| Safe Haskell | None |
|---|---|
| Language | Haskell98 |
Data.Array.Repa.Index
Contents
Description
Index types.
- data Z = Z
- data tail :. head = !tail :. !head
- type DIM0 = Z
- type DIM1 = DIM0 :. Int
- type DIM2 = DIM1 :. Int
- type DIM3 = DIM2 :. Int
- type DIM4 = DIM3 :. Int
- type DIM5 = DIM4 :. Int
- ix1 :: Int -> DIM1
- ix2 :: Int -> Int -> DIM2
- ix3 :: Int -> Int -> Int -> DIM3
- ix4 :: Int -> Int -> Int -> Int -> DIM4
- ix5 :: Int -> Int -> Int -> Int -> Int -> DIM5
Index types
An index of dimension zero
Constructors
| Z |
Instances
| Eq Z Source # | |
| Ord Z Source # | |
| Read Z Source # | |
| Show Z Source # | |
| Shape Z Source # | |
| Slice Z Source # | |
| Elt e => LoadRange D DIM2 e Source # | Compute a range of elements in a rank-2 array. |
| Elt e => LoadRange C DIM2 e Source # | Compute a range of elements in a rank-2 array. |
| Elt e => Load C DIM2 e Source # | