reflection-extras-0.1.0.1: Utilities for the reflection package

Safe HaskellNone

Data.Reflection.Extras

Synopsis

Documentation

using :: forall p a. ReifiableConstraint p => Def p a -> (p a => a) -> aSource

Choose a dictionary for a local type class instance.

>>> using (Monoid (+) 0) $ mempty <> 10 <> 12
> 12

usingT :: forall p f a. ReifiableConstraint p => Def p a -> (p a => f a) -> f aSource

reifyInstance :: Def p a -> (forall s. Reifies s (Def p a) => Proxy s -> r) -> rSource

with :: forall p a. Def p a -> (forall s. Reifies s (Def p a) => Lift p s a) -> aSource

data Lift p s a Source

Instances

Functor (Lift p s) 
Applicative (Lift p s) 
Reifies * s (Def Bounded a) => Bounded (Lift Bounded s a) 
Reifies * s (Def Enum a) => Enum (Lift Enum s a) 
Reifies * s (Def Eq a) => Eq (Lift Eq s a) 
Reifies * s (Def Ord a) => Eq (Lift Ord s a) 
Reifies * s (Def Real a) => Eq (Lift Real s a) 
Reifies * s (Def Num a) => Num (Lift Num s a) 
Reifies * s (Def Real a) => Num (Lift Real s a) 
Reifies * s (Def Ord a) => Ord (Lift Ord s a) 
Reifies * s (Def Real a) => Ord (Lift Real s a) 
Reifies * s (Def Read a) => Read (Lift Read s a) 
Reifies * s (Def Real a) => Real (Lift Real s a) 
Reifies * s (Def Show a) => Show (Lift Show s a) 
Reifies * s (Def ToJSON a) => ToJSON (Lift ToJSON s a) 
Reifies * s (Def FromJSON a) => FromJSON (Lift FromJSON s a) 
Reifies * s (Def Monoid a) => Monoid (Lift Monoid s a) 

class Show a where

Conversion of values to readable Strings.

Minimal complete definition: showsPrec or show.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

 infixr 5 :^:
 data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

 instance (Show a) => Show (Tree a) where

        showsPrec d (Leaf m) = showParen (d > app_prec) $
             showString "Leaf " . showsPrec (app_prec+1) m
          where app_prec = 10

        showsPrec d (u :^: v) = showParen (d > up_prec) $
             showsPrec (up_prec+1) u .
             showString " :^: "      .
             showsPrec (up_prec+1) v
          where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Methods

showsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

 showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 
Show Char 
Show Double 
Show Float 
Show Int 
Show Integer 
Show Ordering 
Show Word 
Show Exp 
Show Match 
Show Clause 
Show Pat 
Show Type 
Show Dec 
Show Name 
Show FunDep 
Show Pred 
Show TyVarBndr 
Show () 
Show Con 
Show Text 
Show UTCTime 
Show DotNetTime 
Show Value 
Show All 
Show Any 
Show Arity 
Show Fixity 
Show Associativity 
Show Text 
Show Void 
Show LensFlag 
Show Doc 
Show Info 
Show Fixity 
Show FixityDirection 
Show Lit 
Show Body 
Show Guard 
Show Stmt 
Show Range 
Show FamFlavour 
Show Foreign 
Show Callconv 
Show Safety 
Show Pragma 
Show Inline 
Show RuleMatch 
Show Phases 
Show RuleBndr 
Show Strict 
Show TyLit 
Show Padding 
Show DateFormatSpec 
Show LocalTime 
Show ZonedTime 
Show Day 
Show a => Show [a] 
(Integral a, Show a) => Show (Ratio a) 
Show (Q a) 
Show a => Show (Maybe a) 
Show a => Show (Result a) 
Show a => Show (Dual a) 
Show a => Show (Sum a) 
Show a => Show (Product a) 
Show a => Show (First a) 
Show a => Show (Last a) 
Show (IsZero n) 
Show (IsEven n) 
Show (Dict a) 
(Show a, Prim a) => Show (Vector a) 
(Show a, Storable a) => Show (Vector a) 
(Show a, Unbox a) => Show (Vector a) 
Show a => Show (Vector a) 
(Show a, Show b) => Show (a, b) 
(SingE k (Kind k) rep, Show rep) => Show (Sing k a) 
Show (:- a b) 
(Show i, Show a) => Show (Jacket i a) 
(Show i, Show a) => Show (Path i a) 
Show (Proxy k s) 
(Show a, Show b, Show c) => Show (a, b, c) 
Reifies * s (Def Show a) => Show (Lift Show s a) 
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) 
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) 
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Read a where

Parsing of Strings, producing values.

Minimal complete definition: readsPrec (or, for GHC only, readPrec)

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

 infixr 5 :^:
 data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 98 is equivalent to

 instance (Read a) => Read (Tree a) where

         readsPrec d r =  readParen (d > app_prec)
                          (\r -> [(Leaf m,t) |
                                  ("Leaf",s) <- lex r,
                                  (m,t) <- readsPrec (app_prec+1) s]) r

                       ++ readParen (d > up_prec)
                          (\r -> [(u:^:v,w) |
                                  (u,s) <- readsPrec (up_prec+1) r,
                                  (":^:",t) <- lex s,
                                  (v,w) <- readsPrec (up_prec+1) t]) r

           where app_prec = 10
                 up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

 instance (Read a) => Read (Tree a) where

         readPrec = parens $ (prec app_prec $ do
                                  Ident "Leaf" <- lexP
                                  m <- step readPrec
                                  return (Leaf m))

                      +++ (prec up_prec $ do
                                  u <- step readPrec
                                  Symbol ":^:" <- lexP
                                  v <- step readPrec
                                  return (u :^: v))

           where app_prec = 10
                 up_prec = 5

         readListPrec = readListPrecDefault

Methods

readsPrec

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a]

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances

Read Bool 
Read Char 
Read Double 
Read Float 
Read Int 
Read Integer 
Read Ordering 
Read Word 
Read () 
Read Text 
Read UTCTime 
Read DotNetTime 
Read All 
Read Any 
Read Arity 
Read Fixity 
Read Associativity 
Read Lexeme 
Read Text 
Read Void

Reading a Void value is always a parse error, considering Void as a data type with no constructors.

Read LensFlag 
Read LocalTime 
Read ZonedTime 
Read TimeOfDay 
Read TimeZone 
Read Day 
Read a => Read [a] 
(Integral a, Read a) => Read (Ratio a) 
Read a => Read (Maybe a) 
Read a => Read (Dual a) 
Read a => Read (Sum a) 
Read a => Read (Product a) 
Read a => Read (First a) 
Read a => Read (Last a) 
a => Read (Dict a) 
(Read a, Prim a) => Read (Vector a) 
(Read a, Storable a) => Read (Vector a) 
(Read a, Unbox a) => Read (Vector a) 
Read a => Read (Vector a) 
(Read a, Read b) => Read (a, b) 
(Ix a, Read a, Read b) => Read (Array a b) 
(SingRep k a rep, Read rep, Eq rep) => Read (Sing k a) 
Read (Proxy k s) 
(Read a, Read b, Read c) => Read (a, b, c) 
Reifies * s (Def Read a) => Read (Lift Read s a) 
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) 
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) 
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Eq a => Ord a where

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Methods

compare :: a -> a -> Ordering

(<) :: a -> a -> Bool

(>=) :: a -> a -> Bool

(>) :: a -> a -> Bool

(<=) :: a -> a -> Bool

max :: a -> a -> a

min :: a -> a -> a

Instances

Ord Bool 
Ord Char 
Ord Double 
Ord Float 
Ord Int 
Ord Integer 
Ord Ordering 
Ord Word 
Ord Name 
Ord () 
Ord Text 
Ord DotNetTime 
Ord All 
Ord Any 
Ord Arity 
Ord Fixity 
Ord Associativity 
Ord Text 
Ord Void 
Ord LensFlag 
Ord ModName 
Ord PkgName 
Ord OccName 
Ord NameFlavour 
Ord NameSpace 
Ord LocalTime 
Ord a => Ord [a] 
Integral a => Ord (Ratio a) 
Ord a => Ord (Dual a) 
Ord a => Ord (Sum a) 
Ord a => Ord (Product a) 
Ord a => Ord (First a) 
Ord a => Ord (Last a) 
Ord (Dict a) 
(Prim a, Ord a) => Ord (Vector a) 
(Storable a, Ord a) => Ord (Vector a) 
(Unbox a, Ord a) => Ord (Vector a) 
Ord a => Ord (Vector a) 
(Ord a, Ord b) => Ord (a, b) 
Ord (:- a b) 
Ord (Proxy k s) 
Ord a => Ord (Stream Id a) 
(Ord a, Ord b, Ord c) => Ord (a, b, c) 
Reifies * s (Def Ord a) => Ord (Lift Ord s a) 
Reifies * s (Def Real a) => Ord (Lift Real s a) 
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Eq a where

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Methods

(==) :: a -> a -> Bool

(/=) :: a -> a -> Bool

Instances

Eq Bool 
Eq Char 
Eq Double 
Eq Float 
Eq Int 
Eq Integer 
Eq Ordering 
Eq Word 
Eq Exp 
Eq Match 
Eq Clause 
Eq Pat 
Eq Type 
Eq Dec 
Eq Name 
Eq FunDep 
Eq Pred 
Eq TyVarBndr 
Eq () 
Eq Con 
Eq Text 
Eq DotNetTime 
Eq Value 
Eq All 
Eq Any 
Eq Arity 
Eq Fixity 
Eq Associativity 
Eq Text 
Eq Void 
Eq LensFlag 
Eq ModName 
Eq PkgName 
Eq OccName 
Eq NameFlavour 
Eq NameSpace 
Eq Fixity 
Eq FixityDirection 
Eq Lit 
Eq Body 
Eq Guard 
Eq Stmt 
Eq Range 
Eq FamFlavour 
Eq Foreign 
Eq Callconv 
Eq Safety 
Eq Pragma 
Eq Inline 
Eq RuleMatch 
Eq Phases 
Eq RuleBndr 
Eq Strict 
Eq TyLit 
Eq LocalTime 
Eq a => Eq [a] 
Eq a => Eq (Ratio a) 
Eq (Q a) 
Eq a => Eq (Result a) 
Eq a => Eq (Dual a) 
Eq a => Eq (Sum a) 
Eq a => Eq (Product a) 
Eq a => Eq (First a) 
Eq a => Eq (Last a) 
Eq (Dict a) 
(Prim a, Eq a) => Eq (Vector a) 
(Storable a, Eq a) => Eq (Vector a) 
(Unbox a, Eq a) => Eq (Vector a) 
Eq a => Eq (Vector a) 
(Eq a, Eq b) => Eq (a, b) 
Eq (:- a b) 
Eq (Proxy k s) 
Eq a => Eq (Stream Id a) 
(Eq a, Eq b, Eq c) => Eq (a, b, c) 
Reifies * s (Def Eq a) => Eq (Lift Eq s a) 
Reifies * s (Def Ord a) => Eq (Lift Ord s a) 
Reifies * s (Def Real a) => Eq (Lift Real s a) 
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class FromJSON a where

A type that can be converted from JSON, with the possibility of failure.

When writing an instance, use empty, mzero, or fail to make a conversion fail, e.g. if an Object is missing a required key, or the value is of the wrong type.

An example type and instance:

{-# LANGUAGE OverloadedStrings #-}

data Coord { x :: Double, y :: Double }

instance FromJSON Coord where
   parseJSON (Object v) = Coord    <$>
                          v .: "x" <*>
                          v .: "y"

-- A non-Object value is of the wrong type, so use mzero to fail.
   parseJSON _          = mzero

Note the use of the OverloadedStrings language extension which enables Text values to be written as string literals.

