> b -> b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- void :: Functor f => f a -> f ()
- cont :: ((a -> r) -> r) -> Cont r a
- runCont :: Cont r a -> (a -> r) -> r
- tabulated :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) d c d' c'. (Representable p, Representable q) => Iso (d -> Rep p c) (d' -> Rep q c') (p d c) (q d' c')
- runState :: State s a -> s -> (a, s)
- evalState :: State s a -> s -> a
- execState :: State s a -> s -> s
- mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
- mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
- evalStateT :: Monad m => StateT s m a -> s -> m a
- execStateT :: Monad m => StateT s m a -> s -> m s
- liftCallCC :: (MonadTrans t, Monad m, forall (m' :: Type -> Type). Monad m' => Monad (t m')) => CallCC m (t m a) b -> CallCC (t m) a b
- runReader :: Reader r a -> r -> a
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- assert :: Bool -> a -> a
- otherwise :: Bool
- (++) :: [a] -> [a] -> [a]
- map :: (a -> b) -> [a] -> [b]
- join :: Monad m => m (m a) -> m a
- swap :: (a, b) -> (b, a)
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- throw :: forall (r :: RuntimeRep) (a :: TYPE r) e. Exception e => e -> a
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- even :: Integral a => a -> Bool
- atomically :: STM a -> IO a
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- stimesIdempotent :: Integral b => b -> a -> a
- bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- bool :: a -> a -> Bool -> a
- readMaybe :: Read a => String -> Maybe a
- genericLength :: Num i => [a] -> i
- maximumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- minimumBy :: Foldable t => (a -> a -> Ordering) -> t a -> a
- genericReplicate :: Integral i => i -> a -> [a]
- genericTake :: Integral i => i -> [a] -> [a]
- genericDrop :: Integral i => i -> [a] -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- genericIndex :: Integral i => [a] -> i -> a
- stToIO :: ST RealWorld a -> IO a
- isLetter :: Char -> Bool
- uncurry :: (a -> b -> c) -> (a, b) -> c
- freeHaskellFunPtr :: FunPtr a -> IO ()
- isAlpha :: Char -> Bool
- coerce :: forall {k :: RuntimeRep} (a :: TYPE k) (b :: TYPE k). Coercible a b => a -> b
- nullPtr :: Ptr a
- ord :: Char -> Int
- chr :: Int -> Char
- head :: HasCallStack => [a] -> a
- group :: Eq a => [a] -> [[a]]
- groupBy :: (a -> a -> Bool) -> [a] -> [[a]]
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- throwTo :: Exception e => ThreadId -> e -> IO ()
- forkIOWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- forkIO :: IO () -> IO ThreadId
- atomicWriteIORef :: IORef a -> a -> IO ()
- atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b
- newForeignPtr :: FinalizerPtr a -> Ptr a -> IO (ForeignPtr a)
- forever :: Applicative f => f a -> f b
- withForeignPtr :: ForeignPtr a -> (Ptr a -> IO b) -> IO b
- killThread :: ThreadId -> IO ()
- setAllocationCounter :: Int64 -> IO ()
- enableAllocationLimit :: IO ()
- touchForeignPtr :: ForeignPtr a -> IO ()
- addForeignPtrFinalizer :: FinalizerPtr a -> ForeignPtr a -> IO ()
- threadDelay :: Int -> IO ()
- forkOS :: IO () -> IO ThreadId
- mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- throwIO :: Exception e => e -> IO a
- newTChanIO :: IO (TChan a)
- newBroadcastTChanIO :: IO (TChan a)
- newTQueueIO :: IO (TQueue a)
- newTBQueueIO :: Natural -> IO (TBQueue a)
- newTMVarIO :: a -> IO (TMVar a)
- unsafePerformIO :: IO a -> a
- try :: Exception e => IO a -> IO (Either e a)
- catch :: Exception e => IO a -> (e -> IO a) -> IO a
- writeFile :: FilePath -> String -> IO ()
- getLine :: IO String
- putStrLn :: String -> IO ()
- isDoesNotExistError :: IOError -> Bool
- getArgs :: IO [String]
- hClose :: Handle -> IO ()
- isAlreadyInUseError :: IOError -> Bool
- isPermissionError :: IOError -> Bool
- isFullError :: IOError -> Bool
- isEOFError :: IOError -> Bool
- isIllegalOperation :: IOError -> Bool
- filter :: (a -> Bool) -> [a] -> [a]
- forkFinally :: IO a -> (Either SomeException a -> IO ()) -> IO ThreadId
- getEnv :: String -> IO String
- setEnv :: String -> String -> IO ()
- lookupEnv :: String -> IO (Maybe String)
- unsetEnv :: String -> IO ()
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- transpose :: [[a]] -> [[a]]
- exitWith :: ExitCode -> IO a
- sortOn :: Ord b => (a -> b) -> [a] -> [a]
- cycle :: HasCallStack => [a] -> [a]
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- concat :: Foldable t => t [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- newStablePtr :: a -> IO (StablePtr a)
- print :: Show a => a -> IO ()
- lazy :: a -> a
- assertError :: (?callStack :: CallStack) => Bool -> a -> a
- trace :: String -> a -> a
- inline :: a -> a
- (>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- guard :: Alternative f => Bool -> f ()
- toDyn :: Typeable a => a -> Dynamic
- unsafeEqualityProof :: forall {k} (a :: k) (b :: k). UnsafeEquality a b
- unsafeCoerce# :: forall (q :: RuntimeRep) (r :: RuntimeRep) (a :: TYPE q) (b :: TYPE r). a -> b
- (^) :: (Num a, Integral b) => a -> b -> a
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- minusNaturalMaybe :: Natural -> Natural -> Maybe Natural
- errorWithoutStackTrace :: forall (r :: RuntimeRep) (a :: TYPE r). [Char] -> a
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- stimesIdempotentMonoid :: (Integral b, Monoid a) => b -> a -> a
- absurd :: Void -> a
- vacuous :: Functor f => f Void -> f a
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- when :: Applicative f => Bool -> f () -> f ()
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r
- liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r
- liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r
- ap :: Monad m => m (a -> b) -> m a -> m b
- const :: a -> b -> a
- flip :: (a -> b -> c) -> b -> a -> c
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- until :: (a -> Bool) -> (a -> a) -> a -> a
- asTypeOf :: a -> a -> a
- makeVersion :: [Int] -> Version
- subtract :: Num a => a -> a -> a
- maybe :: b -> (a -> b) -> Maybe a -> b
- isJust :: Maybe a -> Bool
- isNothing :: Maybe a -> Bool
- fromJust :: HasCallStack => Maybe a -> a
- fromMaybe :: a -> Maybe a -> a
- maybeToList :: Maybe a -> [a]
- listToMaybe :: [a] -> Maybe a
- catMaybes :: [Maybe a] -> [a]
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- uncons :: [a] -> Maybe (a, [a])
- tail :: HasCallStack => [a] -> [a]
- last :: HasCallStack => [a] -> a
- init :: HasCallStack => [a] -> [a]
- foldl1' :: HasCallStack => (a -> a -> a) -> [a] -> a
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanl' :: (b -> a -> b) -> b -> [a] -> [b]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- iterate' :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- reverse :: [a] -> [a]
- and :: Foldable t => t Bool -> Bool
- or :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- (!!) :: HasCallStack => [a] -> Int -> a
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- shows :: Show a => a -> ShowS
- showChar :: Char -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- showLitChar :: Char -> ShowS
- intToDigit :: Int -> Char
- (%) :: Integral a => a -> a -> Ratio a
- numerator :: Ratio a -> a
- denominator :: Ratio a -> a
- showSigned :: Real a => (a -> ShowS) -> Int -> a -> ShowS
- odd :: Integral a => a -> Bool
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- bitDefault :: (Bits a, Num a) => Int -> a
- testBitDefault :: (Bits a, Num a) => a -> Int -> Bool
- popCountDefault :: (Bits a, Num a) => a -> Int
- toIntegralSized :: (Integral a, Integral b, Bits a, Bits b) => a -> Maybe b
- byteSwap16 :: Word16 -> Word16
- byteSwap32 :: Word32 -> Word32
- byteSwap64 :: Word64 -> Word64
- bitReverse8 :: Word8 -> Word8
- bitReverse16 :: Word16 -> Word16
- bitReverse32 :: Word32 -> Word32
- bitReverse64 :: Word64 -> Word64
- runST :: (forall s. ST s a) -> a
- unsafeCoerce :: a -> b
- unsafeCoerceUnlifted :: forall (a :: UnliftedType) (b :: UnliftedType). a -> b
- unsafeCoerceAddr :: forall (a :: TYPE 'AddrRep) (b :: TYPE 'AddrRep). a -> b
- showFloat :: RealFloat a => a -> ShowS
- floatToDigits :: RealFloat a => Integer -> a -> ([Int], Int)
- fromRat :: RealFloat a => Rational -> a
- clamp :: Ord a => (a, a) -> a -> a
- newSTRef :: a -> ST s (STRef s a)
- readSTRef :: STRef s a -> ST s a
- writeSTRef :: STRef s a -> a -> ST s ()
- unsafeDupablePerformIO :: IO a -> a
- unsafeInterleaveIO :: IO a -> IO a
- curry :: ((a, b) -> c) -> a -> b -> c
- newEmptyMVar :: IO (MVar a)
- newMVar :: a -> IO (MVar a)
- takeMVar :: MVar a -> IO a
- readMVar :: MVar a -> IO a
- putMVar :: MVar a -> a -> IO ()
- tryTakeMVar :: MVar a -> IO (Maybe a)
- tryPutMVar :: MVar a -> a -> IO Bool
- tryReadMVar :: MVar a -> IO (Maybe a)
- isEmptyMVar :: MVar a -> IO Bool
- addMVarFinalizer :: MVar a -> IO () -> IO ()
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- ($>) :: Functor f => f a -> b -> f b
- fix :: (a -> a) -> a
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- (&) :: a -> (a -> b) -> b
- applyWhen :: Bool -> (a -> a) -> a -> a
- generalCategory :: Char -> GeneralCategory
- isAscii :: Char -> Bool
- isLatin1 :: Char -> Bool
- isAsciiLower :: Char -> Bool
- isAsciiUpper :: Char -> Bool
- isControl :: Char -> Bool
- isPrint :: Char -> Bool
- isSpace :: Char -> Bool
- isUpper :: Char -> Bool
- isUpperCase :: Char -> Bool
- isLower :: Char -> Bool
- isLowerCase :: Char -> Bool
- isAlphaNum :: Char -> Bool
- isDigit :: Char -> Bool
- isOctDigit :: Char -> Bool
- isHexDigit :: Char -> Bool
- isPunctuation :: Char -> Bool
- isSymbol :: Char -> Bool
- toUpper :: Char -> Char
- toLower :: Char -> Char
- toTitle :: Char -> Char
- optional :: Alternative f => f a -> f (Maybe a)
- lex :: ReadS String
- reset :: Cont r r -> Cont r' r
- readPrec_to_P :: ReadPrec a -> Int -> ReadP a
- readP_to_Prec :: (Int -> ReadP a) -> ReadPrec a
- readPrec_to_S :: ReadPrec a -> Int -> ReadS a
- readS_to_Prec :: (Int -> ReadS a) -> ReadPrec a
- readParen :: Bool -> ReadS a -> ReadS a
- lexLitChar :: ReadS String
- readLitChar :: ReadS Char
- lexDigits :: ReadS String
- readInt :: Num a => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
- readBin :: (Eq a, Num a) => ReadS a
- readOct :: (Eq a, Num a) => ReadS a
- readDec :: (Eq a, Num a) => ReadS a
- readHex :: (Eq a, Num a) => ReadS a
- readFloat :: RealFrac a => ReadS a
- readSigned :: Real a => ReadS a -> ReadS a
- showInt :: Integral a => a -> ShowS
- showEFloat :: RealFloat a => Maybe Int -> a -> ShowS
- showFFloat :: RealFloat a => Maybe Int -> a -> ShowS
- showGFloat :: RealFloat a => Maybe Int -> a -> ShowS
- showFFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS
- showGFloatAlt :: RealFloat a => Maybe Int -> a -> ShowS
- showHFloat :: RealFloat a => a -> ShowS
- showIntAtBase :: Integral a => a -> (Int -> Char) -> a -> ShowS
- showHex :: Integral a => a -> ShowS
- showOct :: Integral a => a -> ShowS
- showBin :: Integral a => a -> ShowS
- castPtr :: Ptr a -> Ptr b
- plusPtr :: Ptr a -> Int -> Ptr b
- alignPtr :: Ptr a -> Int -> Ptr a
- minusPtr :: Ptr a -> Ptr b -> Int
- nullFunPtr :: FunPtr a
- castFunPtr :: FunPtr a -> FunPtr b
- castFunPtrToPtr :: FunPtr a -> Ptr b
- castPtrToFunPtr :: Ptr a -> FunPtr b
- threadStatus :: ThreadId -> IO ThreadStatus
- myThreadId :: IO ThreadId
- freeStablePtr :: StablePtr a -> IO ()
- deRefStablePtr :: StablePtr a -> IO a
- castStablePtrToPtr :: StablePtr a -> Ptr ()
- castPtrToStablePtr :: Ptr () -> StablePtr a
- lefts :: [Either a b] -> [a]
- rights :: [Either a b] -> [b]
- partitionEithers :: [Either a b] -> ([a], [b])
- isLeft :: Either a b -> Bool
- isRight :: Either a b -> Bool
- fromLeft :: a -> Either a b -> a
- fromRight :: b -> Either a b -> b
- reads :: Read a => ReadS a
- readEither :: Read a => String -> Either String a
- read :: Read a => String -> a
- oneBits :: FiniteBits a => a
- (.^.) :: Bits a => a -> a -> a
- (.>>.) :: Bits a => a -> Int -> a
- (.<<.) :: Bits a => a -> Int -> a
- (!>>.) :: Bits a => a -> Int -> a
- (!<<.) :: Bits a => a -> Int -> a
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- (<<<) :: forall {k} cat (b :: k) (c :: k) (a :: k). Category cat => cat b c -> cat a b -> cat a c
- asProxyTypeOf :: a -> proxy a -> a
- ptrToWordPtr :: Ptr a -> WordPtr
- wordPtrToPtr :: WordPtr -> Ptr a
- ptrToIntPtr :: Ptr a -> IntPtr
- intPtrToPtr :: IntPtr -> Ptr a
- digitToInt :: Char -> Int
- isMark :: Char -> Bool
- isNumber :: Char -> Bool
- isSeparator :: Char -> Bool
- getAlt :: Alt f a -> f a
- stimesMonoid :: (Integral b, Monoid a) => b -> a -> a
- foldrM :: (Foldable t, Monad m) => (a -> b -> m b) -> b -> t a -> m b
- foldlM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- find :: Foldable t => (a -> Bool) -> t a -> Maybe a
- tyConPackage :: TyCon -> String
- tyConModule :: TyCon -> String
- tyConName :: TyCon -> String
- tyConFingerprint :: TyCon -> Fingerprint
- rnfTyCon :: TyCon -> ()
- typeRepFingerprint :: TypeRep -> Fingerprint
- trLiftedRep :: TypeRep LiftedRep
- typeRepTyCon :: TypeRep -> TyCon
- typeRep :: forall {k} proxy (a :: k). Typeable a => proxy a -> TypeRep
- typeOf :: Typeable a => a -> TypeRep
- rnfTypeRep :: TypeRep -> ()
- showsTypeRep :: TypeRep -> ShowS
- cast :: (Typeable a, Typeable b) => a -> Maybe b
- eqT :: forall {k} (a :: k) (b :: k). (Typeable a, Typeable b) => Maybe (a :~: b)
- heqT :: forall {k1} {k2} (a :: k1) (b :: k2). (Typeable a, Typeable b) => Maybe (a :~~: b)
- gcast :: forall {k} (a :: k) (b :: k) c. (Typeable a, Typeable b) => c a -> Maybe (c b)
- gcast1 :: forall {k1} {k2} c (t :: k2 -> k1) (t' :: k2 -> k1) (a :: k2). (Typeable t, Typeable t') => c (t a) -> Maybe (c (t' a))
- gcast2 :: forall {k1} {k2} {k3} c (t :: k2 -> k3 -> k1) (t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3). (Typeable t, Typeable t') => c (t a b) -> Maybe (c (t' a b))
- funResultTy :: TypeRep -> TypeRep -> Maybe TypeRep
- mkFunTy :: TypeRep -> TypeRep -> TypeRep
- splitTyConApp :: TypeRep -> (TyCon, [TypeRep])
- typeRepArgs :: TypeRep -> [TypeRep]
- typeOf1 :: Typeable t => t a -> TypeRep
- typeOf2 :: Typeable t => t a b -> TypeRep
- typeOf3 :: Typeable t => t a b c -> TypeRep
- typeOf4 :: Typeable t => t a b c d -> TypeRep
- typeOf5 :: Typeable t => t a b c d e -> TypeRep
- typeOf6 :: Typeable t => t a b c d e f -> TypeRep
- typeOf7 :: Typeable t => t a b c d e f g -> TypeRep
- dropWhileEnd :: (a -> Bool) -> [a] -> [a]
- stripPrefix :: Eq a => [a] -> [a] -> Maybe [a]
- elemIndex :: Eq a => a -> [a] -> Maybe Int
- elemIndices :: Eq a => a -> [a] -> [Int]
- findIndex :: (a -> Bool) -> [a] -> Maybe Int
- findIndices :: (a -> Bool) -> [a] -> [Int]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- isSuffixOf :: Eq a => [a] -> [a] -> Bool
- isInfixOf :: Eq a => [a] -> [a] -> Bool
- nub :: Eq a => [a] -> [a]
- nubBy :: (a -> a -> Bool) -> [a] -> [a]
- delete :: Eq a => a -> [a] -> [a]
- deleteBy :: (a -> a -> Bool) -> a -> [a] -> [a]
- (\\) :: Eq a => [a] -> [a] -> [a]
- union :: Eq a => [a] -> [a] -> [a]
- unionBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- intersect :: Eq a => [a] -> [a] -> [a]
- intersectBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- intersperse :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- partition :: (a -> Bool) -> [a] -> ([a], [a])
- mapAccumL :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- mapAccumR :: Traversable t => (s -> a -> (s, b)) -> s -> t a -> (s, t b)
- insert :: Ord a => a -> [a] -> [a]
- insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
- zip4 :: [a] -> [b] -> [c] -> [d] -> [(a, b, c, d)]
- zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a, b, c, d, e)]
- zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [(a, b, c, d, e, f)]
- zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [(a, b, c, d, e, f, g)]
- zipWith4 :: (a -> b -> c -> d -> e) -> [a] -> [b] -> [c] -> [d] -> [e]
- zipWith5 :: (a -> b -> c -> d -> e -> f) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f]
- zipWith6 :: (a -> b -> c -> d -> e -> f -> g) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]
- zipWith7 :: (a -> b -> c -> d -> e -> f -> g -> h) -> [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g] -> [h]
- unzip4 :: [(a, b, c, d)] -> ([a], [b], [c], [d])
- unzip5 :: [(a, b, c, d, e)] -> ([a], [b], [c], [d], [e])
- unzip6 :: [(a, b, c, d, e, f)] -> ([a], [b], [c], [d], [e], [f])
- unzip7 :: [(a, b, c, d, e, f, g)] -> ([a], [b], [c], [d], [e], [f], [g])
- deleteFirstsBy :: (a -> a -> Bool) -> [a] -> [a] -> [a]
- inits :: [a] -> [[a]]
- tails :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- permutations :: [a] -> [[a]]
- sort :: Ord a => [a] -> [a]
- singleton :: a -> [a]
- lines :: String -> [String]
- unlines :: [String] -> String
- words :: String -> [String]
- unwords :: [String] -> String
- unsupportedOperation :: IOError
- userError :: String -> IOError
- interruptible :: IO a -> IO a
- getMaskingState :: IO MaskingState
- onException :: IO a -> IO b -> IO a
- mask_ :: IO a -> IO a
- uninterruptibleMask_ :: IO a -> IO a
- uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b
- finally :: IO a -> IO b -> IO a
- evaluate :: a -> IO a
- newIORef :: a -> IO (IORef a)
- readIORef :: IORef a -> IO a
- writeIORef :: IORef a -> a -> IO ()
- atomicModifyIORef' :: IORef a -> (a -> (a, b)) -> IO b
- mallocForeignPtr :: Storable a => IO (ForeignPtr a)
- mallocForeignPtrBytes :: Int -> IO (ForeignPtr a)
- addForeignPtrFinalizerEnv :: FinalizerEnvPtr env a -> Ptr env -> ForeignPtr a -> IO ()
- newForeignPtr_ :: Ptr a -> IO (ForeignPtr a)
- castForeignPtr :: ForeignPtr a -> ForeignPtr b
- plusForeignPtr :: ForeignPtr a -> Int -> ForeignPtr b
- finalizeForeignPtr :: ForeignPtr a -> IO ()
- newForeignPtrEnv :: FinalizerEnvPtr env a -> Ptr env -> Ptr a -> IO (ForeignPtr a)
- mallocForeignPtrArray :: Storable a => Int -> IO (ForeignPtr a)
- mallocForeignPtrArray0 :: Storable a => Int -> IO (ForeignPtr a)
- close :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). Closed p => (p :-> q) -> p :-> Closure q
- mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))
- modifyIORef :: IORef a -> (a -> a) -> IO ()
- modifyIORef' :: IORef a -> (a -> a) -> IO ()
- fromDyn :: Typeable a => Dynamic -> a -> a
- fromDynamic :: Typeable a => Dynamic -> Maybe a
- dynApply :: Dynamic -> Dynamic -> Maybe Dynamic
- dynApp :: Dynamic -> Dynamic -> Dynamic
- dynTypeRep :: Dynamic -> SomeTypeRep
- blockedIndefinitelyOnMVar :: SomeException
- blockedIndefinitelyOnSTM :: SomeException
- allocationLimitExceeded :: SomeException
- cannotCompactFunction :: SomeException
- cannotCompactPinned :: SomeException
- cannotCompactMutable :: SomeException
- asyncExceptionToException :: Exception e => e -> SomeException
- asyncExceptionFromException :: Exception e => SomeException -> Maybe e
- stackOverflow :: SomeException
- heapOverflow :: SomeException
- ioException :: IOException -> IO a
- ioError :: IOError -> IO a
- untangle :: Addr# -> String -> String
- reportHeapOverflow :: IO ()
- getAllocationCounter :: IO Int64
- disableAllocationLimit :: IO ()
- forkOn :: Int -> IO () -> IO ThreadId
- forkOnWithUnmask :: Int -> ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- numCapabilities :: Int
- getNumCapabilities :: IO Int
- setNumCapabilities :: Int -> IO ()
- getNumProcessors :: IO Int
- numSparks :: IO Int
- childHandler :: SomeException -> IO ()
- yield :: IO ()
- labelThread :: ThreadId -> String -> IO ()
- pseq :: a -> b -> b
- par :: a -> b -> b
- runSparks :: IO ()
- listThreads :: IO [ThreadId]
- threadCapability :: ThreadId -> IO (Int, Bool)
- mkWeakThreadId :: ThreadId -> IO (Weak ThreadId)
- newStablePtrPrimMVar :: MVar a -> IO (StablePtr PrimMVar)
- unsafeIOToSTM :: IO a -> STM a
- retry :: STM a
- orElse :: (Selective f, Semigroup e) => f (Either e a) -> f (Either e a) -> f (Either e a)
- throwSTM :: Exception e => e -> STM a
- catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a
- newTVar :: a -> STM (TVar a)
- newTVarIO :: a -> IO (TVar a)
- readTVarIO :: TVar a -> IO a
- readTVar :: TVar a -> STM a
- writeTVar :: TVar a -> a -> STM ()
- withMVar :: MVar a -> (a -> IO b) -> IO b
- modifyMVar_ :: MVar a -> (a -> IO a) -> IO ()
- reportStackOverflow :: IO ()
- reportError :: SomeException -> IO ()
- setUncaughtExceptionHandler :: (SomeException -> IO ()) -> IO ()
- getUncaughtExceptionHandler :: IO (SomeException -> IO ())
- catchJust :: Exception e => (e -> Maybe b) -> IO a -> (b -> IO a) -> IO a
- handle :: Exception e => (e -> IO a) -> IO a -> IO a
- handleJust :: Exception e => (e -> Maybe b) -> (b -> IO a) -> IO a -> IO a
- mapException :: (Exception e1, Exception e2) => (e1 -> e2) -> a -> a
- tryJust :: Exception e => (e -> Maybe b) -> IO a -> IO (Either b a)
- bracket_ :: IO a -> IO b -> IO c -> IO c
- bracketOnError :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
- catches :: IO a -> [Handler a] -> IO a
- allowInterrupt :: IO ()
- unsafeFixIO :: (a -> IO a) -> IO a
- swapMVar :: MVar a -> a -> IO a
- withMVarMasked :: MVar a -> (a -> IO b) -> IO b
- modifyMVar :: MVar a -> (a -> IO (a, b)) -> IO b
- modifyMVarMasked_ :: MVar a -> (a -> IO a) -> IO ()
- modifyMVarMasked :: MVar a -> (a -> IO (a, b)) -> IO b
- mkWeakMVar :: MVar a -> IO () -> IO (Weak (MVar a))
- fixST :: (a -> ST s a) -> ST s a
- setHandler :: Signal -> Maybe (HandlerFun, Dynamic) -> IO (Maybe (HandlerFun, Dynamic))
- runHandlers :: ForeignPtr Word8 -> Signal -> IO ()
- tryIOError :: IO a -> IO (Either IOError a)
- mkIOError :: IOErrorType -> String -> Maybe Handle -> Maybe FilePath -> IOError
- isAlreadyExistsError :: IOError -> Bool
- isUserError :: IOError -> Bool
- isResourceVanishedError :: IOError -> Bool
- alreadyExistsErrorType :: IOErrorType
- doesNotExistErrorType :: IOErrorType
- alreadyInUseErrorType :: IOErrorType
- fullErrorType :: IOErrorType
- eofErrorType :: IOErrorType
- illegalOperationErrorType :: IOErrorType
- permissionErrorType :: IOErrorType
- userErrorType :: IOErrorType
- resourceVanishedErrorType :: IOErrorType
- isAlreadyExistsErrorType :: IOErrorType -> Bool
- isDoesNotExistErrorType :: IOErrorType -> Bool
- isAlreadyInUseErrorType :: IOErrorType -> Bool
- isFullErrorType :: IOErrorType -> Bool
- isEOFErrorType :: IOErrorType -> Bool
- isIllegalOperationErrorType :: IOErrorType -> Bool
- isPermissionErrorType :: IOErrorType -> Bool
- isUserErrorType :: IOErrorType -> Bool
- isResourceVanishedErrorType :: IOErrorType -> Bool
- ioeGetErrorType :: IOError -> IOErrorType
- ioeGetErrorString :: IOError -> String
- ioeGetLocation :: IOError -> String
- ioeGetHandle :: IOError -> Maybe Handle
- ioeGetFileName :: IOError -> Maybe FilePath
- ioeSetErrorType :: IOError -> IOErrorType -> IOError
- ioeSetErrorString :: IOError -> String -> IOError
- ioeSetLocation :: IOError -> String -> IOError
- ioeSetHandle :: IOError -> Handle -> IOError
- ioeSetFileName :: IOError -> FilePath -> IOError
- modifyIOError :: (IOError -> IOError) -> IO a -> IO a
- annotateIOError :: IOError -> String -> Maybe Handle -> Maybe FilePath -> IOError
- catchIOError :: IO a -> (IOError -> IO a) -> IO a
- traceIO :: String -> IO ()
- ensureIOManagerIsRunning :: IO ()
- ioManagerCapabilitiesChanged :: IO ()
- threadWaitRead :: Fd -> IO ()
- threadWaitWrite :: Fd -> IO ()
- threadWaitReadSTM :: Fd -> IO (STM (), IO ())
- threadWaitWriteSTM :: Fd -> IO (STM (), IO ())
- closeFdWith :: (Fd -> IO ()) -> Fd -> IO ()
- registerDelay :: Int -> IO (TVar Bool)
- putChar :: Char -> IO ()
- putStr :: String -> IO ()
- getChar :: IO Char
- getContents :: IO String
- interact :: (String -> String) -> IO ()
- readFile :: FilePath -> IO String
- appendFile :: FilePath -> String -> IO ()
- readLn :: Read a => IO a
- readIO :: Read a => String -> IO a
- returnA :: Arrow a => a b b
- (^>>) :: Arrow a => (b -> c) -> a c d -> a b d
- (>>^) :: Arrow a => a b c -> (c -> d) -> a b d
- (<<^) :: Arrow a => a c d -> (b -> c) -> a b d
- (^<<) :: Arrow a => (c -> d) -> a b c -> a b d
- leftApp :: ArrowApply a => a b c -> a (Either b d) (Either c d)
- mapAccumM :: (Monad m, Traversable t) => (s -> a -> m (s, b)) -> s -> t a -> m (s, t b)
- forAccumM :: (Monad m, Traversable t) => s -> t a -> (s -> a -> m (s, b)) -> m (s, t b)
- fmapDefault :: Traversable t => (a -> b) -> t a -> t b
- foldMapDefault :: (Traversable t, Monoid m) => (a -> m) -> t a -> m
- isSubsequenceOf :: Eq a => [a] -> [a] -> Bool
- showVersion :: Version -> String
- parseVersion :: ReadP Version
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c])
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- replicateM :: Applicative m => Int -> m a -> m [a]
- replicateM_ :: Applicative m => Int -> m a -> m ()
- unless :: Applicative f => Bool -> f () -> f ()
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a
- performMinorGC :: IO ()
- performMajorGC :: IO ()
- performGC :: IO ()
- exitFailure :: IO a
- exitSuccess :: IO a
- die :: String -> IO a
- makeStableName :: a -> IO (StableName a)
- hashStableName :: StableName a -> Int
- eqStableName :: StableName a -> StableName b -> Bool
- printf :: PrintfType r => String -> r
- hPrintf :: HPrintfType r => Handle -> String -> r
- getExecutablePath :: IO FilePath
- executablePath :: Maybe (IO (Maybe FilePath))
- getProgName :: IO String
- withArgs :: [String] -> IO a -> IO a
- withProgName :: String -> IO a -> IO a
- getEnvironment :: IO [(String, String)]
- traceMarkerIO :: String -> IO ()
- traceMarker :: String -> a -> a
- traceEventIO :: String -> IO ()
- traceEvent :: String -> a -> a
- traceStack :: String -> a -> a
- traceShowM :: (Show a, Applicative f) => a -> f ()
- traceM :: Applicative f => String -> f ()
- traceShowId :: Show a => a -> a
- traceShow :: Show a => a -> b -> b
- traceId :: String -> String
- putTraceMsg :: String -> IO ()
- traceWith :: (a -> String) -> a -> a
- traceShowWith :: Show b => (a -> b) -> a -> a
- traceEventWith :: (a -> String) -> a -> a
- flushEventLog :: IO ()
- newUnique :: IO Unique
- hashUnique :: Unique -> Int
- modifySTRef :: STRef s a -> (a -> a) -> ST s ()
- modifySTRef' :: STRef s a -> (a -> a) -> ST s ()
- approxRational :: RealFrac a => a -> a -> Rational
- groupWith :: Ord b => (a -> b) -> [a] -> [[a]]
- sortWith :: Ord b => (a -> b) -> [a] -> [a]
- newQSemN :: Int -> IO QSemN
- waitQSemN :: QSemN -> Int -> IO ()
- signalQSemN :: QSemN -> Int -> IO ()
- newQSem :: Int -> IO QSem
- waitQSem :: QSem -> IO ()
- signalQSem :: QSem -> IO ()
- newChan :: IO (Chan a)
- writeChan :: Chan a -> a -> IO ()
- readChan :: Chan a -> IO a
- dupChan :: Chan a -> IO (Chan a)
- getChanContents :: Chan a -> IO [a]
- writeList2Chan :: Chan a -> [a] -> IO ()
- rtsSupportsBoundThreads :: Bool
- forkOSWithUnmask :: ((forall a. IO a -> IO a) -> IO ()) -> IO ThreadId
- isCurrentThreadBound :: IO Bool
- runInBoundThread :: IO a -> IO a
- runInUnboundThread :: IO a -> IO a
- timeout :: Int -> IO a -> IO (Maybe a)
- fromConstr :: Data a => Constr -> a
- fromConstrB :: Data a => (forall d. Data d => d) -> Constr -> a
- fromConstrM :: (Monad m, Data a) => (forall d. Data d => m d) -> Constr -> m a
- dataTypeName :: DataType -> String
- dataTypeRep :: DataType -> DataRep
- constrType :: Constr -> DataType
- constrRep :: Constr -> ConstrRep
- repConstr :: DataType -> ConstrRep -> Constr
- mkDataType :: String -> [Constr] -> DataType
- mkConstrTag :: DataType -> String -> Int -> [String] -> Fixity -> Constr
- mkConstr :: DataType -> String -> [String] -> Fixity -> Constr
- dataTypeConstrs :: DataType -> [Constr]
- constrFields :: Constr -> [String]
- constrFixity :: Constr -> Fixity
- showConstr :: Constr -> String
- readConstr :: DataType -> String -> Maybe Constr
- isAlgType :: DataType -> Bool
- indexConstr :: DataType -> ConIndex -> Constr
- constrIndex :: Constr -> ConIndex
- maxConstrIndex :: DataType -> ConIndex
- mkIntType :: String -> DataType
- mkFloatType :: String -> DataType
- mkCharType :: String -> DataType
- mkIntegralConstr :: (Integral a, Show a) => DataType -> a -> Constr
- mkRealConstr :: (Real a, Show a) => DataType -> a -> Constr
- mkCharConstr :: DataType -> Char -> Constr
- mkNoRepType :: String -> DataType
- isNorepType :: DataType -> Bool
- tyconUQname :: String -> String
- tyconModule :: String -> String
- cycle1 :: Semigroup m => m -> m
- diff :: Semigroup m => m -> Endo m
- mtimesDefault :: (Integral b, Monoid a) => b -> a -> a
- div' :: (Real a, Integral b) => a -> a -> b
- divMod' :: (Real a, Integral b) => a -> a -> (b, a)
- mod' :: Real a => a -> a -> a
- showFixed :: forall {k} (a :: k). HasResolution a => Bool -> Fixed a -> String
- realPart :: Complex a -> a
- imagPart :: Complex a -> a
- conjugate :: Num a => Complex a -> Complex a
- mkPolar :: Floating a => a -> a -> Complex a
- cis :: Floating a => a -> Complex a
- polar :: RealFloat a => Complex a -> (a, a)
- magnitude :: RealFloat a => Complex a -> a
- phase :: RealFloat a => Complex a -> a
- eq1 :: (Eq1 f, Eq a) => f a -> f a -> Bool
- compare1 :: (Ord1 f, Ord a) => f a -> f a -> Ordering
- readsPrec1 :: (Read1 f, Read a) => Int -> ReadS (f a)
- readPrec1 :: (Read1 f, Read a) => ReadPrec (f a)
- liftReadListDefault :: Read1 f => (Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
- liftReadListPrecDefault :: Read1 f => ReadPrec a -> ReadPrec [a] -> ReadPrec [f a]
- showsPrec1 :: (Show1 f, Show a) => Int -> f a -> ShowS
- eq2 :: (Eq2 f, Eq a, Eq b) => f a b -> f a b -> Bool
- compare2 :: (Ord2 f, Ord a, Ord b) => f a b -> f a b -> Ordering
- readsPrec2 :: (Read2 f, Read a, Read b) => Int -> ReadS (f a b)
- readPrec2 :: (Read2 f, Read a, Read b) => ReadPrec (f a b)
- liftReadList2Default :: Read2 f => (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [f a b]
- liftReadListPrec2Default :: Read2 f => ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [f a b]
- showsPrec2 :: (Show2 f, Show a, Show b) => Int -> f a b -> ShowS
- readsData :: (String -> ReadS a) -> Int -> ReadS a
- readData :: ReadPrec a -> ReadPrec a
- readsUnaryWith :: (Int -> ReadS a) -> String -> (a -> t) -> String -> ReadS t
- readUnaryWith :: ReadPrec a -> String -> (a -> t) -> ReadPrec t
- readsBinaryWith :: (Int -> ReadS a) -> (Int -> ReadS b) -> String -> (a -> b -> t) -> String -> ReadS t
- readBinaryWith :: ReadPrec a -> ReadPrec b -> String -> (a -> b -> t) -> ReadPrec t
- showsUnaryWith :: (Int -> a -> ShowS) -> String -> Int -> a -> ShowS
- showsBinaryWith :: (Int -> a -> ShowS) -> (Int -> b -> ShowS) -> String -> Int -> a -> b -> ShowS
- readsUnary :: Read a => String -> (a -> t) -> String -> ReadS t
- readsUnary1 :: (Read1 f, Read a) => String -> (f a -> t) -> String -> ReadS t
- readsBinary1 :: (Read1 f, Read1 g, Read a) => String -> (f a -> g a -> t) -> String -> ReadS t
- showsUnary :: Show a => String -> Int -> a -> ShowS
- showsUnary1 :: (Show1 f, Show a) => String -> Int -> f a -> ShowS
- showsBinary1 :: (Show1 f, Show1 g, Show a) => String -> Int -> f a -> g a -> ShowS
- phantom :: (Functor f, Contravariant f) => f a -> f b
- ($<) :: Contravariant f => f b -> b -> f a
- (>$<) :: Contravariant f => (a -> b) -> f b -> f a
- (>$$<) :: Contravariant f => f b -> (a -> b) -> f a
- defaultComparison :: Ord a => Comparison a
- defaultEquivalence :: Eq a => Equivalence a
- comparisonEquivalence :: Comparison a -> Equivalence a
- intercalate1 :: (Foldable1 t, Semigroup m) => m -> t m -> m
- foldrM1 :: (Foldable1 t, Monad m) => (a -> a -> m a) -> t a -> m a
- foldlM1 :: (Foldable1 t, Monad m) => (a -> a -> m a) -> t a -> m a
- label :: MonadCont m => a -> m (a -> m b, a)
- (<<$>>) :: (a -> b) -> a -> b
- liftW :: Comonad w => (a -> b) -> w a -> w b
- wfix :: Comonad w => w (w a -> a) -> a
- cfix :: Comonad w => (w a -> a) -> w a
- kfix :: ComonadApply w => w (w a -> a) -> w a
- (=>>) :: Comonad w => w a -> (w a -> b) -> w b
- (<<=) :: Comonad w => (w a -> b) -> w a -> w b
- (=<=) :: Comonad w => (w b -> c) -> (w a -> b) -> w a -> c
- (=>=) :: Comonad w => (w a -> b) -> (w b -> c) -> w a -> c
- (<@@>) :: ComonadApply w => w a -> w (a -> b) -> w b
- liftW2 :: ComonadApply w => (a -> b -> c) -> w a -> w b -> w c
- liftW3 :: ComonadApply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d
- asks :: MonadReader r m => (r -> a) -> m a
- listens :: MonadWriter w m => (w -> b) -> m a -> m (a, b)
- censor :: MonadWriter w m => (w -> w) -> m a -> m a
- divided :: Divisible f => f a -> f b -> f (a, b)
- conquered :: Divisible f => f ()
- liftD :: Divisible f => (a -> b) -> f b -> f a
- lost :: Decidable f => f Void
- chosen :: Decidable f => f b -> f c -> f (Either b c)
- ($!!) :: NFData a => (a -> b) -> a -> b
- force :: NFData a => a -> a
- (<$!!>) :: (Monad m, NFData b) => (a -> b) -> m a -> m b
- rwhnf :: a -> ()
- rnf1 :: (NFData1 f, NFData a) => f a -> ()
- rnf2 :: (NFData2 p, NFData a, NFData b) => p a b -> ()
- fromLeft' :: Either a b -> a
- fromRight' :: Either a b -> b
- mapBoth :: (a -> c) -> (b -> d) -> Either a b -> Either c d
- mapLeft :: Bifunctor p => (a -> b) -> p a c -> p b c
- mapRight :: Bifunctor p => (b -> c) -> p a b -> p a c
- whenLeft :: Applicative m => Either a b -> (a -> m ()) -> m ()
- whenRight :: Applicative m => Either a b -> (b -> m ()) -> m ()
- unlessLeft :: Applicative m => Either a b -> (b -> m ()) -> m ()
- unlessRight :: Applicative m => Either a b -> (a -> m ()) -> m ()
- leftToMaybe :: Either a b -> Maybe a
- rightToMaybe :: Either a b -> Maybe b
- maybeToLeft :: b -> Maybe a -> Either a b
- maybeToRight :: b -> Maybe a -> Either b a
- eitherToError :: MonadError e m => Either e a -> m a
- swapEither :: Either e a -> Either a e
- generated :: Cyclic a => [a]
- generated' :: (Eq a, Cyclic a) => [a]
- hashPtrWithSalt :: Ptr a -> Int -> Salt -> IO Salt
- hashByteArrayWithSalt :: ByteArray# -> Int -> Int -> Salt -> Salt
- defaultHashWithSalt :: Hashable a => Int -> a -> Int
- defaultHash :: Hashable a => a -> Int
- hashUsing :: Hashable b => (a -> b) -> Int -> a -> Int
- hashPtr :: Ptr a -> Int -> IO Int
- hashByteArray :: ByteArray# -> Int -> Int -> Int
- hashed :: Hashable a => a -> Hashed a
- unhashed :: Hashed a -> a
- hashedHash :: Hashed a -> Int
- mapHashed :: Hashable b => (a -> b) -> Hashed a -> Hashed b
- traverseHashed :: (Hashable b, Functor f) => (a -> f b) -> Hashed a -> f (Hashed b)
- uncurry' :: Strong p => p a (b -> c) -> p (a, b) c
- invmapFunctor :: Functor f => (a -> b) -> (b -> a) -> f a -> f b
- invmapContravariant :: Contravariant f => (a -> b) -> (b -> a) -> f a -> f b
- invmapProfunctor :: Profunctor p => (a -> b) -> (b -> a) -> p a a -> p b b
- invmapArrow :: Arrow arr => (a -> b) -> (b -> a) -> arr a a -> arr b b
- invmap2Bifunctor :: Bifunctor f => (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d
- invmap2Profunctor :: Profunctor f => (a -> c) -> (c -> a) -> (b -> d) -> (d -> b) -> f a b -> f c d
- genericInvmap :: (Generic1 f, Invariant (Rep1 f)) => (a -> b) -> (b -> a) -> f a -> f b
- decomposeRan :: forall {k1} {k2} {k3} (q :: k1 -> k2 -> Type) p (a :: k1) (b :: k3). Procompose (Ran q p) q a b -> p a b
- evalCont :: Cont r r -> r
- mapCont :: (r -> r) -> Cont r a -> Cont r a
- withCont :: ((b -> r) -> a -> r) -> Cont r a -> Cont r b
- evalContT :: Monad m => ContT r m r -> m r
- mapContT :: forall {k} m (r :: k) a. (m r -> m r) -> ContT r m a -> ContT r m a
- withContT :: forall {k} b m (r :: k) a. ((b -> m r) -> a -> m r) -> ContT r m a -> ContT r m b
- runExcept :: Except e a -> Either e a
- mapExcept :: (Either e a -> Either e' b) -> Except e a -> Except e' b
- withExcept :: (e -> e') -> Except e a -> Except e' a
- runExceptT :: ExceptT e m a -> m (Either e a)
- mapExceptT :: (m (Either e a) -> n (Either e' b)) -> ExceptT e m a -> ExceptT e' n b
- withExceptT :: forall (m :: Type -> Type) e e' a. Functor m => (e -> e') -> ExceptT e m a -> ExceptT e' m a
- mapReader :: (a -> b) -> Reader r a -> Reader r b
- withReader :: (r' -> r) -> Reader r a -> Reader r' a
- mapReaderT :: (m a -> n b) -> ReaderT r m a -> ReaderT r n b
- withReaderT :: forall r' r (m :: Type -> Type) a. (r' -> r) -> ReaderT r m a -> ReaderT r' m a
- withState :: (s -> s) -> State s a -> State s a
- withStateT :: forall s (m :: Type -> Type) a. (s -> s) -> StateT s m a -> StateT s m a
- runWriter :: Writer w a -> (a, w)
- execWriter :: Writer w a -> w
- mapWriter :: ((a, w) -> (b, w')) -> Writer w a -> Writer w' b
- execWriterT :: Monad m => WriterT w m a -> m w
- mapWriterT :: (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b
- label_ :: MonadCont m => m (m a)
- liftEither :: MonadError e m => Either e a -> m a
- tryError :: MonadError e m => m a -> m (Either e a)
- withError :: MonadError e m => (e -> e) -> m a -> m a
- handleError :: MonadError e m => (e -> m a) -> m a -> m a
- mapError :: (MonadError e m, MonadError e' n) => (m (Either e a) -> n (Either e' b)) -> m a -> n b
- modifyError :: MonadError e' m => (e -> e') -> ExceptT e m a -> m a
- modify :: MonadState s m => (s -> s) -> m ()
- modify' :: MonadState s m => (s -> s) -> m ()
- gets :: MonadState s m => (s -> a) -> m a
- strong :: Strong p => (a -> b -> c) -> p a b -> p a c
- tambara :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). Strong p => (p :-> q) -> p :-> Tambara q
- untambara :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Profunctor q => (p :-> Tambara q) -> p :-> q
- pastro :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Strong q => (p :-> q) -> Pastro p :-> q
- unpastro :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). (Pastro p :-> q) -> p :-> q
- cotambara :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). Costrong p => (p :-> q) -> p :-> Cotambara q
- uncotambara :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Profunctor q => (p :-> Cotambara q) -> p :-> q
- curry' :: Closed p => p (a, b) c -> p a (b -> c)
- unclose :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Profunctor q => (p :-> Closure q) -> p :-> q
- tambaraSum :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). Choice p => (p :-> q) -> p :-> TambaraSum q
- untambaraSum :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Profunctor q => (p :-> TambaraSum q) -> p :-> q
- cotambaraSum :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type). Cochoice p => (p :-> q) -> p :-> CotambaraSum q
- uncotambaraSum :: forall (q :: Type -> Type -> Type) (p :: Type -> Type -> Type). Profunctor q => (p :-> CotambaraSum q) -> p :-> q
- firstTraversing :: Traversing p => p a b -> p (a, c) (b, c)
- secondTraversing :: Traversing p => p a b -> p (c, a) (c, b)
- dimapWandering :: Traversing p => (a' -> a) -> (b -> b') -> p a b -> p a' b'
- lmapWandering :: Traversing p => (a -> b) -> p b c -> p a c
- rmapWandering :: Traversing p => (b -> c) -> p a b -> p a c
- leftTraversing :: Traversing p => p a b -> p (Either a c) (Either b c)
- rightTraversing :: Traversing p => p a b -> p (Either c a) (Either c b)
- wanderMapping :: Mapping p => (forall (f :: Type -> Type). Applicative f => (a -> f b) -> s -> f t) -> p a b -> p s t
- traverseMapping :: (Mapping p, Functor f) => p a b -> p (f a) (f b)
- closedMapping :: Mapping p => p a b -> p (x -> a) (x -> b)
- firstRep :: Representable p => p a b -> p (a, c) (b, c)
- secondRep :: Representable p => p a b -> p (c, a) (c, b)
- unfirstCorep :: Corepresentable p => p (a, d) (b, d) -> p a b
- unsecondCorep :: Corepresentable p => p (d, a) (d, b) -> p a b
- closedCorep :: Corepresentable p => p a b -> p (x -> a) (x -> b)
- cotabulated :: forall (p :: Type -> Type -> Type) (q :: Type -> Type -> Type) d c d' c'. (Corepresentable p, Corepresentable q) => Iso (Corep p d -> c) (Corep q d' -> c') (p d c) (q d' c')
- prepAdj :: forall {k1} (p :: Type -> k1 -> Type) g. (forall (a :: k1). Prep p a -> g a) -> p :-> Star g
- unprepAdj :: forall {k} (p :: Type -> k -> Type) g (a :: k). (p :-> Star g) -> Prep p a -> g a
- prepUnit :: forall {k} p a (b :: k). p a b -> Star (Prep p) a b
- prepCounit :: forall {k} f (a :: k). Prep (Star f) a -> f a
- coprepAdj :: forall {k} f (p :: k -> Type -> Type). (forall (a :: k). f a -> Coprep p a) -> p :-> Costar f
- uncoprepAdj :: forall {k} (p :: k -> Type -> Type) f (a :: k). (p :-> Costar f) -> f a -> Coprep p a
- coprepUnit :: forall {k} p (a :: k) b. p a b -> Costar (Coprep p) a b
- coprepCounit :: forall {k} f (a :: k). f a -> Coprep (Costar f) a
- procomposed :: forall {k} p (a :: k) (b :: k). Category p => Procompose p p a b -> p a b
- idl :: forall {k} (q :: Type -> Type -> Type) d c (r :: k -> Type -> Type) (d' :: k) c'. Profunctor q => Iso (Procompose (->) q d c) (Procompose (->) r d' c') (q d c) (r d' c')
- idr :: forall {k} (q :: Type -> Type -> Type) d c (r :: Type -> k -> Type) d' (c' :: k). Profunctor q => Iso (Procompose q (->) d c) (Procompose r (->) d' c') (q d c) (r d' c')
- stars :: forall {k1} {k2} (g :: Type -> Type) (f :: k1 -> Type) d (c :: k1) (f' :: k2 -> Type) (g' :: Type -> Type) d' (c' :: k2). Functor g => Iso (Procompose (Star f) (Star g) d c) (Procompose (Star f') (Star g') d' c') (Star (Compose g f) d c) (Star (Compose g' f') d' c')
- costars :: forall {k1} {k2} (f :: Type -> Type) (g :: k1 -> Type) (d :: k1) c (f' :: Type -> Type) (g' :: k2 -> Type) (d' :: k2) c'. Functor f => Iso (Procompose (Costar f) (Costar g) d c) (Procompose (Costar f') (Costar g') d' c') (Costar (Compose f g) d c) (Costar (Compose f' g') d' c')
- kleislis :: forall (g :: Type -> Type) (f :: Type -> Type) d c (f' :: Type -> Type) (g' :: Type -> Type) d' c'. Monad g => Iso (Procompose (Kleisli f) (Kleisli g) d c) (Procompose (Kleisli f') (Kleisli g') d' c') (Kleisli (Compose g f) d c) (Kleisli (Compose g' f') d' c')
- cokleislis :: forall {k1} {k2} (f :: Type -> Type) (g :: k1 -> Type) (d :: k1) c (f' :: Type -> Type) (g' :: k2 -> Type) (d' :: k2) c'. Functor f => Iso (Procompose (Cokleisli f) (Cokleisli g) d c) (Procompose (Cokleisli f') (Cokleisli g') d' c') (Cokleisli (Compose f g) d c) (Cokleisli (Compose f' g') d' c')
- decomposeRift :: forall {k1} {k2} {k3} (p :: k1 -> k2 -> Type) q (a :: k3) (b :: k2). Procompose p (Rift p q) a b -> q a b
- eta :: forall (p :: Type -> Type -> Type). (Profunctor p, Category p) => (->) :-> p
- mu :: forall {k1} (p :: k1 -> k1 -> Type). Category p => Procompose p p :-> p
- precomposeRan :: forall {k} (q :: Type -> Type -> Type) (p :: Type -> k -> Type). Profunctor q => Procompose q (Ran p (->)) :-> Ran p q
- curryRan :: forall {k1} {k2} {k3} (p :: k1 -> k2 -> Type) (q :: k3 -> k1 -> Type) (r :: k3 -> k2 -> Type). (Procompose p q :-> r) -> p :-> Ran q r
- uncurryRan :: forall {k1} {k2} {k3} (p :: k1 -> k2 -> Type) (q :: k3 -> k1 -> Type) (r :: k3 -> k2 -> Type). (p :-> Ran q r) -> Procompose p q :-> r
- decomposeCodensity :: forall {k2} {k1} p (a :: k2) (b :: k1). Procompose (Codensity p) p a b -> p a b
- mapCayley :: forall {k1} {k2} {k3} f g (p :: k2 -> k3 -> k1) (x :: k2) (y :: k3). (forall (a :: k1). f a -> g a) -> Cayley f p x y -> Cayley g p x y
- extractYoneda :: Yoneda p a b -> p a b
- duplicateYoneda :: forall (p :: Type -> Type -> Type) a b. Yoneda p a b -> Yoneda (Yoneda p) a b
- returnCoyoneda :: p a b -> Coyoneda p a b
- joinCoyoneda :: forall (p :: Type -> Type -> Type) a b. Coyoneda (Coyoneda p) a b -> Coyoneda p a b
- (<*?) :: Selective f => f (Either a b) -> f (a -> b) -> f b
- branch :: Selective f => f (Either a b) -> f (a -> c) -> f (b -> c) -> f c
- selectA :: Applicative f => f (Either a b) -> f (a -> b) -> f b
- selectT :: Traversable f => f (Either a b) -> f (a -> b) -> f b
- apS :: Selective f => f (a -> b) -> f a -> f b
- selectM :: Monad f => f (Either a b) -> f (a -> b) -> f b
- ifS :: Selective f => f Bool -> f a -> f a -> f a
- casesEnum :: (Bounded a, Enum a) => Cases a
- cases :: Eq a => [a] -> Cases a
- matchS :: (Eq a, Selective f) => Cases a -> f a -> (a -> f b) -> f (Either a b)
- matchM :: Monad m => Cases a -> m a -> (a -> m b) -> m (Either a b)
- bindS :: (Bounded a, Enum a, Eq a, Selective f) => f a -> (a -> f b) -> f b
- whenS :: Selective f => f Bool -> f () -> f ()
- fromMaybeS :: Selective f => f a -> f (Maybe a) -> f a
- andAlso :: (Selective f, Semigroup a) => f (Either e a) -> f (Either e a) -> f (Either e a)
- whileS :: Selective f => f Bool -> f ()
- untilRight :: (Monoid a, Selective f) => f (Either a b) -> f (a, b)
- (<||>) :: Selective f => f Bool -> f Bool -> f Bool
- (<&&>) :: Selective f => f Bool -> f Bool -> f Bool
- anyS :: Selective f => (a -> f Bool) -> [a] -> f Bool
- allS :: Selective f => (a -> f Bool) -> [a] -> f Bool
- foldS :: (Selective f, Foldable t, Monoid a) => t (f (Either e a)) -> f (Either e a)
- except :: forall (m :: Type -> Type) e a. Monad m => Either e a -> ExceptT e m a
- gduplicated :: (Extend (Rep1 w), Generic1 w) => w a -> w (w a)
- gextended :: (Extend (Rep1 w), Generic1 w) => (w a -> b) -> w a -> w b
- (<.*>) :: Apply f => f (a -> b) -> MaybeApply f a -> f b
- (<*.>) :: Apply f => MaybeApply f (a -> b) -> f a -> f b
- traverse1Maybe :: (Traversable t, Apply f) => (a -> f b) -> t a -> MaybeApply f (t b)
- returning :: Functor f => f a -> (a -> b) -> f b
- apDefault :: Bind f => f (a -> b) -> f a -> f b
- (<..>) :: Apply w => w a -> w (a -> b) -> w b
- liftF3 :: Apply w => (a -> b -> c -> d) -> w a -> w b -> w c -> w d
- gliftF2 :: (Generic1 w, Apply (Rep1 w)) => (a -> b -> c) -> w a -> w b -> w c
- gliftF3 :: (Generic1 w, Apply (Rep1 w)) => (a -> b -> c -> d) -> w a -> w b -> w c -> w d
- bitraverse1_ :: (Bifoldable1 t, Apply f) => (a -> f b) -> (c -> f d) -> t a c -> f ()
- bifor1_ :: (Bifoldable1 t, Apply f) => t a c -> (a -> f b) -> (c -> f d) -> f ()
- bisequenceA1_ :: (Bifoldable1 t, Apply f) => t (f a) (f b) -> f ()
- bifoldMapDefault1 :: (Bifoldable1 t, Monoid m) => (a -> m) -> (b -> m) -> t a b -> m
- gbind :: (Generic1 m, Bind (Rep1 m)) => m a -> (a -> m b) -> m b
- (-<<) :: Bind m => (a -> m b) -> m a -> m b
- (->-) :: Bind m => (a -> m b) -> (b -> m c) -> a -> m c
- (-<-) :: Bind m => (b -> m c) -> (a -> m b) -> a -> m c
- (<<..>>) :: Biapply p => p a c -> p (a -> b) (c -> d) -> p b d
- bilift2 :: Biapply w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f
- bilift3 :: Biapply w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
- galt :: (Generic1 f, Alt (Rep1 f)) => f a -> f a -> f a
- intercalateMap1 :: (Foldable1 t, Semigroup m) => m -> (a -> m) -> t a -> m
- traverse1_ :: (Foldable1 t, Apply f) => (a -> f b) -> t a -> f ()
- for1_ :: (Foldable1 t, Apply f) => t a -> (a -> f b) -> f ()
- sequenceA1_ :: (Foldable1 t, Apply f) => t (f a) -> f ()
- foldMapDefault1 :: (Foldable1 t, Monoid m) => (a -> m) -> t a -> m
- asum1 :: (Foldable1 t, Alt m) => t (m a) -> m a
- gfold1 :: (Foldable1 (Rep1 t), Generic1 t, Semigroup m) => t m -> m
- gfoldMap1 :: (Foldable1 (Rep1 t), Generic1 t, Semigroup m) => (a -> m) -> t a -> m
- gtoNonEmpty :: (Foldable1 (Rep1 t), Generic1 t) => t a -> NonEmpty a
- foldMap1Default :: (Traversable1 f, Semigroup m) => (a -> m) -> f a -> m
- gtraverse1 :: (Traversable1 (Rep1 t), Apply f, Generic1 t) => (a -> f b) -> t a -> f (t b)
- gsequence1 :: (Traversable1 (Rep1 t), Apply f, Generic1 t) => t (f b) -> f (t b)
- bifoldMap1Default :: (Bitraversable1 t, Semigroup m) => (a -> m) -> (b -> m) -> t a b -> m
- psum :: (Foldable t, Plus f) => t (f a) -> f a
- gzero :: (Plus (Rep1 f), Generic1 f) => f a
- newTBQueue :: Natural -> STM (TBQueue a)
- writeTBQueue :: TBQueue a -> a -> STM ()
- readTBQueue :: TBQueue a -> STM a
- tryReadTBQueue :: TBQueue a -> STM (Maybe a)
- flushTBQueue :: TBQueue a -> STM [a]
- peekTBQueue :: TBQueue a -> STM a
- tryPeekTBQueue :: TBQueue a -> STM (Maybe a)
- unGetTBQueue :: TBQueue a -> a -> STM ()
- lengthTBQueue :: TBQueue a -> STM Natural
- isEmptyTBQueue :: TBQueue a -> STM Bool
- isFullTBQueue :: TBQueue a -> STM Bool
- newTChan :: STM (TChan a)
- newBroadcastTChan :: STM (TChan a)
- writeTChan :: TChan a -> a -> STM ()
- readTChan :: TChan a -> STM a
- tryReadTChan :: TChan a -> STM (Maybe a)
- peekTChan :: TChan a -> STM a
- tryPeekTChan :: TChan a -> STM (Maybe a)
- dupTChan :: TChan a -> STM (TChan a)
- unGetTChan :: TChan a -> a -> STM ()
- isEmptyTChan :: TChan a -> STM Bool
- cloneTChan :: TChan a -> STM (TChan a)
- newTMVar :: a -> STM (TMVar a)
- newEmptyTMVar :: STM (TMVar a)
- newEmptyTMVarIO :: IO (TMVar a)
- takeTMVar :: TMVar a -> STM a
- tryTakeTMVar :: TMVar a -> STM (Maybe a)
- putTMVar :: TMVar a -> a -> STM ()
- tryPutTMVar :: TMVar a -> a -> STM Bool
- readTMVar :: TMVar a -> STM a
- tryReadTMVar :: TMVar a -> STM (Maybe a)
- swapTMVar :: TMVar a -> a -> STM a
- writeTMVar :: TMVar a -> a -> STM ()
- isEmptyTMVar :: TMVar a -> STM Bool
- mkWeakTMVar :: TMVar a -> IO () -> IO (Weak (TMVar a))
- newTQueue :: STM (TQueue a)
- writeTQueue :: TQueue a -> a -> STM ()
- readTQueue :: TQueue a -> STM a
- tryReadTQueue :: TQueue a -> STM (Maybe a)
- flushTQueue :: TQueue a -> STM [a]
- peekTQueue :: TQueue a -> STM a
- tryPeekTQueue :: TQueue a -> STM (Maybe a)
- unGetTQueue :: TQueue a -> a -> STM ()
- isEmptyTQueue :: TQueue a -> STM Bool
- modifyTVar :: TVar a -> (a -> a) -> STM ()
- modifyTVar' :: TVar a -> (a -> a) -> STM ()
- stateTVar :: TVar s -> (s -> (a, s)) -> STM a
- swapTVar :: TVar a -> a -> STM a
- mkWeakTVar :: TVar a -> IO () -> IO (Weak (TVar a))
- check :: Bool -> STM ()
- formatTime :: FormatTime t => TimeLocale -> String -> t -> String
- fromGregorian :: Year -> MonthOfYear -> DayOfMonth -> Day
- calendarDay :: CalendarDiffDays
- calendarWeek :: CalendarDiffDays
- calendarMonth :: CalendarDiffDays
- calendarYear :: CalendarDiffDays
- scaleCalendarDiffDays :: Integer -> CalendarDiffDays -> CalendarDiffDays
- addDays :: Integer -> Day -> Day
- diffDays :: Day -> Day -> Integer
- periodAllDays :: DayPeriod p => p -> [Day]
- periodLength :: DayPeriod p => p -> Int
- periodFromDay :: DayPeriod p => Day -> (p, Int)
- periodToDay :: DayPeriod p => p -> Int -> Day
- periodToDayValid :: DayPeriod p => p -> Int -> Maybe Day
- isLeapYear :: Year -> Bool
- toGregorian :: Day -> (Year, MonthOfYear, DayOfMonth)
- fromGregorianValid :: Year -> MonthOfYear -> DayOfMonth -> Maybe Day
- showGregorian :: Day -> String
- gregorianMonthLength :: Year -> MonthOfYear -> DayOfMonth
- addGregorianMonthsClip :: Integer -> Day -> Day
- addGregorianMonthsRollOver :: Integer -> Day -> Day
- addGregorianYearsClip :: Integer -> Day -> Day
- addGregorianYearsRollOver :: Integer -> Day -> Day
- addGregorianDurationClip :: CalendarDiffDays -> Day -> Day
- addGregorianDurationRollOver :: CalendarDiffDays -> Day -> Day
- diffGregorianDurationClip :: Day -> Day -> CalendarDiffDays
- diffGregorianDurationRollOver :: Day -> Day -> CalendarDiffDays
- dayOfWeek :: Day -> DayOfWeek
- dayOfWeekDiff :: DayOfWeek -> DayOfWeek -> Int
- firstDayOfWeekOnAfter :: DayOfWeek -> Day -> Day
- weekAllDays :: DayOfWeek -> Day -> [Day]
- weekFirstDay :: DayOfWeek -> Day -> Day
- weekLastDay :: DayOfWeek -> Day -> Day
- secondsToDiffTime :: Integer -> DiffTime
- picosecondsToDiffTime :: Integer -> DiffTime
- diffTimeToPicoseconds :: DiffTime -> Integer
- secondsToNominalDiffTime :: Pico -> NominalDiffTime
- nominalDiffTimeToSeconds :: NominalDiffTime -> Pico
- nominalDay :: NominalDiffTime
- posixDayLength :: NominalDiffTime
- getSystemTime :: IO SystemTime
- getTime_resolution :: DiffTime
- truncateSystemTimeLeapSecond :: SystemTime -> SystemTime
- systemToUTCTime :: SystemTime -> UTCTime
- utcToSystemTime :: UTCTime -> SystemTime
- systemToTAITime :: SystemTime -> AbsoluteTime
- systemEpochDay :: Day
- posixSecondsToUTCTime :: POSIXTime -> UTCTime
- utcTimeToPOSIXSeconds :: UTCTime -> POSIXTime
- systemToPOSIXTime :: SystemTime -> POSIXTime
- getPOSIXTime :: IO POSIXTime
- getCurrentTime :: IO UTCTime
- addUTCTime :: NominalDiffTime -> UTCTime -> UTCTime
- diffUTCTime :: UTCTime -> UTCTime -> NominalDiffTime
- calendarTimeDays :: CalendarDiffDays -> CalendarDiffTime
- calendarTimeTime :: NominalDiffTime -> CalendarDiffTime
- scaleCalendarDiffTime :: Integer -> CalendarDiffTime -> CalendarDiffTime
- minutesToTimeZone :: Int -> TimeZone
- hoursToTimeZone :: Int -> TimeZone
- timeZoneOffsetString' :: Maybe Char -> TimeZone -> String
- timeZoneOffsetString :: TimeZone -> String
- utc :: TimeZone
- getTimeZone :: UTCTime -> IO TimeZone
- getCurrentTimeZone :: IO TimeZone
- midnight :: TimeOfDay
- midday :: TimeOfDay
- makeTimeOfDayValid :: Int -> Int -> Pico -> Maybe TimeOfDay
- timeToDaysAndTimeOfDay :: NominalDiffTime -> (Integer, TimeOfDay)
- daysAndTimeOfDayToTime :: Integer -> TimeOfDay -> NominalDiffTime
- utcToLocalTimeOfDay :: TimeZone -> TimeOfDay -> (Integer, TimeOfDay)
- localToUTCTimeOfDay :: TimeZone -> TimeOfDay -> (Integer, TimeOfDay)
- timeToTimeOfDay :: DiffTime -> TimeOfDay
- pastMidnight :: DiffTime -> TimeOfDay
- timeOfDayToTime :: TimeOfDay -> DiffTime
- sinceMidnight :: TimeOfDay -> DiffTime
- dayFractionToTimeOfDay :: Rational -> TimeOfDay
- timeOfDayToDayFraction :: TimeOfDay -> Rational
- addLocalTime :: NominalDiffTime -> LocalTime -> LocalTime
- diffLocalTime :: LocalTime -> LocalTime -> NominalDiffTime
- utcToLocalTime :: TimeZone -> UTCTime -> LocalTime
- localTimeToUTC :: TimeZone -> LocalTime -> UTCTime
- ut1ToLocalTime :: Rational -> UniversalTime -> LocalTime
- localTimeToUT1 :: Rational -> LocalTime -> UniversalTime
- defaultTimeLocale :: TimeLocale
- iso8601DateFormat :: Maybe String -> String
- rfc822DateFormat :: String
- utcToZonedTime :: TimeZone -> UTCTime -> ZonedTime
- zonedTimeToUTC :: ZonedTime -> UTCTime
- getZonedTime :: IO ZonedTime
- utcToLocalZonedTime :: UTCTime -> IO ZonedTime
- parseTimeM :: (MonadFail m, ParseTime t) => Bool -> TimeLocale -> String -> String -> m t
- parseTimeMultipleM :: (MonadFail m, ParseTime t) => Bool -> TimeLocale -> [(String, String)] -> m t
- parseTimeOrError :: ParseTime t => Bool -> TimeLocale -> String -> String -> t
- readSTime :: ParseTime t => Bool -> TimeLocale -> String -> ReadS t
- readPTime :: ParseTime t => Bool -> TimeLocale -> String -> ReadP t
- iso8601Show :: ISO8601 t => t -> String
- iso8601ParseM :: (MonadFail m, ISO8601 t) => String -> m t
- resetT :: forall (m :: Type -> Type) r r'. Monad m => ContT r m r -> ContT r' m r
- shiftT :: Monad m => ((a -> m r) -> ContT r m r) -> ContT r m a
- liftLocal :: Monad m => m r' -> ((r' -> r') -> m r -> m r) -> (r' -> r') -> ContT r m a -> ContT r m a
- mapMaybeT :: (m (Maybe a) -> n (Maybe b)) -> MaybeT m a -> MaybeT n b
- maybeToExceptT :: forall (m :: Type -> Type) e a. Functor m => e -> MaybeT m a -> ExceptT e m a
- exceptToMaybeT :: forall (m :: Type -> Type) e a. Functor m => ExceptT e m a -> MaybeT m a
- unsafeVacuous :: Functor f => f Void -> f a
- unsafeVacuousM :: Monad m => m Void -> m a
Documentation
Instances
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Bool | Interpret Since: base-4.7.0.0 |
Defined in GHC.Bits Methods (.&.) :: Bool -> Bool -> Bool # (.|.) :: Bool -> Bool -> Bool # complement :: Bool -> Bool # shift :: Bool -> Int -> Bool # rotate :: Bool -> Int -> Bool # setBit :: Bool -> Int -> Bool # clearBit :: Bool -> Int -> Bool # complementBit :: Bool -> Int -> Bool # testBit :: Bool -> Int -> Bool # bitSizeMaybe :: Bool -> Maybe Int # shiftL :: Bool -> Int -> Bool # unsafeShiftL :: Bool -> Int -> Bool # shiftR :: Bool -> Int -> Bool # unsafeShiftR :: Bool -> Int -> Bool # rotateL :: Bool -> Int -> Bool # | |
FiniteBits Bool | Since: base-4.7.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Bool -> Int # countLeadingZeros :: Bool -> Int # countTrailingZeros :: Bool -> Int # | |
Bounded Bool | Since: base-2.1 |
Enum Bool | Since: base-2.1 |
Generic Bool | |
SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
Ix Bool | Since: base-2.1 |
Read Bool | Since: base-2.1 |
Show Bool | Since: base-2.1 |
NFData Bool | |
Defined in Control.DeepSeq | |
Eq Bool | |
Ord Bool | |
Hashable Bool | |
Defined in Data.Hashable.Class | |
Uniform Bool | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Bool # | |
UniformRange Bool | |
Defined in System.Random.Internal | |
Unbox Bool | |
Defined in Data.Vector.Unboxed.Base | |
SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Lift Bool | |
Vector Vector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Bool -> ST s (Vector Bool) basicUnsafeThaw :: Vector Bool -> ST s (Mutable Vector s Bool) basicLength :: Vector Bool -> Int basicUnsafeSlice :: Int -> Int -> Vector Bool -> Vector Bool basicUnsafeIndexM :: Vector Bool -> Int -> Box Bool basicUnsafeCopy :: Mutable Vector s Bool -> Vector Bool -> ST s () | |
MVector MVector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Bool -> Int basicUnsafeSlice :: Int -> Int -> MVector s Bool -> MVector s Bool basicOverlaps :: MVector s Bool -> MVector s Bool -> Bool basicUnsafeNew :: Int -> ST s (MVector s Bool) basicInitialize :: MVector s Bool -> ST s () basicUnsafeReplicate :: Int -> Bool -> ST s (MVector s Bool) basicUnsafeRead :: MVector s Bool -> Int -> ST s Bool basicUnsafeWrite :: MVector s Bool -> Int -> Bool -> ST s () basicClear :: MVector s Bool -> ST s () basicSet :: MVector s Bool -> Bool -> ST s () basicUnsafeCopy :: MVector s Bool -> MVector s Bool -> ST s () basicUnsafeMove :: MVector s Bool -> MVector s Bool -> ST s () basicUnsafeGrow :: MVector s Bool -> Int -> ST s (MVector s Bool) | |
type DemoteRep Bool | |
Defined in GHC.Generics | |
type Rep Bool | Since: base-4.6.0.0 |
data Sing (a :: Bool) | |
newtype Vector Bool | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Bool | |
Defined in Data.Vector.Unboxed.Base |
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and
chr
).
