{-# LANGUAGE TupleSections #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}
-----------------------------------------------------------------------------
-- |
-- Module      :  Refinery.Tactic
-- Copyright   :  (c) Reed Mullanix 2019
-- License     :  BSD-style
-- Maintainer  :  reedmullanix@gmail.com
module Refinery.Tactic
  ( TacticT
  , runTacticT
  -- * Tactic Combinators
  , (<@>)
  , (<%>)
  , try
  , many_
  , choice
  , progress
  , MonadLogic(..)
  -- * Subgoal Manipulation
  , goal
  , focus
  -- * Tactic Creation
  , MonadExtract(..)
  , MonadRule(..)
  , RuleT
  , rule
  ) where

import Control.Applicative
import Control.Monad.Except
import Control.Monad.State.Strict
import Control.Monad.Logic

import Refinery.ProofState
import Refinery.Tactic.Internal

-- -- | Create a tactic that applies each of the tactics in the list to one subgoal.
-- --
-- -- When the number of subgoals is greater than the number of provided tactics,
-- -- the identity tactic is applied to the remainder. When the number of subgoals is
-- -- less than the number of provided tactics, the remaining tactics are ignored.
(<@>) :: (Functor m) => TacticT jdg ext err s m a -> [TacticT jdg ext err s m a] -> TacticT jdg ext err s m a
t <@> ts = tactic $ \j -> subgoals (fmap (\t' (_,j') -> proofState t' j') ts) (proofState t j)

infixr 3 <%>

(<%>) :: TacticT jdg ext err s m a -> TacticT jdg ext err s m a -> TacticT jdg ext err s m a
t1 <%> t2 = tactic $ \j -> Interleave (proofState t1 j) (proofState t2 j)


-- | Tries to run a tactic, backtracking on failure
try :: (Monad m) => TacticT jdg ext err s m () -> TacticT jdg ext err s m ()
try t = t <|> pure ()

-- | Runs a tactic repeatedly until it fails
many_ :: (Monad m) => TacticT jdg ext err s m () -> TacticT jdg ext err s m ()
many_ t = try (t >> many_ t)

-- | Get the current goal
goal :: (Functor m) => TacticT jdg ext err s m jdg
goal = TacticT $ get

choice :: (Monad m) => [TacticT jdg ext err s m a] -> TacticT jdg ext err s m a
choice [] = empty
choice (t:ts) = t <%> choice ts

-- -- | @progress eq err t@ applies the tactic @t@, and checks to see if the
-- -- resulting subgoals are all equal to the initial goal by using @eq@. If they
-- -- are, it throws @err@.
progress :: (Monad m) => (jdg -> jdg -> Bool) -> err ->  TacticT jdg ext err s m a -> TacticT jdg ext err s m a
progress eq err t = do
  j <- goal
  a <- t
  j' <- goal
  if j `eq` j' then pure a else throwError err

-- -- | Apply the first tactic, and then apply the second tactic focused on the @n@th subgoal.
focus :: (Functor m) => TacticT jdg ext err s m () -> Int -> TacticT jdg ext err s m () -> TacticT jdg ext err s m ()
focus t n t' = t <@> (replicate n (pure ()) ++ [t'] ++ repeat (pure ()))

-- | Runs a tactic, producing a list of possible extracts, along with a list of unsolved subgoals.
runTacticT :: (MonadExtract ext m) => TacticT jdg ext err s m () -> jdg -> s -> m [Either err (ext, [jdg])]
runTacticT t j s = proofs s $ fmap snd $ proofState t j

-- | Turn an inference rule into a tactic.
rule :: (Monad m) => (jdg -> RuleT jdg ext err s m ext) -> TacticT jdg ext err s m ()
rule r = tactic $ \j -> fmap ((),) $ unRuleT (r j)