Instead of manually writing your FromJSON instance, there are three options to do it automatically:

  • Data.Aeson.TH provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
  • Data.Aeson.Generic provides a generic fromJSON function that parses to any type which is an instance of Data.
  • If your compiler has support for the DeriveGeneric and DefaultSignatures language extensions, parseJSON will have a default generic implementation.

To use this, simply add a deriving Generic clause to your datatype and declare a FromJSON instance for your datatype without giving a definition for parseJSON.

For example the previous example can be simplified to just:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data Coord { x :: Double, y :: Double } deriving Generic

instance FromJSON Coord

Note that, instead of using DefaultSignatures, it's also possible to parameterize the generic decoding using genericParseJSON applied to your encoding/decoding Options:

 instance FromJSON Coord where
     parseJSON = genericParseJSON defaultOptions

Methods

parseJSON :: Value -> Parser a

Instances

FromJSON Bool 
FromJSON Char 
FromJSON Double 
FromJSON Float 
FromJSON Int 
FromJSON Int8 
FromJSON Int16 
FromJSON Int32 
FromJSON Int64 
FromJSON Integer 
FromJSON Word 
FromJSON Word8 
FromJSON Word16 
FromJSON Word32 
FromJSON Word64 
FromJSON () 
FromJSON ByteString 
FromJSON ByteString 
FromJSON Number 
FromJSON Text 
FromJSON UTCTime 
FromJSON DotNetTime 
FromJSON Value 
FromJSON Text 
FromJSON IntSet 
FromJSON ZonedTime 
FromJSON [Char] 
FromJSON a => FromJSON [a] 
FromJSON (Ratio Integer) 
FromJSON a => FromJSON (Maybe a) 
HasResolution a => FromJSON (Fixed a) 
FromJSON a => FromJSON (Dual a) 
FromJSON a => FromJSON (First a) 
FromJSON a => FromJSON (Last a) 
FromJSON a => FromJSON (IntMap a) 
(Ord a, FromJSON a) => FromJSON (Set a) 
(Prim a, FromJSON a) => FromJSON (Vector a) 
(Storable a, FromJSON a) => FromJSON (Vector a) 
(Vector Vector a, FromJSON a) => FromJSON (Vector a) 
FromJSON a => FromJSON (Vector a) 
(Eq a, Hashable a, FromJSON a) => FromJSON (HashSet a) 
(FromJSON a, FromJSON b) => FromJSON (Either a b) 
(FromJSON a, FromJSON b) => FromJSON (a, b) 
FromJSON v => FromJSON (HashMap String v) 
FromJSON v => FromJSON (HashMap ByteString v) 
FromJSON v => FromJSON (HashMap ByteString v) 
FromJSON v => FromJSON (HashMap Text v) 
FromJSON v => FromJSON (HashMap Text v) 
FromJSON v => FromJSON (Map String v) 
FromJSON v => FromJSON (Map ByteString v) 
FromJSON v => FromJSON (Map ByteString v) 
FromJSON v => FromJSON (Map Text v) 
FromJSON v => FromJSON (Map Text v) 
(FromJSON a, FromJSON b, FromJSON c) => FromJSON (a, b, c) 
Reifies * s (Def FromJSON a) => FromJSON (Lift FromJSON s a) 
(FromJSON a, FromJSON b, FromJSON c, FromJSON d) => FromJSON (a, b, c, d) 

class ToJSON a where

A type that can be converted to JSON.

An example type and instance:

{-# LANGUAGE OverloadedStrings #-}

data Coord { x :: Double, y :: Double }

instance ToJSON Coord where
   toJSON (Coord x y) = object ["x" .= x, "y" .= y]

Note the use of the OverloadedStrings language extension which enables Text values to be written as string literals.