Instances
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
Bounded Char | Since: base-2.1 |
Enum Char | Since: base-2.1 |
Ix Char | Since: base-2.1 |
Read Char | Since: base-2.1 |
Show Char | Since: base-2.1 |
IsChar Char | Since: base-2.1 |
PrintfArg Char | Since: base-2.1 |
Defined in Text.Printf | |
NFData Char | |
Defined in Control.DeepSeq | |
Eq Char | |
Ord Char | |
Hashable Char | |
Defined in Data.Hashable.Class | |
Prim Char | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Char -> Int# # alignmentOfType# :: Proxy Char -> Int# # alignment# :: Char -> Int# # indexByteArray# :: ByteArray# -> Int# -> Char # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Char #) # writeByteArray# :: MutableByteArray# s -> Int# -> Char -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Char -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Char # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Char #) # writeOffAddr# :: Addr# -> Int# -> Char -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Char -> State# s -> State# s # | |
Uniform Char | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Char # | |
UniformRange Char | |
Defined in System.Random.Internal | |
Unbox Char | |
Defined in Data.Vector.Unboxed.Base | |
TestCoercion SChar | Since: base-4.18.0.0 |
Defined in GHC.TypeLits | |
TestEquality SChar | Since: base-4.18.0.0 |
Defined in GHC.TypeLits | |
Lift Char | |
Vector Vector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Char -> ST s (Vector Char) basicUnsafeThaw :: Vector Char -> ST s (Mutable Vector s Char) basicLength :: Vector Char -> Int basicUnsafeSlice :: Int -> Int -> Vector Char -> Vector Char basicUnsafeIndexM :: Vector Char -> Int -> Box Char basicUnsafeCopy :: Mutable Vector s Char -> Vector Char -> ST s () | |
MVector MVector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Char -> Int basicUnsafeSlice :: Int -> Int -> MVector s Char -> MVector s Char basicOverlaps :: MVector s Char -> MVector s Char -> Bool basicUnsafeNew :: Int -> ST s (MVector s Char) basicInitialize :: MVector s Char -> ST s () basicUnsafeReplicate :: Int -> Char -> ST s (MVector s Char) basicUnsafeRead :: MVector s Char -> Int -> ST s Char basicUnsafeWrite :: MVector s Char -> Int -> Char -> ST s () basicClear :: MVector s Char -> ST s () basicSet :: MVector s Char -> Char -> ST s () basicUnsafeCopy :: MVector s Char -> MVector s Char -> ST s () basicUnsafeMove :: MVector s Char -> MVector s Char -> ST s () basicUnsafeGrow :: MVector s Char -> Int -> ST s (MVector s Char) | |
Generic1 (URec Char :: k -> Type) | |
Foldable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
Invariant (UChar :: Type -> Type) | from GHC.Generics |
Defined in Data.Functor.Invariant | |
Functor (URec Char :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Char p) | |
Show (URec Char p) | Since: base-4.9.0.0 |
Eq (URec Char p) | Since: base-4.9.0.0 |
Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
newtype Vector Char | |
Defined in Data.Vector.Unboxed.Base | |
data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Char | |
Defined in Data.Vector.Unboxed.Base | |
type Compare (a :: Char) (b :: Char) | |
Defined in Data.Type.Ord | |
type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Storable Double | Since: base-2.1 |
Floating Double | Since: base-2.1 |
RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
Read Double | Since: base-2.1 |
PrintfArg Double | Since: base-2.1 |
Defined in Text.Printf | |
NFData Double | |
Defined in Control.DeepSeq | |
Eq Double | Note that due to the presence of
Also note that
|
Ord Double | Note that due to the presence of
Also note that, due to the same,
|
Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Prim Double | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Double -> Int# # alignmentOfType# :: Proxy Double -> Int# # alignment# :: Double -> Int# # indexByteArray# :: ByteArray# -> Int# -> Double # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Double #) # writeByteArray# :: MutableByteArray# s -> Int# -> Double -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Double -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Double # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Double #) # writeOffAddr# :: Addr# -> Int# -> Double -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Double -> State# s -> State# s # | |
UniformRange Double | |
Defined in System.Random.Internal | |
Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
Lift Double | |
Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Double -> ST s (Vector Double) basicUnsafeThaw :: Vector Double -> ST s (Mutable Vector s Double) basicLength :: Vector Double -> Int basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double basicUnsafeIndexM :: Vector Double -> Int -> Box Double basicUnsafeCopy :: Mutable Vector s Double -> Vector Double -> ST s () | |
MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double basicOverlaps :: MVector s Double -> MVector s Double -> Bool basicUnsafeNew :: Int -> ST s (MVector s Double) basicInitialize :: MVector s Double -> ST s () basicUnsafeReplicate :: Int -> Double -> ST s (MVector s Double) basicUnsafeRead :: MVector s Double -> Int -> ST s Double basicUnsafeWrite :: MVector s Double -> Int -> Double -> ST s () basicClear :: MVector s Double -> ST s () basicSet :: MVector s Double -> Double -> ST s () basicUnsafeCopy :: MVector s Double -> MVector s Double -> ST s () basicUnsafeMove :: MVector s Double -> MVector s Double -> ST s () basicUnsafeGrow :: MVector s Double -> Int -> ST s (MVector s Double) | |
Generic1 (URec Double :: k -> Type) | |
Foldable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
Invariant (UDouble :: Type -> Type) | from GHC.Generics |
Defined in Data.Functor.Invariant | |
Functor (URec Double :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Double p) | |
Show (URec Double p) | Since: base-4.9.0.0 |
Eq (URec Double p) | Since: base-4.9.0.0 |
Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
newtype Vector Double | |
Defined in Data.Vector.Unboxed.Base | |
data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Double | |
Defined in Data.Vector.Unboxed.Base | |
type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Storable Float | Since: base-2.1 |
Floating Float | Since: base-2.1 |
RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
Read Float | Since: base-2.1 |
PrintfArg Float | Since: base-2.1 |
Defined in Text.Printf | |
NFData Float | |
Defined in Control.DeepSeq | |
Eq Float | Note that due to the presence of
Also note that
|
Ord Float | Note that due to the presence of
Also note that, due to the same,
|
Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
Prim Float | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Float -> Int# # alignmentOfType# :: Proxy Float -> Int# # alignment# :: Float -> Int# # indexByteArray# :: ByteArray# -> Int# -> Float # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Float #) # writeByteArray# :: MutableByteArray# s -> Int# -> Float -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Float -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Float # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Float #) # writeOffAddr# :: Addr# -> Int# -> Float -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Float -> State# s -> State# s # | |
UniformRange Float | |
Defined in System.Random.Internal | |
Unbox Float | |
Defined in Data.Vector.Unboxed.Base | |
Lift Float | |
Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Float -> ST s (Vector Float) basicUnsafeThaw :: Vector Float -> ST s (Mutable Vector s Float) basicLength :: Vector Float -> Int basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float basicUnsafeIndexM :: Vector Float -> Int -> Box Float basicUnsafeCopy :: Mutable Vector s Float -> Vector Float -> ST s () | |
MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float basicOverlaps :: MVector s Float -> MVector s Float -> Bool basicUnsafeNew :: Int -> ST s (MVector s Float) basicInitialize :: MVector s Float -> ST s () basicUnsafeReplicate :: Int -> Float -> ST s (MVector s Float) basicUnsafeRead :: MVector s Float -> Int -> ST s Float basicUnsafeWrite :: MVector s Float -> Int -> Float -> ST s () basicClear :: MVector s Float -> ST s () basicSet :: MVector s Float -> Float -> ST s () basicUnsafeCopy :: MVector s Float -> MVector s Float -> ST s () basicUnsafeMove :: MVector s Float -> MVector s Float -> ST s () basicUnsafeGrow :: MVector s Float -> Int -> ST s (MVector s Float) | |
Generic1 (URec Float :: k -> Type) | |
Foldable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
Invariant (UFloat :: Type -> Type) | from GHC.Generics |
Defined in Data.Functor.Invariant | |
Functor (URec Float :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Float p) | |
Show (URec Float p) | |
Eq (URec Float p) | |
Ord (URec Float p) | |
Defined in GHC.Generics | |
newtype Vector Float | |
Defined in Data.Vector.Unboxed.Base | |
data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Float | |
Defined in Data.Vector.Unboxed.Base | |
type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Float p) | |
Defined in GHC.Generics |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]
.
The exact range for a given implementation can be determined by using
minBound
and maxBound
from the Bounded
class.
Instances
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Int | Since: base-2.1 |
Defined in GHC.Bits | |
FiniteBits Int | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Int -> Int # countLeadingZeros :: Int -> Int # countTrailingZeros :: Int -> Int # | |
Bounded Int | Since: base-2.1 |
Enum Int | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Num Int | Since: base-2.1 |
Read Int | Since: base-2.1 |
Integral Int | Since: base-2.0.1 |
Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
Show Int | Since: base-2.1 |
PrintfArg Int | Since: base-2.1 |
Defined in Text.Printf | |
NFData Int | |
Defined in Control.DeepSeq | |
Eq Int | |
Ord Int | |
Hashable Int | |
Defined in Data.Hashable.Class | |
Prim Int | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Int -> Int# # alignmentOfType# :: Proxy Int -> Int# # alignment# :: Int -> Int# # indexByteArray# :: ByteArray# -> Int# -> Int # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int #) # writeByteArray# :: MutableByteArray# s -> Int# -> Int -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Int -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Int # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Int #) # writeOffAddr# :: Addr# -> Int# -> Int -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Int -> State# s -> State# s # | |
Uniform Int | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Int # | |
UniformRange Int | |
Defined in System.Random.Internal | |
ByteSource Int | |
Defined in Data.UUID.Types.Internal.Builder | |
Unbox Int | |
Defined in Data.Vector.Unboxed.Base | |
Lift Int | |
Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int -> ST s (Vector Int) basicUnsafeThaw :: Vector Int -> ST s (Mutable Vector s Int) basicLength :: Vector Int -> Int basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int basicUnsafeIndexM :: Vector Int -> Int -> Box Int basicUnsafeCopy :: Mutable Vector s Int -> Vector Int -> ST s () | |
MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int -> Int basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int basicOverlaps :: MVector s Int -> MVector s Int -> Bool basicUnsafeNew :: Int -> ST s (MVector s Int) basicInitialize :: MVector s Int -> ST s () basicUnsafeReplicate :: Int -> Int -> ST s (MVector s Int) basicUnsafeRead :: MVector s Int -> Int -> ST s Int basicUnsafeWrite :: MVector s Int -> Int -> Int -> ST s () basicClear :: MVector s Int -> ST s () basicSet :: MVector s Int -> Int -> ST s () basicUnsafeCopy :: MVector s Int -> MVector s Int -> ST s () basicUnsafeMove :: MVector s Int -> MVector s Int -> ST s () basicUnsafeGrow :: MVector s Int -> Int -> ST s (MVector s Int) | |
Generic1 (URec Int :: k -> Type) | |
Foldable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
Invariant (UInt :: Type -> Type) | from GHC.Generics |
Defined in Data.Functor.Invariant | |
Functor (URec Int :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Int p) | |
Show (URec Int p) | Since: base-4.9.0.0 |
Eq (URec Int p) | Since: base-4.9.0.0 |
Ord (URec Int p) | Since: base-4.9.0.0 |
newtype Vector Int | |
Defined in Data.Vector.Unboxed.Base | |
data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
type ByteSink Int g | |
Defined in Data.UUID.Types.Internal.Builder type ByteSink Int g = Takes4Bytes g | |
newtype MVector s Int | |
Defined in Data.Vector.Unboxed.Base | |
type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Instances
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
Bits Word | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Word -> Word -> Word # (.|.) :: Word -> Word -> Word # complement :: Word -> Word # shift :: Word -> Int -> Word # rotate :: Word -> Int -> Word # setBit :: Word -> Int -> Word # clearBit :: Word -> Int -> Word # complementBit :: Word -> Int -> Word # testBit :: Word -> Int -> Bool # bitSizeMaybe :: Word -> Maybe Int # shiftL :: Word -> Int -> Word # unsafeShiftL :: Word -> Int -> Word # shiftR :: Word -> Int -> Word # unsafeShiftR :: Word -> Int -> Word # rotateL :: Word -> Int -> Word # | |
FiniteBits Word | Since: base-4.6.0.0 |
Defined in GHC.Bits Methods finiteBitSize :: Word -> Int # countLeadingZeros :: Word -> Int # countTrailingZeros :: Word -> Int # | |
Bounded Word | Since: base-2.1 |
Enum Word | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Num Word | Since: base-2.1 |
Read Word | Since: base-4.5.0.0 |
Integral Word | Since: base-2.1 |
Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
Show Word | Since: base-2.1 |
PrintfArg Word | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word | |
Defined in Control.DeepSeq | |
Eq Word | |
Ord Word | |
Hashable Word | |
Defined in Data.Hashable.Class | |
Prim Word | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Word -> Int# # alignmentOfType# :: Proxy Word -> Int# # alignment# :: Word -> Int# # indexByteArray# :: ByteArray# -> Int# -> Word # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word #) # writeByteArray# :: MutableByteArray# s -> Int# -> Word -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Word # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word #) # writeOffAddr# :: Addr# -> Int# -> Word -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Word -> State# s -> State# s # | |
Uniform Word | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Word # | |
UniformRange Word | |
Defined in System.Random.Internal | |
Unbox Word | |
Defined in Data.Vector.Unboxed.Base | |
Lift Word | |
Vector Vector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word -> ST s (Vector Word) basicUnsafeThaw :: Vector Word -> ST s (Mutable Vector s Word) basicLength :: Vector Word -> Int basicUnsafeSlice :: Int -> Int -> Vector Word -> Vector Word basicUnsafeIndexM :: Vector Word -> Int -> Box Word basicUnsafeCopy :: Mutable Vector s Word -> Vector Word -> ST s () | |
MVector MVector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word -> MVector s Word basicOverlaps :: MVector s Word -> MVector s Word -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word) basicInitialize :: MVector s Word -> ST s () basicUnsafeReplicate :: Int -> Word -> ST s (MVector s Word) basicUnsafeRead :: MVector s Word -> Int -> ST s Word basicUnsafeWrite :: MVector s Word -> Int -> Word -> ST s () basicClear :: MVector s Word -> ST s () basicSet :: MVector s Word -> Word -> ST s () basicUnsafeCopy :: MVector s Word -> MVector s Word -> ST s () basicUnsafeMove :: MVector s Word -> MVector s Word -> ST s () basicUnsafeGrow :: MVector s Word -> Int -> ST s (MVector s Word) | |
Generic1 (URec Word :: k -> Type) | |
Foldable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
Invariant (UWord :: Type -> Type) | from GHC.Generics |
Defined in Data.Functor.Invariant | |
Functor (URec Word :: Type -> Type) | Since: base-4.9.0.0 |
Generic (URec Word p) | |
Show (URec Word p) | Since: base-4.9.0.0 |
Eq (URec Word p) | Since: base-4.9.0.0 |
Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
newtype Vector Word | |
Defined in Data.Vector.Unboxed.Base | |
data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
newtype MVector s Word | |
Defined in Data.Vector.Unboxed.Base | |
type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics |
Instances
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Monoid Ordering | Since: base-2.1 |
Semigroup Ordering | Since: base-4.9.0.0 |
Bounded Ordering | Since: base-2.1 |
Enum Ordering | Since: base-2.1 |
Generic Ordering | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Read Ordering | Since: base-2.1 |
Show Ordering | Since: base-2.1 |
NFData Ordering | |
Defined in Control.DeepSeq | |
Eq Ordering | |
Ord Ordering | |
Defined in GHC.Classes | |
Hashable Ordering | |
Defined in Data.Hashable.Class | |
type Rep Ordering | Since: base-4.6.0.0 |
The Maybe
type encapsulates an optional value. A value of type
either contains a value of type Maybe
aa
(represented as
),
or it is empty (represented as Just
aNothing
). Using Maybe
is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error
.
The Maybe
type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing
. A richer
error monad can be built using the Either
type.
Instances
MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
MonadFix Maybe | Since: base-2.1 |
Defined in Control.Monad.Fix | |
MonadZip Maybe | Since: base-4.8.0.0 |
Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
Eq1 Maybe | Since: base-4.9.0.0 |
Ord1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read1 Maybe | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Show1 Maybe | Since: base-4.9.0.0 |
Traversable Maybe | Since: base-2.1 |
Alternative Maybe | Picks the leftmost Since: base-2.1 |
Applicative Maybe | Since: base-2.1 |
Functor Maybe | Since: base-2.1 |
Monad Maybe | Since: base-2.1 |
MonadPlus Maybe | Picks the leftmost Since: base-2.1 |
NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
Invariant Maybe | |
Defined in Data.Functor.Invariant | |
FoldableWithKey Maybe | |
Indexable Maybe | |
Keyed Maybe | |
Lookup Maybe | |
TraversableWithKey Maybe | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key Maybe -> a -> f b) -> Maybe a -> f (Maybe b) # mapWithKeyM :: Monad m => (Key Maybe -> a -> m b) -> Maybe a -> m (Maybe b) # | |
Zip Maybe | |
ZipWithKey Maybe | |
Selective Maybe | |
Alt Maybe | |
Apply Maybe | |
Bind Maybe | |
Extend Maybe | |
Plus Maybe | |
Defined in Data.Functor.Plus | |
Generic1 Maybe | |
MonadError () Maybe | Since: mtl-2.2.2 |
Defined in Control.Monad.Error.Class | |
Lift a => Lift (Maybe a :: Type) | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Generic (Maybe a) | |
SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
Read a => Read (Maybe a) | Since: base-2.1 |
Show a => Show (Maybe a) | Since: base-2.1 |
NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
Eq a => Eq (Maybe a) | Since: base-2.1 |
Ord a => Ord (Maybe a) | Since: base-2.1 |
Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
type Key Maybe | |
type Rep1 Maybe | Since: base-4.6.0.0 |
type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
data Sing (b :: Maybe a) | |
class a ~# b => (a :: k) ~ (b :: k) infix 4 #
Lifted, homogeneous equality. By lifted, we mean that it
can be bogus (deferred type error). By homogeneous, the two
types a
and b
must have the same kinds.
class a ~R# b => Coercible (a :: k) (b :: k) #
Coercible
is a two-parameter class that has instances for types a
and b
if
the compiler can infer that they have the same representation. This class
does not have regular instances; instead they are created on-the-fly during
type-checking. Trying to manually declare an instance of Coercible
is an error.
Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:
instance Coercible a a
Furthermore, for every type constructor there is
an instance that allows to coerce under the type constructor. For
example, let D
be a prototypical type constructor (data
or
newtype
) with three type arguments, which have roles nominal
,
representational
resp. phantom
. Then there is an instance of
the form
instance Coercible b b' => Coercible (D a b c) (D a b' c')
Note that the nominal
type arguments are equal, the
representational
type arguments can differ, but need to have a
Coercible
instance themself, and the phantom
type arguments can be
changed arbitrarily.
The third kind of instance exists for every newtype NT = MkNT T
and
comes in two variants, namely
instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b
This instance is only usable if the constructor MkNT
is in scope.
If, as a library author of a type constructor like Set a
, you
want to prevent a user of your module to write
coerce :: Set T -> Set NT
,
you need to set the role of Set
's type parameter to nominal
,
by writing
type role Set nominal
For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.
Since: ghc-prim-0.4.0
Natural number
Invariant: numbers <= 0xffffffffffffffff use the NS
constructor
Instances
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Bits Natural | Since: base-4.8.0 |
Defined in GHC.Bits Methods (.&.) :: Natural -> Natural -> Natural # (.|.) :: Natural -> Natural -> Natural # xor :: Natural -> Natural -> Natural # complement :: Natural -> Natural # shift :: Natural -> Int -> Natural # rotate :: Natural -> Int -> Natural # setBit :: Natural -> Int -> Natural # clearBit :: Natural -> Int -> Natural # complementBit :: Natural -> Int -> Natural # testBit :: Natural -> Int -> Bool # bitSizeMaybe :: Natural -> Maybe Int # shiftL :: Natural -> Int -> Natural # unsafeShiftL :: Natural -> Int -> Natural # shiftR :: Natural -> Int -> Natural # unsafeShiftR :: Natural -> Int -> Natural # rotateL :: Natural -> Int -> Natural # | |
Enum Natural | Since: base-4.8.0.0 |
Ix Natural | Since: base-4.8.0.0 |
Defined in GHC.Ix | |
Num Natural | Note that Since: base-4.8.0.0 |
Read Natural | Since: base-4.8.0.0 |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
Show Natural | Since: base-4.8.0.0 |
PrintfArg Natural | Since: base-4.8.0.0 |
Defined in Text.Printf | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq Natural | |
Ord Natural | |
Hashable Natural | |
Defined in Data.Hashable.Class | |
UniformRange Natural | |
Defined in System.Random.Internal | |
KnownNat n => HasResolution (n :: Nat) | For example, |
Defined in Data.Fixed Methods resolution :: p n -> Integer # | |
TestCoercion SNat | Since: base-4.18.0.0 |
Defined in GHC.TypeNats | |
TestEquality SNat | Since: base-4.18.0.0 |
Defined in GHC.TypeNats | |
Lift Natural | |
type Compare (a :: Natural) (b :: Natural) | |
Defined in Data.Type.Ord |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int
, the Integer
type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int
), IS
constructor is used.
Otherwise Integer
and IN
constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer
and IN
are used iff value doesn't fit in IS
Instances
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Bits Integer | Since: base-2.1 |
Defined in GHC.Bits Methods (.&.) :: Integer -> Integer -> Integer # (.|.) :: Integer -> Integer -> Integer # xor :: Integer -> Integer -> Integer # complement :: Integer -> Integer # shift :: Integer -> Int -> Integer # rotate :: Integer -> Int -> Integer # setBit :: Integer -> Int -> Integer # clearBit :: Integer -> Int -> Integer # complementBit :: Integer -> Int -> Integer # testBit :: Integer -> Int -> Bool # bitSizeMaybe :: Integer -> Maybe Int # shiftL :: Integer -> Int -> Integer # unsafeShiftL :: Integer -> Int -> Integer # shiftR :: Integer -> Int -> Integer # unsafeShiftR :: Integer -> Int -> Integer # rotateL :: Integer -> Int -> Integer # | |
Enum Integer | Since: base-2.1 |
Ix Integer | Since: base-2.1 |
Defined in GHC.Ix | |
Num Integer | Since: base-2.1 |
Read Integer | Since: base-2.1 |
Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
Show Integer | Since: base-2.1 |
PrintfArg Integer | Since: base-2.1 |
Defined in Text.Printf | |
NFData Integer | |
Defined in Control.DeepSeq | |
Eq Integer | |
Ord Integer | |
Hashable Integer | |
Defined in Data.Hashable.Class | |
UniformRange Integer | |
Defined in System.Random.Internal | |
Lift Integer | |
class Monad m => MonadReader r (m :: Type -> Type) | m -> r where #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r
is a simple reader monad.
See the instance
declaration below.
Methods
Retrieves the monad environment.
Arguments
:: (r -> r) | The function to modify the environment. |
-> m a |
|
-> m a |
Executes a computation in a modified environment.
Arguments
:: (r -> a) | The selector function to apply to the environment. |
-> m a |
Retrieves a function of the current environment.
Instances
class Monad m => MonadState s (m :: Type -> Type) | m -> s where #
Minimal definition is either both of get
and put
or just state
Methods
Return the state from the internals of the monad.
Replace the state inside the monad.
state :: (s -> (a, s)) -> m a #
Embed a simple state action into the monad.
Instances
MonadState s m => MonadState s (Free m) | |
MonadState s m => MonadState s (MaybeT m) | |
(Functor f, MonadState s m) => MonadState s (FreeT f m) | |
(Monoid w, MonadState s m) => MonadState s (AccumT w m) | Since: mtl-2.3 |
MonadState s m => MonadState s (ExceptT e m) | Since: mtl-2.2 |
MonadState s m => MonadState s (IdentityT m) | |
MonadState s m => MonadState s (ReaderT r m) | |
MonadState s m => MonadState s (SelectT r m) | Since: mtl-2.3 |
Monad m => MonadState s (StateT s m) | |
Monad m => MonadState s (StateT s m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | Since: mtl-2.3 |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
(Monoid w, MonadState s m) => MonadState s (WriterT w m) | |
MonadState s m => MonadState s (ContT r m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | Since: mtl-2.3 |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
(Monad m, Monoid w) => MonadState s (RWST r w s m) | |
type Cont r = ContT r Identity #
Continuation monad.
Cont r a
is a CPS ("continuation-passing style") computation that produces an
intermediate result of type a
within a CPS computation whose final result type
is r
.
The return
function simply creates a continuation which passes the value on.
The >>=
operator adds the bound function into the continuation chain.
class (Sieve p (Rep p), Strong p) => Representable (p :: Type -> Type -> Type) where #
A Profunctor
p
is Representable
if there exists a Functor
f
such that
p d c
is isomorphic to d -> f c
.
Instances
(Monad m, Functor m) => Representable (Kleisli m) | |
Representable (Forget r :: Type -> Type -> Type) | |
Functor f => Representable (Star f) | |
Representable (->) | |
(Representable p, Representable q) => Representable (Procompose p q) | The composition of two |
Defined in Data.Profunctor.Composition Associated Types type Rep (Procompose p q) :: Type -> Type # Methods tabulate :: (d -> Rep (Procompose p q) c) -> Procompose p q d c # |
type family Rep (p :: Type -> Type -> Type) :: Type -> Type #
Instances
type Rep (Kleisli m) | |
Defined in Data.Profunctor.Rep | |
type Rep (Forget r :: Type -> Type -> Type) | |
type Rep (Star f) | |
Defined in Data.Profunctor.Rep | |
type Rep (->) | |
Defined in Data.Profunctor.Rep | |
type Rep (Procompose p q) | |
Defined in Data.Profunctor.Composition |
newtype StateT s (m :: Type -> Type) a #
A state transformer monad parameterized by:
s
- The state.m
- The inner monad.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
Instances
type State s = StateT s Identity #
A state monad parameterized by the type s
of the state to carry.
The return
function leaves the state unchanged, while >>=
uses
the final state of the first computation as the initial state of
the second.
newtype ReaderT r (m :: Type -> Type) a #
The reader monad transformer, which adds a read-only environment to the given monad.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
Constructors
ReaderT | |
Fields
|
Instances
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return
function ignores the environment, while >>=
passes
the inherited environment to both subcomputations.
class Contravariant (f :: Type -> Type) where #
The class of contravariant functors.
Whereas in Haskell, one can think of a Functor
as containing or producing
values, a contravariant functor is a functor that can be thought of as
consuming values.
As an example, consider the type of predicate functions a -> Bool
. One
such predicate might be negative x = x < 0
, which
classifies integers as to whether they are negative. However, given this
predicate, we can re-use it in other situations, providing we have a way to
map values to integers. For instance, we can use the negative
predicate
on a person's bank balance to work out if they are currently overdrawn:
newtype Predicate a = Predicate { getPredicate :: a -> Bool } instance Contravariant Predicate where contramap :: (a' -> a) -> (Predicate a -> Predicate a') contramap f (Predicate p) = Predicate (p . f) | `- First, map the input... `----- then apply the predicate. overdrawn :: Predicate Person overdrawn = contramap personBankBalance negative
Any instance should be subject to the following laws:
Note, that the second law follows from the free theorem of the type of
contramap
and the first law, so you need only check that the former
condition holds.
Minimal complete definition
Instances
Dual function arrows.
Instances
Invariant2 Op | from the |
Defined in Data.Functor.Invariant | |
Category Op | |
Semigroupoid Op | |
Contravariant (Op a) | |
Monoid r => Decidable (Op r) | |
Monoid r => Divisible (Op r) | |
Invariant (Op a) | from the |
Defined in Data.Functor.Invariant | |
Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
Floating a => Floating (Op a b) | |
Num a => Num (Op a b) | |
Fractional a => Fractional (Op a b) | |
Abelian a => Abelian (Op a b) | |
Defined in Data.Group | |
Group a => Group (Op a b) | |
class Applicative m => Monad (m :: Type -> Type) where #
The Monad
class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do
expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad
should satisfy the following:
- Left identity
return
a>>=
k = k a- Right identity
m
>>=
return
= m- Associativity
m
>>=
(\x -> k x>>=
h) = (m>>=
k)>>=
h
Furthermore, the Monad
and Applicative
operations should relate as follows:
The above laws imply:
and that pure
and (<*>
) satisfy the applicative functor laws.
The instances of Monad
for lists, Maybe
and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as
' can be understood as the >>=
bsdo
expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as
' can be understood as the >>
bsdo
expression
do as bs
Inject a value into the monadic type.
Instances
Monad Complex | Since: base-4.9.0.0 |
Monad Identity | Since: base-4.8.0.0 |
Monad First | Since: base-4.8.0.0 |
Monad Last | Since: base-4.8.0.0 |
Monad Down | Since: base-4.11.0.0 |
Monad First | Since: base-4.9.0.0 |
Monad Last | Since: base-4.9.0.0 |
Monad Max | Since: base-4.9.0.0 |
Monad Min | Since: base-4.9.0.0 |
Monad Dual | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
Monad STM | Since: base-4.3.0.0 |
Monad Par1 | Since: base-4.9.0.0 |
Monad P | Since: base-2.1 |
Monad ReadP | Since: base-2.1 |
Monad ReadPrec | Since: base-2.1 |
Monad Put | |
Monad Seq | |
Monad Tree | |
Monad DList | |
Monad IO | Since: base-2.1 |
Monad Array | |
Monad SmallArray | |
Defined in Data.Primitive.SmallArray Methods (>>=) :: SmallArray a -> (a -> SmallArray b) -> SmallArray b # (>>) :: SmallArray a -> SmallArray b -> SmallArray b # return :: a -> SmallArray a # | |
Monad Q | |
Monad Vector | |
Monad Id | |
Monad Vector | |
Monad Box | |
Monad Maybe | Since: base-2.1 |
Monad Solo | Since: base-4.15 |
Monad List | Since: base-2.1 |
Representable f => Monad (Co f) | |
Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
Monad (ST s) | Since: base-2.1 |
Monad (Either e) | Since: base-4.4.0.0 |
Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
Monad (ST s) | Since: base-2.1 |
Monad (SetM s) | |
Alternative f => Monad (Cofree f) | |
Functor f => Monad (Free f) | |
Monad f => Monad (SelectM f) | |
Monad m => Monad (MaybeT m) | |
Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
Monad f => Monad (Ap f) | Since: base-4.12.0.0 |
Monad f => Monad (Alt f) | Since: base-4.8.0.0 |
Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
(Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
(Functor f, Monad m) => Monad (FreeT f m) | |
Monad m => Monad (WrappedFunctor m) | |
Defined in Data.Functor.Invariant Methods (>>=) :: WrappedFunctor m a -> (a -> WrappedFunctor m b) -> WrappedFunctor m b # (>>) :: WrappedFunctor m a -> WrappedFunctor m b -> WrappedFunctor m b # return :: a -> WrappedFunctor m a # | |
(Monad (Rep p), Representable p) => Monad (Prep p) | |
Monad (Tagged s) | |
(Monoid w, Functor m, Monad m) => Monad (AccumT w m) | |
Monad m => Monad (ExceptT e m) | |
Monad m => Monad (IdentityT m) | |
Monad m => Monad (ReaderT r m) | |
Monad m => Monad (SelectT r m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (StateT s m) | |
Monad m => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
(Monoid w, Monad m) => Monad (WriterT w m) | |
Monad m => Monad (Reverse m) | Derived instance. |
(Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
(Monad f, Monad g) => Monad (Product f g) | Since: base-4.9.0.0 |
(Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
Monad (Cokleisli w a) | |
(Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
(Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
Monad (Costar f a) | |
Monad f => Monad (Star f a) | |
Monad (ContT r m) | |
(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
Monad ((->) r) | Since: base-2.1 |
Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
(Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
Monad m => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
(Monoid w, Monad m) => Monad (RWST r w s m) | |
class Functor (f :: Type -> Type) where #
A type f
is a Functor if it provides a function fmap
which, given any types a
and b
lets you apply any function from (a -> b)
to turn an f a
into an f b
, preserving the
structure of f
. Furthermore f
needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap
and
the first law, so you need only check that the former condition holds.
See https://www.schoolofhaskell.com/user/edwardk/snippets/fmap or
https://github.com/quchen/articles/blob/master/second_functor_law.md
for an explanation.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap
is used to apply a function of type (a -> b)
to a value of type f a
,
where f is a functor, to produce a value of type f b
.
Note that for any type constructor with more than one parameter (e.g., Either
),
only the last type parameter can be modified with fmap
(e.g., b
in `Either a b`).
Some type constructors with two parameters or more have a
instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a
to a Maybe
IntMaybe String
using show
:
>>>
fmap show Nothing
Nothing>>>
fmap show (Just 3)
Just "3"
Convert from an
to an
Either
Int IntEither Int String
using show
:
>>>
fmap show (Left 17)
Left 17>>>
fmap show (Right 17)
Right "17"
Double each element of a list:
>>>
fmap (*2) [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
fmap even (2,2)
(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c)
can also be written (,,) a b c
and its Functor
instance
is defined for Functor ((,,) a b)
(i.e., only the third parameter is free to be mapped over
with fmap
).
It explains why fmap
can be used with tuples containing values of different types as in the
following example:
>>>
fmap even ("hello", 1.0, 4)
("hello",1.0,True)
Instances
The Either
type represents values with two possibilities: a value of
type
is either Either
a b
or Left
a
.Right
b
The Either
type is sometimes used to represent a value which is
either correct or an error; by convention, the Left
constructor is
used to hold an error value and the Right
constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type
is the type of values which can be either
a Either
String
Int
String
or an Int
. The Left
constructor can be used only on
String
s, and the Right
constructor can be used only on Int
s:
>>>
let s = Left "foo" :: Either String Int
>>>
s
Left "foo">>>
let n = Right 3 :: Either String Int
>>>
n
Right 3>>>
:type s
s :: Either String Int>>>
:type n
n :: Either String Int
The fmap
from our Functor
instance will ignore Left
values, but
will apply the supplied function to values contained in a Right
:
>>>
let s = Left "foo" :: Either String Int
>>>
let n = Right 3 :: Either String Int
>>>
fmap (*2) s
Left "foo">>>
fmap (*2) n
Right 6
The Monad
instance for Either
allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int
from a Char
, or fail.
>>>
import Data.Char ( digitToInt, isDigit )
>>>
:{
let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>
:}
The following should work, since both '1'
and '2'
can be
parsed as Int
s.
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Right 3
But the following should fail overall, since the first operation where
we attempt to parse 'm'
as an Int
will fail:
>>>
:{
let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>
:}
>>>
parseMultiple
Left "parse error"
Instances
Bifoldable Either | Since: base-4.10.0.0 |
Bifoldable1 Either | |
Defined in Data.Bifoldable1 | |
Bifunctor Either | Since: base-4.8.0.0 |
Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
Eq2 Either | Since: base-4.9.0.0 |
Ord2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read2 Either | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] # | |
Show2 Either | Since: base-4.9.0.0 |
NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable2 Either | |
Defined in Data.Hashable.Class | |
Invariant2 Either | |
Defined in Data.Functor.Invariant | |
Bitraversable1 Either | |
Defined in Data.Semigroup.Traversable.Class Methods bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Either a c -> f (Either b d) # bisequence1 :: Apply f => Either (f a) (f b) -> f (Either a b) # | |
Generic1 (Either a :: Type -> Type) | |
MonadError e (Either e) | |
Defined in Control.Monad.Error.Class | |
(Lift a, Lift b) => Lift (Either a b :: Type) | |
MonadFix (Either e) | Since: base-4.3.0.0 |
Defined in Control.Monad.Fix | |
Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
Eq a => Eq1 (Either a) | Since: base-4.9.0.0 |
Ord a => Ord1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Read a => Read1 (Either a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes Methods liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Either a a0) # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Either a a0] # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Either a a0) # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Either a a0] # | |
Show a => Show1 (Either a) | Since: base-4.9.0.0 |
Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Applicative (Either e) | Since: base-3.0 |
Functor (Either a) | Since: base-3.0 |
Monad (Either e) | Since: base-4.4.0.0 |
NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
Invariant (Either a) | |
Defined in Data.Functor.Invariant | |
Selective (Either e) | |
Alt (Either a) | |
Apply (Either a) | |
Bind (Either a) | |
Extend (Either a) | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Generic (Either a b) | |
(Read a, Read b) => Read (Either a b) | Since: base-3.0 |
(Show a, Show b) => Show (Either a b) | Since: base-3.0 |
(NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
(Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
(Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
(Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) |
Uninhabited data type
Since: base-4.8.0.0
Instances
Data Void | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in GHC.Exception.Type Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
Generic Void | |
Ix Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq Void | Since: base-4.8.0.0 |
Ord Void | Since: base-4.8.0.0 |
Hashable Void | |
Defined in Data.Hashable.Class | |
Lift Void | Since: template-haskell-2.15.0.0 |
type Rep Void | Since: base-4.8.0.0 |
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
MonadFix NonEmpty | Since: base-4.9.0.0 |
Defined in Control.Monad.Fix | |
MonadZip NonEmpty | Since: base-4.9.0.0 |
Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
Foldable1 NonEmpty | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => NonEmpty m -> m # foldMap1 :: Semigroup m => (a -> m) -> NonEmpty a -> m # foldMap1' :: Semigroup m => (a -> m) -> NonEmpty a -> m # toNonEmpty :: NonEmpty a -> NonEmpty a # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> NonEmpty a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> NonEmpty a -> b # | |
Eq1 NonEmpty | Since: base-4.10.0.0 |
Ord1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Read1 NonEmpty | Since: base-4.10.0.0 |
Defined in Data.Functor.Classes | |
Show1 NonEmpty | Since: base-4.10.0.0 |
Traversable NonEmpty | Since: base-4.9.0.0 |
Applicative NonEmpty | Since: base-4.9.0.0 |
Functor NonEmpty | Since: base-4.9.0.0 |
Monad NonEmpty | Since: base-4.9.0.0 |
Comonad NonEmpty | |
ComonadApply NonEmpty | |
NFData1 NonEmpty | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Hashable1 NonEmpty | Since: hashable-1.3.1.0 |
Defined in Data.Hashable.Class | |
Invariant NonEmpty | from Data.List.NonEmpty |
Defined in Data.Functor.Invariant | |
Adjustable NonEmpty | |
FoldableWithKey NonEmpty | |
FoldableWithKey1 NonEmpty | |
Indexable NonEmpty | |
Keyed NonEmpty | |
Lookup NonEmpty | |
TraversableWithKey NonEmpty | |
Defined in Data.Key Methods traverseWithKey :: Applicative f => (Key NonEmpty -> a -> f b) -> NonEmpty a -> f (NonEmpty b) # mapWithKeyM :: Monad m => (Key NonEmpty -> a -> m b) -> NonEmpty a -> m (NonEmpty b) # | |
TraversableWithKey1 NonEmpty | |
Zip NonEmpty | |
ZipWithKey NonEmpty | |
Selective NonEmpty | |
Alt NonEmpty | |
Apply NonEmpty | |
Bind NonEmpty | |
Extend NonEmpty | |
Traversable1 NonEmpty | |
Generic1 NonEmpty | |
Lift a => Lift (NonEmpty a :: Type) | Since: template-haskell-2.15.0.0 |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Generic (NonEmpty a) | |
IsList (NonEmpty a) | Since: base-4.9.0.0 |
Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
Show a => Show (NonEmpty a) | Since: base-4.11.0.0 |
NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
Hashable a => Hashable (NonEmpty a) | |
Defined in Data.Hashable.Class | |
type Key NonEmpty | |
type Rep1 NonEmpty | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 NonEmpty = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1 :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 List))) | |
type Rep (NonEmpty a) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (NonEmpty a) = D1 ('MetaData "NonEmpty" "GHC.Base" "base" 'False) (C1 ('MetaCons ":|" ('InfixI 'RightAssociative 5) 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [a]))) | |
type Item (NonEmpty a) | |
Defined in GHC.IsList |
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x
<>
mempty
= x- Left identity
mempty
<>
x = x- Associativity
x
(<>
(y<>
z) = (x<>
y)<>
zSemigroup
law)- Concatenation
mconcat
=foldr
(<>
)mempty
You can alternatively define mconcat
instead of mempty
, in which case the
laws are:
- Unit
mconcat
(pure
x) = x- Multiplication
mconcat
(join
xss) =mconcat
(fmap
mconcat
xss)- Subclass
mconcat
(toList
xs) =sconcat
xs
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtype
s and make those instances
of Monoid
, e.g. Sum
and Product
.
NOTE: Semigroup
is a superclass of Monoid
since base-4.11.0.0.
Methods
Identity of mappend
>>>
"Hello world" <> mempty
"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation
since base-4.11.0.0.
Should it be implemented manually, since mappend
= (<>
)mappend
is a synonym for
(<>
), it is expected that the two functions are defined the same
way. In a future GHC release mappend
will be removed from Monoid
.
Fold a list using the monoid.
For most types, the default definition for mconcat
will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>
mconcat ["Hello", " ", "Haskell", "!"]
"Hello Haskell!"
Instances
Monoid ByteArray | Since: base-4.17.0.0 |
Monoid All | Since: base-2.1 |
Monoid Any | Since: base-2.1 |
Monoid Builder | |
Monoid ByteString | |
Defined in Data.ByteString.Internal.Type Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
Monoid IntSet | |
Monoid Ordering | Since: base-2.1 |
Monoid OsString | "String-Concatenation" for |
Monoid PosixString | |
Defined in System.OsString.Internal.Types Methods mempty :: PosixString # mappend :: PosixString -> PosixString -> PosixString # mconcat :: [PosixString] -> PosixString # | |
Monoid WindowsString | |
Defined in System.OsString.Internal.Types Methods mempty :: WindowsString # mappend :: WindowsString -> WindowsString -> WindowsString # mconcat :: [WindowsString] -> WindowsString # | |
Monoid Doc | |
Monoid Builder | |
Monoid StrictBuilder | |
Defined in Data.Text.Internal.StrictBuilder Methods mempty :: StrictBuilder # mappend :: StrictBuilder -> StrictBuilder -> StrictBuilder # mconcat :: [StrictBuilder] -> StrictBuilder # | |
Monoid CalendarDiffDays | Additive |
Defined in Data.Time.Calendar.CalendarDiffDays Methods mappend :: CalendarDiffDays -> CalendarDiffDays -> CalendarDiffDays # mconcat :: [CalendarDiffDays] -> CalendarDiffDays # | |
Monoid CalendarDiffTime | Additive |
Defined in Data.Time.LocalTime.Internal.CalendarDiffTime Methods mappend :: CalendarDiffTime -> CalendarDiffTime -> CalendarDiffTime # mconcat :: [CalendarDiffTime] -> CalendarDiffTime # | |
Monoid () | Since: base-2.1 |
FiniteBits a => Monoid (And a) | This constraint is arguably too strong. However,
as some types (such as Since: base-4.16 |
FiniteBits a => Monoid (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
Bits a => Monoid (Ior a) | Since: base-4.16 |
Bits a => Monoid (Xor a) | Since: base-4.16 |
Monoid (Comparison a) |
mempty :: Comparison a mempty = Comparison _ _ -> EQ |
Defined in Data.Functor.Contravariant Methods mempty :: Comparison a # mappend :: Comparison a -> Comparison a -> Comparison a # mconcat :: [Comparison a] -> Comparison a # | |
Monoid (Equivalence a) |
mempty :: Equivalence a mempty = Equivalence _ _ -> True |
Defined in Data.Functor.Contravariant Methods mempty :: Equivalence a # mappend :: Equivalence a -> Equivalence a -> Equivalence a # mconcat :: [Equivalence a] -> Equivalence a # | |
Monoid (Predicate a) |
mempty :: Predicate a mempty = _ -> True |
Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
Monoid (First a) | Since: base-2.1 |
Monoid (Last a) | Since: base-2.1 |
Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
(Ord a, Bounded a) => Monoid (Max a) | Since: base-4.9.0.0 |
(Ord a, Bounded a) => Monoid (Min a) | Since: base-4.9.0.0 |
Monoid m => Monoid (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods mempty :: WrappedMonoid m # mappend :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # mconcat :: [WrappedMonoid m] -> WrappedMonoid m # | |
Monoid a => Monoid (Dual a) | Since: base-2.1 |
Monoid (Endo a) | Since: base-2.1 |
Num a => Monoid (Product a) | Since: base-2.1 |
Num a => Monoid (Sum a) | Since: base-2.1 |
Monoid a => Monoid (STM a) | Since: base-4.17.0.0 |
(Generic a, Monoid (Rep a ())) => Monoid (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods mempty :: Generically a # mappend :: Generically a -> Generically a -> Generically a # mconcat :: [Generically a] -> Generically a # | |
Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
Monoid (IntMap a) | |
Monoid (Seq a) | |
Monoid (MergeSet a) | |
Ord a => Monoid (Set a) | |
Monoid (DList a) | |
Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
Monoid (Doc a) | |
Monoid (Array a) | |
Monoid (PrimArray a) | Since: primitive-0.6.4.0 |
Monoid (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods mempty :: SmallArray a # mappend :: SmallArray a -> SmallArray a -> SmallArray a # mconcat :: [SmallArray a] -> SmallArray a # | |
Monoid a => Monoid (Q a) | Since: template-haskell-2.17.0.0 |
(Hashable a, Eq a) => Monoid (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Monoid (Vector a) | |
Prim a => Monoid (Vector a) | |
Storable a => Monoid (Vector a) | |
Monoid (Vector a) | |
Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
Monoid a => Monoid (a) | Since: base-4.15 |
Monoid [a] | Since: base-2.1 |
Monoid a => Monoid (Op a b) |
mempty :: Op a b mempty = Op _ -> mempty |
Monoid (Proxy s) | Since: base-4.7.0.0 |
Monoid (U1 p) | Since: base-4.12.0.0 |
Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
Ord k => Monoid (Map k v) | |
Monoid e => Monoid (Validation e a) | |
Defined in Data.Either.Validation Methods mempty :: Validation e a # mappend :: Validation e a -> Validation e a -> Validation e a # mconcat :: [Validation e a] -> Validation e a # | |
(Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
(Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
Monoid b => Monoid (a -> b) | Since: base-2.1 |
Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Monoid a) => Monoid (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Monoid (Alt f a) | Since: base-4.8.0.0 |
Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
(Profunctor p, Arrow p, Semigroup b, Monoid b) => Monoid (Closure p a b) | |
ArrowPlus p => Monoid (Tambara p a b) | |
(Semigroup a, Monoid a) => Monoid (Tagged s a) | |
Monoid a => Monoid (Constant a b) | |
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
(Monoid (f a), Monoid (g a)) => Monoid (Product f g a) | Since: base-4.16.0.0 |
(Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
Monoid r => Monoid (Forget r a b) | Via Since: profunctors-5.6.2 |
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
Monoid (f (g a)) => Monoid (Compose f g a) | Since: base-4.16.0.0 |
Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
You can alternatively define sconcat
instead of (<>
), in which case the
laws are:
Since: base-4.9.0.0
Methods
(<>) :: a -> a -> a infixr 6 #
An associative operation.
>>>
[1,2,3] <> [4,5,6]
[1,2,3,4,5,6]
Reduce a non-empty list with <>
The default definition should be sufficient, but this can be overridden for efficiency.
>>>
import Data.List.NonEmpty (NonEmpty (..))
>>>
sconcat $ "Hello" :| [" ", "Haskell", "!"]
"Hello Haskell!"
stimes :: Integral b => b -> a -> a #
Repeat a value n
times.
Given that this works on a Semigroup
it is allowed to fail if
you request 0 or fewer repetitions, and the default definition
will do so.
By making this a member of the class, idempotent semigroups
and monoids can upgrade this to execute in \(\mathcal{O}(1)\) by
picking stimes =
or stimesIdempotent
stimes =
respectively.stimesIdempotentMonoid
>>>
stimes 4 [1]
[1,1,1,1]
Instances
Semigroup ByteArray | Since: base-4.17.0.0 |
Semigroup All | Since: base-4.9.0.0 |
Semigroup Any | Since: base-4.9.0.0 |
Semigroup Void | Since: base-4.9.0.0 |
Semigroup Builder | |
Semigroup ByteString | |
Defined in Data.ByteString.Internal.Type Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
Semigroup ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (<>) :: ShortByteString -> ShortByteString -> ShortByteString # sconcat :: NonEmpty ShortByteString -> ShortByteString # stimes :: Integral b => b -> ShortByteString -> ShortByteString # | |
Semigroup IntSet | Since: containers-0.5.7 |
Semigroup Ordering | Since: base-4.9.0.0 |
Semigroup OsString | |
Semigroup PosixString | |
Defined in System.OsString.Internal.Types Methods (<>) :: PosixString -> PosixString -> PosixString # sconcat :: NonEmpty PosixString -> PosixString # stimes :: Integral b => b -> PosixString -> PosixString # | |
Semigroup WindowsString | |
Defined in System.OsString.Internal.Types Methods (<>) :: WindowsString -> WindowsString -> WindowsString # sconcat :: NonEmpty WindowsString -> WindowsString # stimes :: Integral b => b -> WindowsString -> WindowsString # | |
Semigroup Doc | |
Semigroup Builder | |
Semigroup StrictBuilder | Concatenation of |
Defined in Data.Text.Internal.StrictBuilder Methods (<>) :: StrictBuilder -> StrictBuilder -> StrictBuilder # sconcat :: NonEmpty StrictBuilder -> StrictBuilder # stimes :: Integral b => b -> StrictBuilder -> StrictBuilder # | |
Semigroup CalendarDiffDays | Additive |
Defined in Data.Time.Calendar.CalendarDiffDays Methods (<>) :: CalendarDiffDays -> CalendarDiffDays -> CalendarDiffDays # sconcat :: NonEmpty CalendarDiffDays -> CalendarDiffDays # stimes :: Integral b => b -> CalendarDiffDays -> CalendarDiffDays # | |
Semigroup CalendarDiffTime | Additive |
Defined in Data.Time.LocalTime.Internal.CalendarDiffTime Methods (<>) :: CalendarDiffTime -> CalendarDiffTime -> CalendarDiffTime # sconcat :: NonEmpty CalendarDiffTime -> CalendarDiffTime # stimes :: Integral b => b -> CalendarDiffTime -> CalendarDiffTime # | |
Semigroup () | Since: base-4.9.0.0 |
Bits a => Semigroup (And a) | Since: base-4.16 |
FiniteBits a => Semigroup (Iff a) | This constraint is arguably
too strong. However, as some types (such as Since: base-4.16 |
Bits a => Semigroup (Ior a) | Since: base-4.16 |
Bits a => Semigroup (Xor a) | Since: base-4.16 |
Semigroup (FromMaybe b) | |
Semigroup a => Semigroup (JoinWith a) | |
Semigroup (NonEmptyDList a) | |
Semigroup (Comparison a) |
(<>) :: Comparison a -> Comparison a -> Comparison a Comparison cmp <> Comparison cmp' = Comparison a a' -> cmp a a' <> cmp a a' |
Defined in Data.Functor.Contravariant Methods (<>) :: Comparison a -> Comparison a -> Comparison a # sconcat :: NonEmpty (Comparison a) -> Comparison a # stimes :: Integral b => b -> Comparison a -> Comparison a # | |
Semigroup (Equivalence a) |
(<>) :: Equivalence a -> Equivalence a -> Equivalence a Equivalence equiv <> Equivalence equiv' = Equivalence a b -> equiv a b && equiv' a b |
Defined in Data.Functor.Contravariant Methods (<>) :: Equivalence a -> Equivalence a -> Equivalence a # sconcat :: NonEmpty (Equivalence a) -> Equivalence a # stimes :: Integral b => b -> Equivalence a -> Equivalence a # | |
Semigroup (Predicate a) |
(<>) :: Predicate a -> Predicate a -> Predicate a Predicate pred <> Predicate pred' = Predicate a -> pred a && pred' a |
Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
Semigroup (First a) | Since: base-4.9.0.0 |
Semigroup (Last a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Max a) | Since: base-4.9.0.0 |
Ord a => Semigroup (Min a) | Since: base-4.9.0.0 |
Monoid m => Semigroup (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods (<>) :: WrappedMonoid m -> WrappedMonoid m -> WrappedMonoid m # sconcat :: NonEmpty (WrappedMonoid m) -> WrappedMonoid m # stimes :: Integral b => b -> WrappedMonoid m -> WrappedMonoid m # | |
Semigroup a => Semigroup (Dual a) | Since: base-4.9.0.0 |
Semigroup (Endo a) | Since: base-4.9.0.0 |
Num a => Semigroup (Product a) | Since: base-4.9.0.0 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (STM a) | Since: base-4.17.0.0 |
(Generic a, Semigroup (Rep a ())) => Semigroup (Generically a) | Since: base-4.17.0.0 |
Defined in GHC.Generics Methods (<>) :: Generically a -> Generically a -> Generically a # sconcat :: NonEmpty (Generically a) -> Generically a # stimes :: Integral b => b -> Generically a -> Generically a # | |
Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
Semigroup (IntMap a) | Since: containers-0.5.7 |
Semigroup (Seq a) | Since: containers-0.5.7 |
Ord a => Semigroup (Intersection a) | |
Defined in Data.Set.Internal Methods (<>) :: Intersection a -> Intersection a -> Intersection a # sconcat :: NonEmpty (Intersection a) -> Intersection a # stimes :: Integral b => b -> Intersection a -> Intersection a # | |
Semigroup (MergeSet a) | |
Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
Semigroup (DList a) | |
Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
Semigroup (Doc a) | |
Semigroup (Array a) | Since: primitive-0.6.3.0 |
Semigroup (PrimArray a) | Since: primitive-0.6.4.0 |
Semigroup (SmallArray a) | Since: primitive-0.6.3.0 |
Defined in Data.Primitive.SmallArray Methods (<>) :: SmallArray a -> SmallArray a -> SmallArray a # sconcat :: NonEmpty (SmallArray a) -> SmallArray a # stimes :: Integral b => b -> SmallArray a -> SmallArray a # | |
Semigroup a => Semigroup (JoinWith a) | |
Semigroup a => Semigroup (Q a) | Since: template-haskell-2.17.0.0 |
(Hashable a, Eq a) => Semigroup (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
Semigroup (Vector a) | |
Prim a => Semigroup (Vector a) | |
Storable a => Semigroup (Vector a) | |
Semigroup (Vector a) | |
Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (a) | Since: base-4.15 |
Semigroup [a] | Since: base-4.9.0.0 |
Semigroup (Either a b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Op a b) |
(<>) :: Op a b -> Op a b -> Op a b Op f <> Op g = Op a -> f a <> g a |
Semigroup (Proxy s) | Since: base-4.9.0.0 |
Semigroup (U1 p) | Since: base-4.12.0.0 |
Semigroup (V1 p) | Since: base-4.12.0.0 |
Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
Ord k => Semigroup (Map k v) | |
Semigroup e => Semigroup (Validation e a) | |
Defined in Data.Either.Validation Methods (<>) :: Validation e a -> Validation e a -> Validation e a # sconcat :: NonEmpty (Validation e a) -> Validation e a # stimes :: Integral b => b -> Validation e a -> Validation e a # | |
Apply f => Semigroup (Act f a) | |
Apply f => Semigroup (Act f a) | |
Apply f => Semigroup (Act f a) | |
Alt f => Semigroup (Alt_ f a) | |
(Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
(Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
(Applicative f, Semigroup a) => Semigroup (Ap f a) | Since: base-4.12.0.0 |
Alternative f => Semigroup (Alt f a) | Since: base-4.9.0.0 |
Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
(Profunctor p, Arrow p, Semigroup b) => Semigroup (Closure p a b) | |
ArrowPlus p => Semigroup (Tambara p a b) | |
Semigroup a => Semigroup (Tagged s a) | |
Semigroup a => Semigroup (Constant a b) | |
(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
(Semigroup (f a), Semigroup (g a)) => Semigroup (Product f g a) | Since: base-4.16.0.0 |
(Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
Semigroup r => Semigroup (Forget r a b) | Via Since: profunctors-5.6.2 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
Semigroup (f (g a)) => Semigroup (Compose f g a) | Since: base-4.16.0.0 |
Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Example
Used in combination with (
, <$>
)(
can be used to build a record.<*>
)
>>>
data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>
produceFoo :: Applicative f => f Foo
>>>
produceBar :: Applicative f => f Bar
>>>
produceBaz :: Applicative f => f Baz
>>>
mkState :: Applicative f => f MyState
>>>
mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*>
and fmap
.
Example
>>>
liftA2 (,) (Just 3) (Just 5)
Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe
,
you can chain Maybe computations, with a possible "early return"
in case of Nothing
.
>>>
Just 2 *> Just 3
Just 3
>>>
Nothing *> Just 3
Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>
import Data.Char
>>>
import Text.ParserCombinators.ReadP
>>>
let p = string "my name is " *> munch1 isAlpha <* eof
>>>
readP_to_S p "my name is Simon"
[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id
Instances
The Ix
class is used to map a contiguous subrange of values in
a type onto integers. It is used primarily for array indexing
(see the array package).
The first argument (l,u)
of each of these operations is a pair
specifying the lower and upper bounds of a contiguous subrange of values.
An implementation is entitled to assume the following laws about these operations:
Minimal complete definition
range, (index | unsafeIndex), inRange
Methods
The list of values in the subrange defined by a bounding pair.
The position of a subscript in the subrange.
inRange :: (a, a) -> a -> Bool #
Returns True
the given subscript lies in the range defined
the bounding pair.
The size of the subrange defined by a bounding pair.
Instances
Ix CBool | |
Ix CChar | |
Ix CInt | |
Ix CIntMax | |
Defined in Foreign.C.Types | |
Ix CIntPtr | |
Defined in Foreign.C.Types | |
Ix CLLong | |
Ix CLong | |
Ix CPtrdiff | |
Defined in Foreign.C.Types Methods range :: (CPtrdiff, CPtrdiff) -> [CPtrdiff] # index :: (CPtrdiff, CPtrdiff) -> CPtrdiff -> Int # unsafeIndex :: (CPtrdiff, CPtrdiff) -> CPtrdiff -> Int # inRange :: (CPtrdiff, CPtrdiff) -> CPtrdiff -> Bool # rangeSize :: (CPtrdiff, CPtrdiff) -> Int # unsafeRangeSize :: (CPtrdiff, CPtrdiff) -> Int # | |
Ix CSChar | |
Ix CShort | |
Ix CSigAtomic | |
Defined in Foreign.C.Types Methods range :: (CSigAtomic, CSigAtomic) -> [CSigAtomic] # index :: (CSigAtomic, CSigAtomic) -> CSigAtomic -> Int # unsafeIndex :: (CSigAtomic, CSigAtomic) -> CSigAtomic -> Int # inRange :: (CSigAtomic, CSigAtomic) -> CSigAtomic -> Bool # rangeSize :: (CSigAtomic, CSigAtomic) -> Int # unsafeRangeSize :: (CSigAtomic, CSigAtomic) -> Int # | |
Ix CSize | |
Ix CUChar | |
Ix CUInt | |
Ix CUIntMax | |
Defined in Foreign.C.Types Methods range :: (CUIntMax, CUIntMax) -> [CUIntMax] # index :: (CUIntMax, CUIntMax) -> CUIntMax -> Int # unsafeIndex :: (CUIntMax, CUIntMax) -> CUIntMax -> Int # inRange :: (CUIntMax, CUIntMax) -> CUIntMax -> Bool # rangeSize :: (CUIntMax, CUIntMax) -> Int # unsafeRangeSize :: (CUIntMax, CUIntMax) -> Int # | |
Ix CUIntPtr | |
Defined in Foreign.C.Types Methods range :: (CUIntPtr, CUIntPtr) -> [CUIntPtr] # index :: (CUIntPtr, CUIntPtr) -> CUIntPtr -> Int # unsafeIndex :: (CUIntPtr, CUIntPtr) -> CUIntPtr -> Int # inRange :: (CUIntPtr, CUIntPtr) -> CUIntPtr -> Bool # rangeSize :: (CUIntPtr, CUIntPtr) -> Int # unsafeRangeSize :: (CUIntPtr, CUIntPtr) -> Int # | |
Ix CULLong | |
Defined in Foreign.C.Types | |
Ix CULong | |
Ix CUShort | |
Defined in Foreign.C.Types | |
Ix CWchar | |
Ix IntPtr | |
Ix WordPtr | |
Defined in Foreign.Ptr | |
Ix Void | Since: base-4.8.0.0 |
Ix Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods range :: (Associativity, Associativity) -> [Associativity] # index :: (Associativity, Associativity) -> Associativity -> Int # unsafeIndex :: (Associativity, Associativity) -> Associativity -> Int # inRange :: (Associativity, Associativity) -> Associativity -> Bool # rangeSize :: (Associativity, Associativity) -> Int # unsafeRangeSize :: (Associativity, Associativity) -> Int # | |
Ix DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods range :: (DecidedStrictness, DecidedStrictness) -> [DecidedStrictness] # index :: (DecidedStrictness, DecidedStrictness) -> DecidedStrictness -> Int # unsafeIndex :: (DecidedStrictness, DecidedStrictness) -> DecidedStrictness -> Int # inRange :: (DecidedStrictness, DecidedStrictness) -> DecidedStrictness -> Bool # rangeSize :: (DecidedStrictness, DecidedStrictness) -> Int # unsafeRangeSize :: (DecidedStrictness, DecidedStrictness) -> Int # | |
Ix SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods range :: (SourceStrictness, SourceStrictness) -> [SourceStrictness] # index :: (SourceStrictness, SourceStrictness) -> SourceStrictness -> Int # unsafeIndex :: (SourceStrictness, SourceStrictness) -> SourceStrictness -> Int # inRange :: (SourceStrictness, SourceStrictness) -> SourceStrictness -> Bool # rangeSize :: (SourceStrictness, SourceStrictness) -> Int # unsafeRangeSize :: (SourceStrictness, SourceStrictness) -> Int # | |
Ix SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods range :: (SourceUnpackedness, SourceUnpackedness) -> [SourceUnpackedness] # index :: (SourceUnpackedness, SourceUnpackedness) -> SourceUnpackedness -> Int # unsafeIndex :: (SourceUnpackedness, SourceUnpackedness) -> SourceUnpackedness -> Int # inRange :: (SourceUnpackedness, SourceUnpackedness) -> SourceUnpackedness -> Bool # rangeSize :: (SourceUnpackedness, SourceUnpackedness) -> Int # unsafeRangeSize :: (SourceUnpackedness, SourceUnpackedness) -> Int # | |
Ix SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device Methods range :: (SeekMode, SeekMode) -> [SeekMode] # index :: (SeekMode, SeekMode) -> SeekMode -> Int # unsafeIndex :: (SeekMode, SeekMode) -> SeekMode -> Int # inRange :: (SeekMode, SeekMode) -> SeekMode -> Bool # rangeSize :: (SeekMode, SeekMode) -> Int # unsafeRangeSize :: (SeekMode, SeekMode) -> Int # | |
Ix IOMode | Since: base-4.2.0.0 |
Ix Int16 | Since: base-2.1 |
Ix Int32 | Since: base-2.1 |
Ix Int64 | Since: base-2.1 |
Ix Int8 | Since: base-2.1 |
Ix GeneralCategory | Since: base-2.1 |
Defined in GHC.Unicode Methods range :: (GeneralCategory, GeneralCategory) -> [GeneralCategory] # index :: (GeneralCategory, GeneralCategory) -> GeneralCategory -> Int # unsafeIndex :: (GeneralCategory, GeneralCategory) -> GeneralCategory -> Int # inRange :: (GeneralCategory, GeneralCategory) -> GeneralCategory -> Bool # rangeSize :: (GeneralCategory, GeneralCategory) -> Int # unsafeRangeSize :: (GeneralCategory, GeneralCategory) -> Int # | |
Ix Word16 | Since: base-2.1 |
Ix Word32 | Since: base-2.1 |
Ix Word64 | Since: base-2.1 |
Ix Word8 | Since: base-2.1 |
Ix CBlkCnt | |
Defined in System.Posix.Types | |
Ix CBlkSize | |
Defined in System.Posix.Types Methods range :: (CBlkSize, CBlkSize) -> [CBlkSize] # index :: (CBlkSize, CBlkSize) -> CBlkSize -> Int # unsafeIndex :: (CBlkSize, CBlkSize) -> CBlkSize -> Int # inRange :: (CBlkSize, CBlkSize) -> CBlkSize -> Bool # rangeSize :: (CBlkSize, CBlkSize) -> Int # unsafeRangeSize :: (CBlkSize, CBlkSize) -> Int # | |
Ix CClockId | |
Defined in System.Posix.Types Methods range :: (CClockId, CClockId) -> [CClockId] # index :: (CClockId, CClockId) -> CClockId -> Int # unsafeIndex :: (CClockId, CClockId) -> CClockId -> Int # inRange :: (CClockId, CClockId) -> CClockId -> Bool # rangeSize :: (CClockId, CClockId) -> Int # unsafeRangeSize :: (CClockId, CClockId) -> Int # | |
Ix CDev | |
Ix CFsBlkCnt | |
Defined in System.Posix.Types Methods range :: (CFsBlkCnt, CFsBlkCnt) -> [CFsBlkCnt] # index :: (CFsBlkCnt, CFsBlkCnt) -> CFsBlkCnt -> Int # unsafeIndex :: (CFsBlkCnt, CFsBlkCnt) -> CFsBlkCnt -> Int # inRange :: (CFsBlkCnt, CFsBlkCnt) -> CFsBlkCnt -> Bool # rangeSize :: (CFsBlkCnt, CFsBlkCnt) -> Int # unsafeRangeSize :: (CFsBlkCnt, CFsBlkCnt) -> Int # | |
Ix CFsFilCnt | |
Defined in System.Posix.Types Methods range :: (CFsFilCnt, CFsFilCnt) -> [CFsFilCnt] # index :: (CFsFilCnt, CFsFilCnt) -> CFsFilCnt -> Int # unsafeIndex :: (CFsFilCnt, CFsFilCnt) -> CFsFilCnt -> Int # inRange :: (CFsFilCnt, CFsFilCnt) -> CFsFilCnt -> Bool # rangeSize :: (CFsFilCnt, CFsFilCnt) -> Int # unsafeRangeSize :: (CFsFilCnt, CFsFilCnt) -> Int # | |
Ix CGid | |
Ix CId | |
Ix CIno | |
Ix CKey | |
Ix CMode | |
Ix CNfds | |
Ix CNlink | |
Ix COff | |
Ix CPid | |
Ix CRLim | |
Ix CSocklen | |
Defined in System.Posix.Types Methods range :: (CSocklen, CSocklen) -> [CSocklen] # index :: (CSocklen, CSocklen) -> CSocklen -> Int # unsafeIndex :: (CSocklen, CSocklen) -> CSocklen -> Int # inRange :: (CSocklen, CSocklen) -> CSocklen -> Bool # rangeSize :: (CSocklen, CSocklen) -> Int # unsafeRangeSize :: (CSocklen, CSocklen) -> Int # | |
Ix CSsize | |
Ix CTcflag | |
Defined in System.Posix.Types | |
Ix CUid | |
Ix Fd | |
Ix Ordering | Since: base-2.1 |
Defined in GHC.Ix Methods range :: (Ordering, Ordering) -> [Ordering] # index :: (Ordering, Ordering) -> Ordering -> Int # unsafeIndex :: (Ordering, Ordering) -> Ordering -> Int # inRange :: (Ordering, Ordering) -> Ordering -> Bool # rangeSize :: (Ordering, Ordering) -> Int # unsafeRangeSize :: (Ordering, Ordering) -> Int # | |
Ix Day | |
Ix DayOfWeek | |
Defined in Data.Time.Calendar.Week Methods range :: (DayOfWeek, DayOfWeek) -> [DayOfWeek] # index :: (DayOfWeek, DayOfWeek) -> DayOfWeek -> Int # unsafeIndex :: (DayOfWeek, DayOfWeek) -> DayOfWeek -> Int # inRange :: (DayOfWeek, DayOfWeek) -> DayOfWeek -> Bool # rangeSize :: (DayOfWeek, DayOfWeek) -> Int # unsafeRangeSize :: (DayOfWeek, DayOfWeek) -> Int # | |
Ix Integer | Since: base-2.1 |
Defined in GHC.Ix | |
Ix Natural | Since: base-4.8.0.0 |
Defined in GHC.Ix | |
Ix () | Since: base-2.1 |
Ix Bool | Since: base-2.1 |
Ix Char | Since: base-2.1 |
Ix Int | Since: base-2.1 |
Ix Word | Since: base-4.6.0.0 |
Ix a => Ix (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods range :: (Identity a, Identity a) -> [Identity a] # index :: (Identity a, Identity a) -> Identity a -> Int # unsafeIndex :: (Identity a, Identity a) -> Identity a -> Int # inRange :: (Identity a, Identity a) -> Identity a -> Bool # rangeSize :: (Identity a, Identity a) -> Int # unsafeRangeSize :: (Identity a, Identity a) -> Int # | |
Ix a => Ix (Down a) | Since: base-4.14.0.0 |
Ix a => Ix (a) | |
Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
(Ix a, Ix b) => Ix (a, b) | Since: base-2.1 |
Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |
Ix b => Ix (Tagged s b) | |
Defined in Data.Tagged Methods range :: (Tagged s b, Tagged s b) -> [Tagged s b] # index :: (Tagged s b, Tagged s b) -> Tagged s b -> Int # unsafeIndex :: (Tagged s b, Tagged s b) -> Tagged s b -> Int # inRange :: (Tagged s b, Tagged s b) -> Tagged s b -> Bool # rangeSize :: (Tagged s b, Tagged s b) -> Int # unsafeRangeSize :: (Tagged s b, Tagged s b) -> Int # | |
(Ix a1, Ix a2, Ix a3) => Ix (a1, a2, a3) | Since: base-2.1 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3), (a1, a2, a3)) -> [(a1, a2, a3)] # index :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Int # unsafeIndex :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Int # inRange :: ((a1, a2, a3), (a1, a2, a3)) -> (a1, a2, a3) -> Bool # rangeSize :: ((a1, a2, a3), (a1, a2, a3)) -> Int # unsafeRangeSize :: ((a1, a2, a3), (a1, a2, a3)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1, a2, a3, a4) | Since: base-2.1 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> [(a1, a2, a3, a4)] # index :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Int # unsafeIndex :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Int # inRange :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> (a1, a2, a3, a4) -> Bool # rangeSize :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4), (a1, a2, a3, a4)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1, a2, a3, a4, a5) | Since: base-2.1 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> [(a1, a2, a3, a4, a5)] # index :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Int # inRange :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> (a1, a2, a3, a4, a5) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5), (a1, a2, a3, a4, a5)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6) => Ix (a1, a2, a3, a4, a5, a6) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> [(a1, a2, a3, a4, a5, a6)] # index :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> (a1, a2, a3, a4, a5, a6) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> (a1, a2, a3, a4, a5, a6) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> (a1, a2, a3, a4, a5, a6) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6), (a1, a2, a3, a4, a5, a6)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7) => Ix (a1, a2, a3, a4, a5, a6, a7) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> [(a1, a2, a3, a4, a5, a6, a7)] # index :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> (a1, a2, a3, a4, a5, a6, a7) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> (a1, a2, a3, a4, a5, a6, a7) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> (a1, a2, a3, a4, a5, a6, a7) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7), (a1, a2, a3, a4, a5, a6, a7)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8) => Ix (a1, a2, a3, a4, a5, a6, a7, a8) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> [(a1, a2, a3, a4, a5, a6, a7, a8)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> (a1, a2, a3, a4, a5, a6, a7, a8) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> (a1, a2, a3, a4, a5, a6, a7, a8) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> (a1, a2, a3, a4, a5, a6, a7, a8) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8), (a1, a2, a3, a4, a5, a6, a7, a8)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9), (a1, a2, a3, a4, a5, a6, a7, a8, a9)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA, Ix aB) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA, Ix aB, Ix aC) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA, Ix aB, Ix aC, Ix aD) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA, Ix aB, Ix aC, Ix aD, Ix aE) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE)) -> Int # | |
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5, Ix a6, Ix a7, Ix a8, Ix a9, Ix aA, Ix aB, Ix aC, Ix aD, Ix aE, Ix aF) => Ix (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF) | Since: base-4.15.0.0 |
Defined in GHC.Ix Methods range :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> [(a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)] # index :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF) -> Int # unsafeIndex :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF) -> Int # inRange :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF) -> Bool # rangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> Int # unsafeRangeSize :: ((a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF), (a1, a2, a3, a4, a5, a6, a7, a8, a9, aA, aB, aC, aD, aE, aF)) -> Int # |
The strict ST
monad.
The ST
monad allows for destructive updates, but is escapable (unlike IO).
A computation of type
returns a value of type ST
s aa
, and
execute in "thread" s
. The s
parameter is either
- an uninstantiated type variable (inside invocations of
runST
), or RealWorld
(inside invocations ofstToIO
).
It serves to keep the internal states of different invocations
of runST
separate from each other and from invocations of
stToIO
.
The >>=
and >>
operations are strict in the state (though not in
values stored in the state). For example,
runST
(writeSTRef _|_ v >>= f) = _|_
Instances
A value of type
is a computation which, when performed,
does some I/O before returning a value of type IO
aa
.
There is really only one way to "perform" an I/O action: bind it to
Main.main
in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO
monad and called
at some point, directly or indirectly, from Main.main
.
IO
is a monad, so IO
actions can be combined using either the do-notation
or the >>
and >>=
operations from the Monad
class.
Instances
8-bit unsigned integer type
Instances
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Storable Word8 | Since: base-2.1 |
Bits Word8 | Since: base-2.1 |
Defined in GHC.Word Methods (.&.) :: Word8 -> Word8 -> Word8 # (.|.) :: Word8 -> Word8 -> Word8 # xor :: Word8 -> Word8 -> Word8 # complement :: Word8 -> Word8 # shift :: Word8 -> Int -> Word8 # rotate :: Word8 -> Int -> Word8 # setBit :: Word8 -> Int -> Word8 # clearBit :: Word8 -> Int -> Word8 # complementBit :: Word8 -> Int -> Word8 # testBit :: Word8 -> Int -> Bool # bitSizeMaybe :: Word8 -> Maybe Int # shiftL :: Word8 -> Int -> Word8 # unsafeShiftL :: Word8 -> Int -> Word8 # shiftR :: Word8 -> Int -> Word8 # unsafeShiftR :: Word8 -> Int -> Word8 # rotateL :: Word8 -> Int -> Word8 # | |
FiniteBits Word8 | Since: base-4.6.0.0 |
Defined in GHC.Word Methods finiteBitSize :: Word8 -> Int # countLeadingZeros :: Word8 -> Int # countTrailingZeros :: Word8 -> Int # | |
Bounded Word8 | Since: base-2.1 |
Enum Word8 | Since: base-2.1 |
Ix Word8 | Since: base-2.1 |
Num Word8 | Since: base-2.1 |
Read Word8 | Since: base-2.1 |
Integral Word8 | Since: base-2.1 |
Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
Show Word8 | Since: base-2.1 |
PrintfArg Word8 | Since: base-2.1 |
Defined in Text.Printf | |
NFData Word8 | |
Defined in Control.DeepSeq | |
Eq Word8 | Since: base-2.1 |
Ord Word8 | Since: base-2.1 |
Hashable Word8 | |
Defined in Data.Hashable.Class | |
Prim Word8 | |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy Word8 -> Int# # alignmentOfType# :: Proxy Word8 -> Int# # alignment# :: Word8 -> Int# # indexByteArray# :: ByteArray# -> Int# -> Word8 # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Word8 #) # writeByteArray# :: MutableByteArray# s -> Int# -> Word8 -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Word8 -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Word8 # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Word8 #) # writeOffAddr# :: Addr# -> Int# -> Word8 -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Word8 -> State# s -> State# s # | |
Uniform Word8 | |
Defined in System.Random.Internal Methods uniformM :: StatefulGen g m => g -> m Word8 # | |
UniformRange Word8 | |
Defined in System.Random.Internal | |
ByteSource Word8 | |
Defined in Data.UUID.Types.Internal.Builder | |
Unbox Word8 | |
Defined in Data.Vector.Unboxed.Base | |
Lift Word8 | |
Vector Vector Word8 | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word8 -> ST s (Vector Word8) basicUnsafeThaw :: Vector Word8 -> ST s (Mutable Vector s Word8) basicLength :: Vector Word8 -> Int basicUnsafeSlice :: Int -> Int -> Vector Word8 -> Vector Word8 basicUnsafeIndexM :: Vector Word8 -> Int -> Box Word8 basicUnsafeCopy :: Mutable Vector s Word8 -> Vector Word8 -> ST s () | |
MVector MVector Word8 | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word8 -> Int basicUnsafeSlice :: Int -> Int -> MVector s Word8 -> MVector s Word8 basicOverlaps :: MVector s Word8 -> MVector s Word8 -> Bool basicUnsafeNew :: Int -> ST s (MVector s Word8) basicInitialize :: MVector s Word8 -> ST s () basicUnsafeReplicate :: Int -> Word8 -> ST s (MVector s Word8) basicUnsafeRead :: MVector s Word8 -> Int -> ST s Word8 basicUnsafeWrite :: MVector s Word8 -> Int -> Word8 -> ST s () basicClear :: MVector s Word8 -> ST s () basicSet :: MVector s Word8 -> Word8 -> ST s () basicUnsafeCopy :: MVector s Word8 -> MVector s Word8 -> ST s () basicUnsafeMove :: MVector s Word8 -> MVector s Word8 -> ST s () basicUnsafeGrow :: MVector s Word8 -> Int -> ST s (MVector s Word8) | |
newtype Vector Word8 | |
Defined in Data.Vector.Unboxed.Base | |
type ByteSink Word8 g | |
Defined in Data.UUID.Types.Internal.Builder type ByteSink Word8 g = Takes1Byte g | |
newtype MVector s Word8 | |
Defined in Data.Vector.Unboxed.Base |
Haskell defines operations to read and write characters from and to files,
represented by values of type Handle
. Each value of this type is a
handle: a record used by the Haskell run-time system to manage I/O
with file system objects. A handle has at least the following properties:
- whether it manages input or output or both;
- whether it is open, closed or semi-closed;
- whether the object is seekable;
- whether buffering is disabled, or enabled on a line or block basis;
- a buffer (whose length may be zero).
