| Safe Haskell | None |
|---|---|
| Language | Haskell98 |
Data.Array.Repa.Index
Contents
Description
Index types.
- data Z = Z
- data tail :. head = !tail :. !head
- type DIM0 = Z
- type DIM1 = DIM0 :. Int
- type DIM2 = DIM1 :. Int
- type DIM3 = DIM2 :. Int
- type DIM4 = DIM3 :. Int
- type DIM5 = DIM4 :. Int
- ix1 :: Int -> DIM1
- ix2 :: Int -> Int -> DIM2
- ix3 :: Int -> Int -> Int -> DIM3
- ix4 :: Int -> Int -> Int -> Int -> DIM4
- ix5 :: Int -> Int -> Int -> Int -> Int -> DIM5
Index types
An index of dimension zero
Constructors
| Z |
Instances
| Eq Z | |
| Ord Z | |
| Read Z | |
| Show Z | |
| Arbitrary Z | This module exports instances of |
| CoArbitrary Z | |
| Shape Z | |
| Slice Z | |
| Elt e => LoadRange D DIM2 e | Compute a range of elements in a rank-2 array. |
| Elt e => LoadRange C DIM2 e | Compute a range of elements in a rank-2 array. |
| Elt e => Load C DIM2 e | Compute all elements in an rank-2 array. |
| type SliceShape Z = Z | |
| type FullShape Z = Z |
data tail :. head infixl 3 Source
Our index type, used for both shapes and indices.
Constructors
| !tail :. !head infixl 3 |
Instances
| Elt e => LoadRange D DIM2 e | Compute a range of elements in a rank-2 array. |
| Elt e => LoadRange C DIM2 e | Compute a range of elements in a rank-2 array. |
| Elt e => Load C DIM2 e | Compute all elements in an rank-2 array. |
| (Eq tail, Eq head) => Eq ((:.) tail head) | |
| (Ord tail, Ord head) => Ord ((:.) tail head) | |
| (Read tail, Read head) => Read ((:.) tail head) | |
| (Show tail, Show head) => Show ((:.) tail head) | |
| (Shape a, Arbitrary a) => Arbitrary ((:.) a Int) | |
| (Shape a, CoArbitrary a) => CoArbitrary ((:.) a Int) | |
| Shape sh => Shape ((:.) sh Int) | |
| Slice sl => Slice ((:.) sl All) | |
| Slice sl => Slice ((:.) sl Int) | |
| type SliceShape ((:.) sl All) = (:.) (SliceShape sl) Int | |
| type SliceShape ((:.) sl Int) = SliceShape sl | |
| type FullShape ((:.) sl All) = (:.) (FullShape sl) Int | |
| type FullShape ((:.) sl Int) = (:.) (FullShape sl) Int |
Common dimensions.
Helper for index construction.
Use this instead of explicit constructors like (Z :. (x :: Int)).
The this is sometimes needed to ensure that x is constrained to
be in Int.