Instead of manually writing your ToJSON instance, there are three options to do it automatically:

  • Data.Aeson.TH provides template-haskell functions which will derive an instance at compile-time. The generated instance is optimized for your type so will probably be more efficient than the following two options:
  • Data.Aeson.Generic provides a generic toJSON function that accepts any type which is an instance of Data.
  • If your compiler has support for the DeriveGeneric and DefaultSignatures language extensions (GHC 7.2 and newer), toJSON will have a default generic implementation.

To use the latter option, simply add a deriving Generic clause to your datatype and declare a ToJSON instance for your datatype without giving a definition for toJSON.

For example the previous example can be simplified to just:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data Coord { x :: Double, y :: Double } deriving Generic

instance ToJSON Coord

Note that, instead of using DefaultSignatures, it's also possible to parameterize the generic encoding using genericToJSON applied to your encoding/decoding Options:

 instance ToJSON Coord where
     toJSON = genericToJSON defaultOptions

Methods

toJSON :: a -> Value

Instances

class Enum a where

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

    enumFrom     x   = enumFromTo     x maxBound
    enumFromThen x y = enumFromThenTo x y bound
      where
        bound | fromEnum y >= fromEnum x = maxBound
              | otherwise                = minBound

Methods

succ :: a -> a

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a

Convert from an Int.

fromEnum :: a -> Int

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a]

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a]

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a]

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a]

Used in Haskell's translation of [n,n'..m].

Instances

class Bounded a where

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a

maxBound :: a

Instances

Bounded Bool 
Bounded Char 
Bounded Int 
Bounded Ordering 
Bounded Word 
Bounded () 
Bounded All 
Bounded Any 
Bounded a => Bounded (Dual a) 
Bounded a => Bounded (Sum a) 
Bounded a => Bounded (Product a) 
a => Bounded (Dict a) 
(Bounded a, Bounded b) => Bounded (a, b) 
Bounded (Proxy k s) 
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) 
Reifies * s (Def Bounded a) => Bounded (Lift Bounded s a) 
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

class Num a where

Basic numeric class.

Minimal complete definition: all except negate or (-)

Methods

(+) :: a -> a -> a

(*) :: a -> a -> a

(-) :: a -> a -> a

negate :: a -> a

Unary negation.

abs :: a -> a

Absolute value.

signum :: a -> a

Sign of a number. The functions abs and signum should satisfy the law:

 abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Num Double 
Num Float 
Num Int 
Num Integer 
Num Word 
Num Exp

This permits the use of $(5) as an expression splice.

Num Type

This permits the use of $(5) as a type splice.

Integral a => Num (Ratio a) 
Num a => Num (Q a) 
Reifies * s (Def Num a) => Num (Lift Num s a) 
Reifies * s (Def Real a) => Num (Lift Real s a) 

class (Num a, Ord a) => Real a where

Methods

toRational :: a -> Rational

the rational equivalent of its real argument with full precision

Instances

class Monoid a where

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Minimal complete definition: mempty and mappend.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Methods

mempty :: a

Identity of mappend

mappend :: a -> a -> a

An associative operation

mconcat :: [a] -> a

Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Monoid Ordering 
Monoid () 
Monoid Text 
Monoid All 
Monoid Any 
Monoid Text 
Monoid [a] 
Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there is no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Monoid (Result a) 
Monoid (Parser a) 
Monoid a => Monoid (Dual a) 
Monoid (Endo a) 
Num a => Monoid (Sum a) 
Num a => Monoid (Product a) 
Monoid (First a) 
Monoid (Last a) 
a => Monoid (Dict a) 
Prim a => Monoid (Vector a) 
Storable a => Monoid (Vector a) 
Unbox a => Monoid (Vector a) 
Monoid (Vector a) 
Monoid a => Monoid (May a) 
Monoid b => Monoid (a -> b) 
(Monoid a, Monoid b) => Monoid (a, b) 
Monoid (Jacket i a)

This is an illegal Monoid.

Monoid a => Monoid (Err e a) 
Monoid (Proxy k s) 
(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) 
Reifies * s (Def Monoid a) => Monoid (Lift Monoid s a) 
(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) 
(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)