Most handles will also have a current I/O position indicating where the next
input or output operation will occur. A handle is readable if it
manages only input or both input and output; likewise, it is writable if
it manages only output or both input and output. A handle is open when
first allocated.
Once it is closed it can no longer be used for either input or output,
though an implementation cannot re-use its storage while references
remain to it. Handles are in the Show
and Eq
classes. The string
produced by showing a handle is system dependent; it should include
enough information to identify the handle for debugging. A handle is
equal according to ==
only to itself; no attempt
is made to compare the internal state of different handles for equality.
Instances
data ForeignPtr a #
The type ForeignPtr
represents references to objects that are
maintained in a foreign language, i.e., that are not part of the
data structures usually managed by the Haskell storage manager.
The essential difference between ForeignPtr
s and vanilla memory
references of type Ptr a
is that the former may be associated
with finalizers. A finalizer is a routine that is invoked when
the Haskell storage manager detects that - within the Haskell heap
and stack - there are no more references left that are pointing to
the ForeignPtr
. Typically, the finalizer will, then, invoke
routines in the foreign language that free the resources bound by
the foreign object.
The ForeignPtr
is parameterised in the same way as Ptr
. The
type argument of ForeignPtr
should normally be an instance of
class Storable
.
Instances
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Show (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods showsPrec :: Int -> ForeignPtr a -> ShowS # show :: ForeignPtr a -> String # showList :: [ForeignPtr a] -> ShowS # | |
Eq (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr | |
Ord (ForeignPtr a) | Since: base-2.1 |
Defined in GHC.ForeignPtr Methods compare :: ForeignPtr a -> ForeignPtr a -> Ordering # (<) :: ForeignPtr a -> ForeignPtr a -> Bool # (<=) :: ForeignPtr a -> ForeignPtr a -> Bool # (>) :: ForeignPtr a -> ForeignPtr a -> Bool # (>=) :: ForeignPtr a -> ForeignPtr a -> Bool # max :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # min :: ForeignPtr a -> ForeignPtr a -> ForeignPtr a # |
Boolean monoid under disjunction (||
).
>>>
getAny (Any True <> mempty <> Any False)
True
>>>
getAny (mconcat (map (\x -> Any (even x)) [2,4,6,7,8]))
True
Instances
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Monoid Any | Since: base-2.1 |
Semigroup Any | Since: base-4.9.0.0 |
Bounded Any | Since: base-2.1 |
Generic Any | |
Read Any | Since: base-2.1 |
Show Any | Since: base-2.1 |
NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq Any | Since: base-2.1 |
Ord Any | Since: base-2.1 |
Unbox Any | |
Defined in Data.Vector.Unboxed.Base | |
Vector Vector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Any -> ST s (Vector Any) basicUnsafeThaw :: Vector Any -> ST s (Mutable Vector s Any) basicLength :: Vector Any -> Int basicUnsafeSlice :: Int -> Int -> Vector Any -> Vector Any basicUnsafeIndexM :: Vector Any -> Int -> Box Any basicUnsafeCopy :: Mutable Vector s Any -> Vector Any -> ST s () | |
MVector MVector Any | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Any -> Int basicUnsafeSlice :: Int -> Int -> MVector s Any -> MVector s Any basicOverlaps :: MVector s Any -> MVector s Any -> Bool basicUnsafeNew :: Int -> ST s (MVector s Any) basicInitialize :: MVector s Any -> ST s () basicUnsafeReplicate :: Int -> Any -> ST s (MVector s Any) basicUnsafeRead :: MVector s Any -> Int -> ST s Any basicUnsafeWrite :: MVector s Any -> Int -> Any -> ST s () basicClear :: MVector s Any -> ST s () basicSet :: MVector s Any -> Any -> ST s () basicUnsafeCopy :: MVector s Any -> MVector s Any -> ST s () basicUnsafeMove :: MVector s Any -> MVector s Any -> ST s () basicUnsafeGrow :: MVector s Any -> Int -> ST s (MVector s Any) | |
type Rep Any | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
newtype Vector Any | |
Defined in Data.Vector.Unboxed.Base | |
newtype MVector s Any | |
Defined in Data.Vector.Unboxed.Base |
64-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
class (forall a. Functor (p a)) => Bifunctor (p :: Type -> Type -> Type) where #
A bifunctor is a type constructor that takes
two type arguments and is a functor in both arguments. That
is, unlike with Functor
, a type constructor such as Either
does not need to be partially applied for a Bifunctor
instance, and the methods in this class permit mapping
functions over the Left
value or the Right
value,
or both at the same time.
Formally, the class Bifunctor
represents a bifunctor
from Hask
-> Hask
.
Intuitively it is a bifunctor where both the first and second arguments are covariant.
You can define a Bifunctor
by either defining bimap
or by
defining both first
and second
. A partially applied Bifunctor
must be a Functor
and the second
method must agree with fmap
.
From this it follows that:
second
id
=id
If you supply bimap
, you should ensure that:
bimap
id
id
≡id
If you supply first
and second
, ensure:
first
id
≡id
second
id
≡id
If you supply both, you should also ensure:
bimap
f g ≡first
f.
second
g
These ensure by parametricity:
bimap
(f.
g) (h.
i) ≡bimap
f h.
bimap
g ifirst
(f.
g) ≡first
f.
first
gsecond
(f.
g) ≡second
f.
second
g
Since 4.18.0.0 Functor
is a superclass of 'Bifunctor.
Since: base-4.8.0.0
Methods
bimap :: (a -> b) -> (c -> d) -> p a c -> p b d #
Map over both arguments at the same time.
bimap
f g ≡first
f.
second
g
Examples
>>>
bimap toUpper (+1) ('j', 3)
('J',4)
>>>
bimap toUpper (+1) (Left 'j')
Left 'J'
>>>
bimap toUpper (+1) (Right 3)
Right 4
Instances
Bifunctor Either | Since: base-4.8.0.0 |
Bifunctor Arg | Since: base-4.9.0.0 |
Bifunctor Validation | |
Defined in Data.Either.Validation Methods bimap :: (a -> b) -> (c -> d) -> Validation a c -> Validation b d # first :: (a -> b) -> Validation a c -> Validation b c # second :: (b -> c) -> Validation a b -> Validation a c # | |
Bifunctor (,) | Class laws for tuples hold only up to laziness. Both
Since: base-4.8.0.0 |
Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
Functor f => Bifunctor (FreeF f) | |
Bifunctor (Tagged :: Type -> Type -> Type) | |
Bifunctor (Constant :: Type -> Type -> Type) | |
Bifunctor ((,,) x1) | Since: base-4.8.0.0 |
Bifunctor (K1 i :: Type -> Type -> Type) | Since: base-4.9.0.0 |
Bifunctor ((,,,) x1 x2) | Since: base-4.8.0.0 |
Functor f => Bifunctor (Clown f :: Type -> Type -> Type) | |
Bifunctor p => Bifunctor (Flip p) | |
Functor g => Bifunctor (Joker g :: Type -> Type -> Type) | |
Bifunctor p => Bifunctor (WrappedBifunctor p) | |
Defined in Data.Bifunctor.Wrapped Methods bimap :: (a -> b) -> (c -> d) -> WrappedBifunctor p a c -> WrappedBifunctor p b d # first :: (a -> b) -> WrappedBifunctor p a c -> WrappedBifunctor p b c # second :: (b -> c) -> WrappedBifunctor p a b -> WrappedBifunctor p a c # | |
Bifunctor ((,,,,) x1 x2 x3) | Since: base-4.8.0.0 |
(Bifunctor f, Bifunctor g) => Bifunctor (Product f g) | |
(Bifunctor p, Bifunctor q) => Bifunctor (Sum p q) | |
Bifunctor ((,,,,,) x1 x2 x3 x4) | Since: base-4.8.0.0 |
(Functor f, Bifunctor p) => Bifunctor (Tannen f p) | |
Bifunctor ((,,,,,,) x1 x2 x3 x4 x5) | Since: base-4.8.0.0 |
(Bifunctor p, Functor f, Functor g) => Bifunctor (Biff p f g) | |
newtype AssertionFailed #
Constructors
AssertionFailed String |
Instances
Exception AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: AssertionFailed -> SomeException # | |
Show AssertionFailed | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods showsPrec :: Int -> AssertionFailed -> ShowS # show :: AssertionFailed -> String # showList :: [AssertionFailed] -> ShowS # |
class Typeable a => Data a where #
The Data
class comprehends a fundamental primitive gfoldl
for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap
combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap
combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT
, gmapQ
, gmapM
, etc are all provided with
default definitions in terms of gfoldl
, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap
combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl
is more higher-order
than the gmap
combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap
combinators will be
moved out of the class Data
.)
Conceptually, the definition of the gmap
combinators in terms of the
primitive gfoldl
requires the identification of the gfoldl
function
arguments. Technically, we also need to identify the type constructor
c
for the construction of the result type from the folded term type.
In the definition of gmapQ
x combinators, we use phantom type
constructors for the c
in the type of gfoldl
because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl
we simply use the plain constant type
constructor because gfoldl
is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)
). When the query is meant to compute a value
of type r
, then the result type within generic folding is r -> r
.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable
option, GHC can generate instances of the
Data
class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where gfoldl k z (C1 a b) = z C1 `k` a `k` b gfoldl k z C2 = z C2 gunfold k z c = case constrIndex c of 1 -> k (k (z C1)) 2 -> z C2 toConstr (C1 _ _) = con_C1 toConstr C2 = con_C2 dataTypeOf _ = ty_T con_C1 = mkConstr ty_T "C1" [] Prefix con_C2 = mkConstr ty_T "C2" [] Prefix ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
Minimal complete definition
Methods
Arguments
:: (forall d b. Data d => c (d -> b) -> d -> c b) | defines how nonempty constructor applications are folded. It takes the folded tail of the constructor application and its head, i.e., an immediate subterm, and combines them in some way. |
-> (forall g. g -> c g) | defines how the empty constructor application is folded, like the neutral / start element for list folding. |
-> a | structure to be folded. |
-> c a | result, with a type defined in terms of |
Left-associative fold operation for constructor applications.
The type of gfoldl
is a headache, but operationally it is a simple
generalisation of a list fold.
The default definition for gfoldl
is
, which is
suitable for abstract datatypes with no substructures.const
id
gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a #
Unfolding constructor applications
Obtaining the constructor from a given datum. For proper terms, this is meant to be the top-level constructor. Primitive datatypes are here viewed as potentially infinite sets of values (i.e., constructors).
dataTypeOf :: a -> DataType #
The outer type constructor of the type
dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a) #
Mediate types and unary type constructors.
In Data
instances of the form
instance (Data a, ...) => Data (T a)
dataCast1
should be defined as gcast1
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a) #
Mediate types and binary type constructors.
In Data
instances of the form
instance (Data a, Data b, ...) => Data (T a b)
dataCast2
should be defined as gcast2
.
The default definition is
, which is appropriate
for instances of other forms.const
Nothing
gmapT :: (forall b. Data b => b -> b) -> a -> a #
A generic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in the
type of gfoldl
to an identity datatype constructor, using the
isomorphism pair as injection and projection.
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a left-associative binary operator
gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a right-associative binary operator
gmapQ :: (forall d. Data d => d -> u) -> a -> [u] #
A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.
gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u #
A generic query that processes one child by index (zero-based)
gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a #
A generic monadic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c
in
the type of gfoldl
to the monad datatype constructor, defining
injection and projection using return
and >>=
.
gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of at least one immediate subterm does not fail
gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of one immediate subterm with success
Instances
Data ByteArray | Since: base-4.17.0.0 |
Defined in Data.Array.Byte Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteArray -> c ByteArray # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteArray # toConstr :: ByteArray -> Constr # dataTypeOf :: ByteArray -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteArray) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteArray) # gmapT :: (forall b. Data b => b -> b) -> ByteArray -> ByteArray # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteArray -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteArray -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteArray -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteArray -> m ByteArray # | |
Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
Data Void | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Data SpecConstrAnnotation | Since: base-4.3.0.0 |
Defined in GHC.Exts Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation # toConstr :: SpecConstrAnnotation -> Constr # dataTypeOf :: SpecConstrAnnotation -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) # gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r # gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation # | |
Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
Data ByteString | |
Defined in Data.ByteString.Internal.Type Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
Data ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString # toConstr :: ShortByteString -> Constr # dataTypeOf :: ShortByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # | |
Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
Data Scientific | |
Defined in Data.Scientific Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Scientific -> c Scientific # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Scientific # toConstr :: Scientific -> Constr # dataTypeOf :: Scientific -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Scientific) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Scientific) # gmapT :: (forall b. Data b => b -> b) -> Scientific -> Scientific # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Scientific -> r # gmapQ :: (forall d. Data d => d -> u) -> Scientific -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Scientific -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Scientific -> m Scientific # | |
Data AnnLookup | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup # toConstr :: AnnLookup -> Constr # dataTypeOf :: AnnLookup -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup # | |
Data AnnTarget | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget # toConstr :: AnnTarget -> Constr # dataTypeOf :: AnnTarget -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget # | |
Data Bang | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang # dataTypeOf :: Bang -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang # | |
Data Body | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body # dataTypeOf :: Body -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) # gmapT :: (forall b. Data b => b -> b) -> Body -> Body # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body # | |
Data Bytes | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes # dataTypeOf :: Bytes -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes # | |
Data Callconv | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv # toConstr :: Callconv -> Constr # dataTypeOf :: Callconv -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv # | |
Data Clause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause # toConstr :: Clause -> Constr # dataTypeOf :: Clause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause # | |
Data Con | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Con -> c Con # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Con # dataTypeOf :: Con -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Con) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Con) # gmapT :: (forall b. Data b => b -> b) -> Con -> Con # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Con -> r # gmapQ :: (forall d. Data d => d -> u) -> Con -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Con -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Con -> m Con # | |
Data Dec | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dec -> c Dec # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Dec # dataTypeOf :: Dec -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Dec) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Dec) # gmapT :: (forall b. Data b => b -> b) -> Dec -> Dec # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dec -> r # gmapQ :: (forall d. Data d => d -> u) -> Dec -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dec -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dec -> m Dec # | |
Data DecidedStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
Data DerivClause | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivClause -> c DerivClause # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivClause # toConstr :: DerivClause -> Constr # dataTypeOf :: DerivClause -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivClause) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivClause) # gmapT :: (forall b. Data b => b -> b) -> DerivClause -> DerivClause # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivClause -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivClause -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivClause -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivClause -> m DerivClause # | |
Data DerivStrategy | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DerivStrategy -> c DerivStrategy # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DerivStrategy # toConstr :: DerivStrategy -> Constr # dataTypeOf :: DerivStrategy -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DerivStrategy) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DerivStrategy) # gmapT :: (forall b. Data b => b -> b) -> DerivStrategy -> DerivStrategy # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DerivStrategy -> r # gmapQ :: (forall d. Data d => d -> u) -> DerivStrategy -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DerivStrategy -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DerivStrategy -> m DerivStrategy # | |
Data DocLoc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DocLoc -> c DocLoc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DocLoc # toConstr :: DocLoc -> Constr # dataTypeOf :: DocLoc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DocLoc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocLoc) # gmapT :: (forall b. Data b => b -> b) -> DocLoc -> DocLoc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DocLoc -> r # gmapQ :: (forall d. Data d => d -> u) -> DocLoc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DocLoc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DocLoc -> m DocLoc # | |
Data Exp | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Exp -> c Exp # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Exp # dataTypeOf :: Exp -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Exp) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Exp) # gmapT :: (forall b. Data b => b -> b) -> Exp -> Exp # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Exp -> r # gmapQ :: (forall d. Data d => d -> u) -> Exp -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Exp -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Exp -> m Exp # | |
Data FamilyResultSig | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FamilyResultSig -> c FamilyResultSig # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FamilyResultSig # toConstr :: FamilyResultSig -> Constr # dataTypeOf :: FamilyResultSig -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FamilyResultSig) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FamilyResultSig) # gmapT :: (forall b. Data b => b -> b) -> FamilyResultSig -> FamilyResultSig # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FamilyResultSig -> r # gmapQ :: (forall d. Data d => d -> u) -> FamilyResultSig -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FamilyResultSig -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FamilyResultSig -> m FamilyResultSig # | |
Data Fixity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
Data FixityDirection | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FixityDirection -> c FixityDirection # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FixityDirection # toConstr :: FixityDirection -> Constr # dataTypeOf :: FixityDirection -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FixityDirection) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FixityDirection) # gmapT :: (forall b. Data b => b -> b) -> FixityDirection -> FixityDirection # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FixityDirection -> r # gmapQ :: (forall d. Data d => d -> u) -> FixityDirection -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FixityDirection -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FixityDirection -> m FixityDirection # | |
Data Foreign | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Foreign -> c Foreign # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Foreign # toConstr :: Foreign -> Constr # dataTypeOf :: Foreign -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Foreign) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Foreign) # gmapT :: (forall b. Data b => b -> b) -> Foreign -> Foreign # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Foreign -> r # gmapQ :: (forall d. Data d => d -> u) -> Foreign -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Foreign -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Foreign -> m Foreign # | |
Data FunDep | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep # toConstr :: FunDep -> Constr # dataTypeOf :: FunDep -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep # | |
Data Guard | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard # dataTypeOf :: Guard -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard # | |
Data Info | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Info -> c Info # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Info # dataTypeOf :: Info -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Info) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Info) # gmapT :: (forall b. Data b => b -> b) -> Info -> Info # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Info -> r # gmapQ :: (forall d. Data d => d -> u) -> Info -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Info -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Info -> m Info # | |
Data InjectivityAnn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> InjectivityAnn -> c InjectivityAnn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c InjectivityAnn # toConstr :: InjectivityAnn -> Constr # dataTypeOf :: InjectivityAnn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c InjectivityAnn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c InjectivityAnn) # gmapT :: (forall b. Data b => b -> b) -> InjectivityAnn -> InjectivityAnn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> InjectivityAnn -> r # gmapQ :: (forall d. Data d => d -> u) -> InjectivityAnn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> InjectivityAnn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> InjectivityAnn -> m InjectivityAnn # | |
Data Inline | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline # toConstr :: Inline -> Constr # dataTypeOf :: Inline -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline # | |
Data Lit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Lit -> c Lit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Lit # dataTypeOf :: Lit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Lit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Lit) # gmapT :: (forall b. Data b => b -> b) -> Lit -> Lit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Lit -> r # gmapQ :: (forall d. Data d => d -> u) -> Lit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Lit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Lit -> m Lit # | |
Data Loc | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc # dataTypeOf :: Loc -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc # | |
Data Match | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match # dataTypeOf :: Match -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) # gmapT :: (forall b. Data b => b -> b) -> Match -> Match # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match # | |
Data ModName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName # toConstr :: ModName -> Constr # dataTypeOf :: ModName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName # | |
Data Module | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module # toConstr :: Module -> Constr # dataTypeOf :: Module -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) # gmapT :: (forall b. Data b => b -> b) -> Module -> Module # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module # | |
Data ModuleInfo | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModuleInfo -> c ModuleInfo # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModuleInfo # toConstr :: ModuleInfo -> Constr # dataTypeOf :: ModuleInfo -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModuleInfo) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModuleInfo) # gmapT :: (forall b. Data b => b -> b) -> ModuleInfo -> ModuleInfo # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModuleInfo -> r # gmapQ :: (forall d. Data d => d -> u) -> ModuleInfo -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModuleInfo -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModuleInfo -> m ModuleInfo # | |
Data Name | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name # dataTypeOf :: Name -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) # gmapT :: (forall b. Data b => b -> b) -> Name -> Name # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name # | |
Data NameFlavour | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameFlavour -> c NameFlavour # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameFlavour # toConstr :: NameFlavour -> Constr # dataTypeOf :: NameFlavour -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameFlavour) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameFlavour) # gmapT :: (forall b. Data b => b -> b) -> NameFlavour -> NameFlavour # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameFlavour -> r # gmapQ :: (forall d. Data d => d -> u) -> NameFlavour -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameFlavour -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameFlavour -> m NameFlavour # | |
Data NameSpace | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace # toConstr :: NameSpace -> Constr # dataTypeOf :: NameSpace -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace # | |
Data OccName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName # toConstr :: OccName -> Constr # dataTypeOf :: OccName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName # | |
Data Overlap | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap # toConstr :: Overlap -> Constr # dataTypeOf :: Overlap -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap # | |
Data Pat | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pat -> c Pat # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pat # dataTypeOf :: Pat -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pat) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pat) # gmapT :: (forall b. Data b => b -> b) -> Pat -> Pat # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pat -> r # gmapQ :: (forall d. Data d => d -> u) -> Pat -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pat -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pat -> m Pat # | |
Data PatSynArgs | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynArgs -> c PatSynArgs # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynArgs # toConstr :: PatSynArgs -> Constr # dataTypeOf :: PatSynArgs -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynArgs) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynArgs) # gmapT :: (forall b. Data b => b -> b) -> PatSynArgs -> PatSynArgs # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynArgs -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynArgs -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynArgs -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynArgs -> m PatSynArgs # | |
Data PatSynDir | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir # toConstr :: PatSynDir -> Constr # dataTypeOf :: PatSynDir -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir # | |
Data Phases | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases # toConstr :: Phases -> Constr # dataTypeOf :: Phases -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases # | |
Data PkgName | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName # toConstr :: PkgName -> Constr # dataTypeOf :: PkgName -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName # | |
Data Pragma | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Pragma -> c Pragma # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Pragma # toConstr :: Pragma -> Constr # dataTypeOf :: Pragma -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Pragma) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Pragma) # gmapT :: (forall b. Data b => b -> b) -> Pragma -> Pragma # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Pragma -> r # gmapQ :: (forall d. Data d => d -> u) -> Pragma -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Pragma -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Pragma -> m Pragma # | |
Data Range | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Range -> c Range # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Range # dataTypeOf :: Range -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Range) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Range) # gmapT :: (forall b. Data b => b -> b) -> Range -> Range # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Range -> r # gmapQ :: (forall d. Data d => d -> u) -> Range -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Range -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Range -> m Range # | |
Data Role | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role # dataTypeOf :: Role -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) # gmapT :: (forall b. Data b => b -> b) -> Role -> Role # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role # | |
Data RuleBndr | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleBndr -> c RuleBndr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleBndr # toConstr :: RuleBndr -> Constr # dataTypeOf :: RuleBndr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleBndr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleBndr) # gmapT :: (forall b. Data b => b -> b) -> RuleBndr -> RuleBndr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleBndr -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleBndr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleBndr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleBndr -> m RuleBndr # | |
Data RuleMatch | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch # toConstr :: RuleMatch -> Constr # dataTypeOf :: RuleMatch -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch # | |
Data Safety | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety # toConstr :: Safety -> Constr # dataTypeOf :: Safety -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety # | |
Data SourceStrictness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
Data SourceUnpackedness | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
Data Specificity | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Specificity -> c Specificity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Specificity # toConstr :: Specificity -> Constr # dataTypeOf :: Specificity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Specificity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Specificity) # gmapT :: (forall b. Data b => b -> b) -> Specificity -> Specificity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Specificity -> r # gmapQ :: (forall d. Data d => d -> u) -> Specificity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Specificity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Specificity -> m Specificity # | |
Data Stmt | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Stmt -> c Stmt # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Stmt # dataTypeOf :: Stmt -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Stmt) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Stmt) # gmapT :: (forall b. Data b => b -> b) -> Stmt -> Stmt # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Stmt -> r # gmapQ :: (forall d. Data d => d -> u) -> Stmt -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Stmt -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Stmt -> m Stmt # | |
Data TyLit | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit # dataTypeOf :: TyLit -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit # | |
Data TySynEqn | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TySynEqn -> c TySynEqn # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TySynEqn # toConstr :: TySynEqn -> Constr # dataTypeOf :: TySynEqn -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TySynEqn) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TySynEqn) # gmapT :: (forall b. Data b => b -> b) -> TySynEqn -> TySynEqn # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TySynEqn -> r # gmapQ :: (forall d. Data d => d -> u) -> TySynEqn -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TySynEqn -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TySynEqn -> m TySynEqn # | |
Data Type | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type # dataTypeOf :: Type -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) # gmapT :: (forall b. Data b => b -> b) -> Type -> Type # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r # gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type # | |
Data TypeFamilyHead | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TypeFamilyHead -> c TypeFamilyHead # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TypeFamilyHead # toConstr :: TypeFamilyHead -> Constr # dataTypeOf :: TypeFamilyHead -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TypeFamilyHead) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TypeFamilyHead) # gmapT :: (forall b. Data b => b -> b) -> TypeFamilyHead -> TypeFamilyHead # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TypeFamilyHead -> r # gmapQ :: (forall d. Data d => d -> u) -> TypeFamilyHead -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TypeFamilyHead -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TypeFamilyHead -> m TypeFamilyHead # | |
Data CalendarDiffDays | Since: time-1.9.2 |
Defined in Data.Time.Calendar.CalendarDiffDays Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CalendarDiffDays -> c CalendarDiffDays # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CalendarDiffDays # toConstr :: CalendarDiffDays -> Constr # dataTypeOf :: CalendarDiffDays -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CalendarDiffDays) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CalendarDiffDays) # gmapT :: (forall b. Data b => b -> b) -> CalendarDiffDays -> CalendarDiffDays # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CalendarDiffDays -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CalendarDiffDays -> r # gmapQ :: (forall d. Data d => d -> u) -> CalendarDiffDays -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CalendarDiffDays -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CalendarDiffDays -> m CalendarDiffDays # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CalendarDiffDays -> m CalendarDiffDays # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CalendarDiffDays -> m CalendarDiffDays # | |
Data Day | |
Defined in Data.Time.Calendar.Days Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Day -> c Day # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Day # dataTypeOf :: Day -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Day) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Day) # gmapT :: (forall b. Data b => b -> b) -> Day -> Day # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Day -> r # gmapQ :: (forall d. Data d => d -> u) -> Day -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Day -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Day -> m Day # | |
Data DayOfWeek | |
Defined in Data.Time.Calendar.Week Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DayOfWeek -> c DayOfWeek # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DayOfWeek # toConstr :: DayOfWeek -> Constr # dataTypeOf :: DayOfWeek -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DayOfWeek) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DayOfWeek) # gmapT :: (forall b. Data b => b -> b) -> DayOfWeek -> DayOfWeek # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DayOfWeek -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DayOfWeek -> r # gmapQ :: (forall d. Data d => d -> u) -> DayOfWeek -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DayOfWeek -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DayOfWeek -> m DayOfWeek # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DayOfWeek -> m DayOfWeek # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DayOfWeek -> m DayOfWeek # | |
Data AbsoluteTime | |
Defined in Data.Time.Clock.Internal.AbsoluteTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AbsoluteTime -> c AbsoluteTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AbsoluteTime # toConstr :: AbsoluteTime -> Constr # dataTypeOf :: AbsoluteTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AbsoluteTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AbsoluteTime) # gmapT :: (forall b. Data b => b -> b) -> AbsoluteTime -> AbsoluteTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AbsoluteTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AbsoluteTime -> r # gmapQ :: (forall d. Data d => d -> u) -> AbsoluteTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> AbsoluteTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AbsoluteTime -> m AbsoluteTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AbsoluteTime -> m AbsoluteTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AbsoluteTime -> m AbsoluteTime # | |
Data DiffTime | |
Defined in Data.Time.Clock.Internal.DiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DiffTime -> c DiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DiffTime # toConstr :: DiffTime -> Constr # dataTypeOf :: DiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DiffTime) # gmapT :: (forall b. Data b => b -> b) -> DiffTime -> DiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> DiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DiffTime -> m DiffTime # | |
Data NominalDiffTime | |
Defined in Data.Time.Clock.Internal.NominalDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NominalDiffTime -> c NominalDiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NominalDiffTime # toConstr :: NominalDiffTime -> Constr # dataTypeOf :: NominalDiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NominalDiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NominalDiffTime) # gmapT :: (forall b. Data b => b -> b) -> NominalDiffTime -> NominalDiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NominalDiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> NominalDiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NominalDiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NominalDiffTime -> m NominalDiffTime # | |
Data SystemTime | |
Defined in Data.Time.Clock.Internal.SystemTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SystemTime -> c SystemTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SystemTime # toConstr :: SystemTime -> Constr # dataTypeOf :: SystemTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SystemTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SystemTime) # gmapT :: (forall b. Data b => b -> b) -> SystemTime -> SystemTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SystemTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SystemTime -> r # gmapQ :: (forall d. Data d => d -> u) -> SystemTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SystemTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SystemTime -> m SystemTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SystemTime -> m SystemTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SystemTime -> m SystemTime # | |
Data UTCTime | |
Defined in Data.Time.Clock.Internal.UTCTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime # toConstr :: UTCTime -> Constr # dataTypeOf :: UTCTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) # gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime # | |
Data UniversalTime | |
Defined in Data.Time.Clock.Internal.UniversalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UniversalTime -> c UniversalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UniversalTime # toConstr :: UniversalTime -> Constr # dataTypeOf :: UniversalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UniversalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UniversalTime) # gmapT :: (forall b. Data b => b -> b) -> UniversalTime -> UniversalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UniversalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> UniversalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UniversalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UniversalTime -> m UniversalTime # | |
Data CalendarDiffTime | Since: time-1.9.2 |
Defined in Data.Time.LocalTime.Internal.CalendarDiffTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> CalendarDiffTime -> c CalendarDiffTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c CalendarDiffTime # toConstr :: CalendarDiffTime -> Constr # dataTypeOf :: CalendarDiffTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c CalendarDiffTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CalendarDiffTime) # gmapT :: (forall b. Data b => b -> b) -> CalendarDiffTime -> CalendarDiffTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CalendarDiffTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CalendarDiffTime -> r # gmapQ :: (forall d. Data d => d -> u) -> CalendarDiffTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CalendarDiffTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CalendarDiffTime -> m CalendarDiffTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CalendarDiffTime -> m CalendarDiffTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CalendarDiffTime -> m CalendarDiffTime # | |
Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
Data TimeOfDay | |
Defined in Data.Time.LocalTime.Internal.TimeOfDay Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeOfDay -> c TimeOfDay # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeOfDay # toConstr :: TimeOfDay -> Constr # dataTypeOf :: TimeOfDay -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeOfDay) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeOfDay) # gmapT :: (forall b. Data b => b -> b) -> TimeOfDay -> TimeOfDay # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeOfDay -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeOfDay -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeOfDay -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeOfDay -> m TimeOfDay # | |
Data TimeZone | |
Defined in Data.Time.LocalTime.Internal.TimeZone Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TimeZone -> c TimeZone # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TimeZone # toConstr :: TimeZone -> Constr # dataTypeOf :: TimeZone -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TimeZone) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TimeZone) # gmapT :: (forall b. Data b => b -> b) -> TimeZone -> TimeZone # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TimeZone -> r # gmapQ :: (forall d. Data d => d -> u) -> TimeZone -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TimeZone -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TimeZone -> m TimeZone # | |
Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
Data UUID | |
Defined in Data.UUID.Types.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UUID -> c UUID # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UUID # dataTypeOf :: UUID -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c UUID) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UUID) # gmapT :: (forall b. Data b => b -> b) -> UUID -> UUID # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UUID -> r # gmapQ :: (forall d. Data d => d -> u) -> UUID -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> UUID -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UUID -> m UUID # | |
Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |
Typeable s => Data (MutableByteArray s) | Since: base-4.17.0.0 |
Defined in Data.Array.Byte Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableByteArray s -> c (MutableByteArray s) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableByteArray s) # toConstr :: MutableByteArray s -> Constr # dataTypeOf :: MutableByteArray s -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableByteArray s)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableByteArray s)) # gmapT :: (forall b. Data b => b -> b) -> MutableByteArray s -> MutableByteArray s # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableByteArray s -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableByteArray s -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableByteArray s -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableByteArray s -> m (MutableByteArray s) # | |
Data a => Data (Complex a) | Since: base-2.1 |
Defined in Data.Complex Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Complex a -> c (Complex a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Complex a) # toConstr :: Complex a -> Constr # dataTypeOf :: Complex a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Complex a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Complex a)) # gmapT :: (forall b. Data b => b -> b) -> Complex a -> Complex a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Complex a -> r # gmapQ :: (forall d. Data d => d -> u) -> Complex a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Complex a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Complex a -> m (Complex a) # | |
Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
Data a => Data (First a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
Data a => Data (Last a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
Data a => Data (Max a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Max a -> c (Max a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Max a) # dataTypeOf :: Max a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Max a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Max a)) # gmapT :: (forall b. Data b => b -> b) -> Max a -> Max a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Max a -> r # gmapQ :: (forall d. Data d => d -> u) -> Max a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Max a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Max a -> m (Max a) # | |
Data a => Data (Min a) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Min a -> c (Min a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Min a) # dataTypeOf :: Min a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Min a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Min a)) # gmapT :: (forall b. Data b => b -> b) -> Min a -> Min a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Min a -> r # gmapQ :: (forall d. Data d => d -> u) -> Min a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Min a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Min a -> m (Min a) # | |
Data m => Data (WrappedMonoid m) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonoid m -> c (WrappedMonoid m) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonoid m) # toConstr :: WrappedMonoid m -> Constr # dataTypeOf :: WrappedMonoid m -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonoid m)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonoid m)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonoid m -> WrappedMonoid m # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonoid m -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonoid m -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonoid m -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonoid m -> m0 (WrappedMonoid m) # | |
Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Data a => Data (ConstPtr a) | Since: base-4.18.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ConstPtr a -> c (ConstPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ConstPtr a) # toConstr :: ConstPtr a -> Constr # dataTypeOf :: ConstPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ConstPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ConstPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ConstPtr a -> ConstPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ConstPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ConstPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ConstPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ConstPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ConstPtr a -> m (ConstPtr a) # | |
Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
(Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
Data vertex => Data (SCC vertex) | Since: containers-0.5.9 |
Defined in Data.Graph Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SCC vertex -> c (SCC vertex) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SCC vertex) # toConstr :: SCC vertex -> Constr # dataTypeOf :: SCC vertex -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SCC vertex)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SCC vertex)) # gmapT :: (forall b. Data b => b -> b) -> SCC vertex -> SCC vertex # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SCC vertex -> r # gmapQ :: (forall d. Data d => d -> u) -> SCC vertex -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SCC vertex -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SCC vertex -> m (SCC vertex) # | |
Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
(Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
Data a => Data (Tree a) | |
Defined in Data.Tree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) # toConstr :: Tree a -> Constr # dataTypeOf :: Tree a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) # gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r # gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) # | |
Data a => Data (Array a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a -> c (Array a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a) # toConstr :: Array a -> Constr # dataTypeOf :: Array a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a)) # gmapT :: (forall b. Data b => b -> b) -> Array a -> Array a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a -> m (Array a) # | |
Data a => Data (SmallArray a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallArray a -> c (SmallArray a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallArray a) # toConstr :: SmallArray a -> Constr # dataTypeOf :: SmallArray a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallArray a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallArray a)) # gmapT :: (forall b. Data b => b -> b) -> SmallArray a -> SmallArray a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallArray a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallArray a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallArray a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallArray a -> m (SmallArray a) # | |
Data flag => Data (TyVarBndr flag) | |
Defined in Language.Haskell.TH.Syntax Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyVarBndr flag -> c (TyVarBndr flag) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (TyVarBndr flag) # toConstr :: TyVarBndr flag -> Constr # dataTypeOf :: TyVarBndr flag -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (TyVarBndr flag)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (TyVarBndr flag)) # gmapT :: (forall b. Data b => b -> b) -> TyVarBndr flag -> TyVarBndr flag # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyVarBndr flag -> r # gmapQ :: (forall d. Data d => d -> u) -> TyVarBndr flag -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyVarBndr flag -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyVarBndr flag -> m (TyVarBndr flag) # | |
(Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Prim a) => Data (Vector a) | |
Defined in Data.Vector.Primitive Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Storable a) => Data (Vector a) | |
Defined in Data.Vector.Storable Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Data a => Data (Vector a) | |
Defined in Data.Vector.Strict Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
(Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
Data a => Data (a) | Since: base-4.15 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> (a) -> c (a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a) # dataTypeOf :: (a) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a)) # gmapT :: (forall b. Data b => b -> b) -> (a) -> (a) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # | |
Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
(Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) # toConstr :: WrappedMonad m a -> Constr # dataTypeOf :: WrappedMonad m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # | |
(Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
(Typeable k, Typeable a) => Data (Fixed a) | Since: base-4.1.0.0 |
Defined in Data.Fixed Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixed a -> c (Fixed a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fixed a) # toConstr :: Fixed a -> Constr # dataTypeOf :: Fixed a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fixed a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fixed a)) # gmapT :: (forall b. Data b => b -> b) -> Fixed a -> Fixed a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixed a -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixed a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixed a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixed a -> m (Fixed a) # | |
Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
(Data a, Data b) => Data (Arg a b) | Since: base-4.9.0.0 |
Defined in Data.Semigroup Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Arg a b -> c (Arg a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Arg a b) # toConstr :: Arg a b -> Constr # dataTypeOf :: Arg a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Arg a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Arg a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Arg a b -> Arg a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Arg a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Arg a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Arg a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Arg a b -> m (Arg a b) # | |
(Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
(Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
(Typeable f, Data (f (Cofree f a)), Data a) => Data (Cofree f a) | |
Defined in Control.Comonad.Cofree Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Cofree f a -> c (Cofree f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Cofree f a) # toConstr :: Cofree f a -> Constr # dataTypeOf :: Cofree f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Cofree f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Cofree f a)) # gmapT :: (forall b. Data b => b -> b) -> Cofree f a -> Cofree f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Cofree f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Cofree f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Cofree f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Cofree f a -> m (Cofree f a) # | |
(Typeable f, Data (f (Free f a)), Data a) => Data (Free f a) | |
Defined in Control.Monad.Free Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free f a -> c (Free f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free f a) # toConstr :: Free f a -> Constr # dataTypeOf :: Free f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free f a)) # gmapT :: (forall b. Data b => b -> b) -> Free f a -> Free f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Free f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Free f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free f a -> m (Free f a) # | |
(Typeable s, Typeable a) => Data (MutableArray s a) | |
Defined in Data.Primitive.Array Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> MutableArray s a -> c (MutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (MutableArray s a) # toConstr :: MutableArray s a -> Constr # dataTypeOf :: MutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (MutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (MutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> MutableArray s a -> MutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> MutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> MutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> MutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> MutableArray s a -> m (MutableArray s a) # | |
(Typeable s, Typeable a) => Data (SmallMutableArray s a) | |
Defined in Data.Primitive.SmallArray Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SmallMutableArray s a -> c (SmallMutableArray s a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SmallMutableArray s a) # toConstr :: SmallMutableArray s a -> Constr # dataTypeOf :: SmallMutableArray s a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SmallMutableArray s a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SmallMutableArray s a)) # gmapT :: (forall b. Data b => b -> b) -> SmallMutableArray s a -> SmallMutableArray s a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SmallMutableArray s a -> r # gmapQ :: (forall d. Data d => d -> u) -> SmallMutableArray s a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SmallMutableArray s a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SmallMutableArray s a -> m (SmallMutableArray s a) # | |
(Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
(Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
(Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) # toConstr :: WrappedArrow a b c -> Constr # dataTypeOf :: WrappedArrow a b c -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
(Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
(Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
(Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
(a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
(Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
(Typeable f, Typeable b, Data a, Data (f b)) => Data (FreeF f a b) | |
Defined in Control.Monad.Trans.Free Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> FreeF f a b -> c (FreeF f a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (FreeF f a b) # toConstr :: FreeF f a b -> Constr # dataTypeOf :: FreeF f a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (FreeF f a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (FreeF f a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> FreeF f a b -> FreeF f a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FreeF f a b -> r # gmapQ :: (forall d. Data d => d -> u) -> FreeF f a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> FreeF f a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FreeF f a b -> m (FreeF f a b) # | |
(Data s, Data b) => Data (Tagged s b) | |
Defined in Data.Tagged Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Tagged s b -> c (Tagged s b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tagged s b) # toConstr :: Tagged s b -> Constr # dataTypeOf :: Tagged s b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Tagged s b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tagged s b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Tagged s b -> Tagged s b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tagged s b -> r # gmapQ :: (forall d. Data d => d -> u) -> Tagged s b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Tagged s b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tagged s b -> m (Tagged s b) # | |
(Typeable b, Typeable k, Data a) => Data (Constant a b) | |
Defined in Data.Functor.Constant Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Constant a b -> c (Constant a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Constant a b) # toConstr :: Constant a b -> Constr # dataTypeOf :: Constant a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Constant a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Constant a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Constant a b -> Constant a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Constant a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Constant a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Constant a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Constant a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Constant a b -> m (Constant a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Constant a b -> m (Constant a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Constant a b -> m (Constant a b) # | |
(Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Product f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Product Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Product f g a -> c (Product f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product f g a) # toConstr :: Product f g a -> Constr # dataTypeOf :: Product f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product f g a)) # gmapT :: (forall b. Data b => b -> b) -> Product f g a -> Product f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product f g a -> m (Product f g a) # | |
(Typeable a, Typeable f, Typeable g, Typeable k, Data (f a), Data (g a)) => Data (Sum f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Sum Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Sum f g a -> c (Sum f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum f g a) # toConstr :: Sum f g a -> Constr # dataTypeOf :: Sum f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum f g a)) # gmapT :: (forall b. Data b => b -> b) -> Sum f g a -> Sum f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum f g a -> m (Sum f g a) # | |
(Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
(Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
(Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
(Typeable a, Typeable f, Typeable g, Typeable k1, Typeable k2, Data (f (g a))) => Data (Compose f g a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> Compose f g a -> c (Compose f g a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Compose f g a) # toConstr :: Compose f g a -> Constr # dataTypeOf :: Compose f g a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Compose f g a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Compose f g a)) # gmapT :: (forall b. Data b => b -> b) -> Compose f g a -> Compose f g a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Compose f g a -> r # gmapQ :: (forall d. Data d => d -> u) -> Compose f g a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Compose f g a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Compose f g a -> m (Compose f g a) # | |
(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
(Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
(Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
(Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # |
A monad supporting atomic memory transactions.
Instances
Monoid under addition.
>>>
getSum (Sum 1 <> Sum 2 <> mempty)
3
Instances
Representable Sum | |
MonadFix Sum | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
MonadZip Sum | Since: base-4.8.0.0 |
Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
Foldable1 Sum | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Sum m -> m # foldMap1 :: Semigroup m => (a -> m) -> Sum a -> m # foldMap1' :: Semigroup m => (a -> m) -> Sum a -> m # toNonEmpty :: Sum a -> NonEmpty a # maximum :: Ord a => Sum a -> a # minimum :: Ord a => Sum a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Sum a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Sum a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Sum a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Sum a -> b # | |
Traversable Sum | Since: base-4.8.0.0 |
Applicative Sum | Since: base-4.8.0.0 |
Functor Sum | Since: base-4.8.0.0 |
Monad Sum | Since: base-4.8.0.0 |
NFData1 Sum | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Invariant Sum | from Data.Monoid |
Defined in Data.Functor.Invariant | |
Apply Sum | |
Bind Sum | |
Extend Sum | |
Traversable1 Sum | |
Generic1 Sum | |
Unbox a => Vector Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Sum a) -> ST s (Vector (Sum a)) basicUnsafeThaw :: Vector (Sum a) -> ST s (Mutable Vector s (Sum a)) basicLength :: Vector (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> Vector (Sum a) -> Vector (Sum a) basicUnsafeIndexM :: Vector (Sum a) -> Int -> Box (Sum a) basicUnsafeCopy :: Mutable Vector s (Sum a) -> Vector (Sum a) -> ST s () | |
Unbox a => MVector MVector (Sum a) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Sum a) -> Int basicUnsafeSlice :: Int -> Int -> MVector s (Sum a) -> MVector s (Sum a) basicOverlaps :: MVector s (Sum a) -> MVector s (Sum a) -> Bool basicUnsafeNew :: Int -> ST s (MVector s (Sum a)) basicInitialize :: MVector s (Sum a) -> ST s () basicUnsafeReplicate :: Int -> Sum a -> ST s (MVector s (Sum a)) basicUnsafeRead :: MVector s (Sum a) -> Int -> ST s (Sum a) basicUnsafeWrite :: MVector s (Sum a) -> Int -> Sum a -> ST s () basicClear :: MVector s (Sum a) -> ST s () basicSet :: MVector s (Sum a) -> Sum a -> ST s () basicUnsafeCopy :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeMove :: MVector s (Sum a) -> MVector s (Sum a) -> ST s () basicUnsafeGrow :: MVector s (Sum a) -> Int -> ST s (MVector s (Sum a)) | |
Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
Num a => Monoid (Sum a) | Since: base-2.1 |
Num a => Semigroup (Sum a) | Since: base-4.9.0.0 |
Bounded a => Bounded (Sum a) | Since: base-2.1 |
Generic (Sum a) | |
Num a => Num (Sum a) | Since: base-4.7.0.0 |
Read a => Read (Sum a) | Since: base-2.1 |
Show a => Show (Sum a) | Since: base-2.1 |
NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq a => Eq (Sum a) | Since: base-2.1 |
Ord a => Ord (Sum a) | Since: base-2.1 |
Num a => Abelian (Sum a) | |
Defined in Data.Group | |
Integral a => Cyclic (Sum a) | |
Defined in Data.Group | |
Num a => Group (Sum a) | |
Prim a => Prim (Sum a) | Since: primitive-0.6.5.0 |
Defined in Data.Primitive.Types Methods sizeOfType# :: Proxy (Sum a) -> Int# # alignmentOfType# :: Proxy (Sum a) -> Int# # alignment# :: Sum a -> Int# # indexByteArray# :: ByteArray# -> Int# -> Sum a # readByteArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Sum a #) # writeByteArray# :: MutableByteArray# s -> Int# -> Sum a -> State# s -> State# s # setByteArray# :: MutableByteArray# s -> Int# -> Int# -> Sum a -> State# s -> State# s # indexOffAddr# :: Addr# -> Int# -> Sum a # readOffAddr# :: Addr# -> Int# -> State# s -> (# State# s, Sum a #) # writeOffAddr# :: Addr# -> Int# -> Sum a -> State# s -> State# s # setOffAddr# :: Addr# -> Int# -> Int# -> Sum a -> State# s -> State# s # | |
Unbox a => Unbox (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
type Rep Sum | |
Defined in Data.Functor.Rep | |
type Rep1 Sum | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
newtype MVector s (Sum a) | |
Defined in Data.Vector.Unboxed.Base | |
type Rep (Sum a) | Since: base-4.7.0.0 |
Defined in Data.Semigroup.Internal | |
newtype Vector (Sum a) | |
Defined in Data.Vector.Unboxed.Base |
Monoid under multiplication.
>>>
getProduct (Product 3 <> Product 4 <> mempty)
12
Constructors
Product | |
Fields
|
Instances
Representable Product | |
MonadFix Product | Since: base-4.8.0.0 |
Defined in Control.Monad.Fix | |
MonadZip Product | Since: base-4.8.0.0 |
Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
Foldable1 Product | Since: base-4.18.0.0 |
Defined in Data.Foldable1 Methods fold1 :: Semigroup m => Product m -> m # foldMap1 :: Semigroup m => (a -> m) -> Product a -> m # foldMap1' :: Semigroup m => (a -> m) -> Product a -> m # toNonEmpty :: Product a -> NonEmpty a # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # foldrMap1 :: (a -> b) -> (a -> b -> b) -> Product a -> b # foldlMap1' :: (a -> b) -> (b -> a -> b) -> Product a -> b # foldlMap1 :: (a -> b) -> (b -> a -> b) -> Product a -> b # foldrMap1' :: (a -> b) -> (a -> b -> b) -> Product a -> b # | |
Traversable Product | Since: base-4.8.0.0 |
Applicative Product | Since: base-4.8.0.0 |
Functor Product | Since: base-4.8.0.0 |
Monad Product | Since: base-4.8.0.0 |
NFData1 Product | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Invariant Product | from Data.Monoid |
Defined in Data.Functor.Invariant | |
Apply Product | |
Bind Product | |
Extend Product | |
Traversable1 Product | |
Generic1 Product | |
Defined in Data.Semigroup.Internal |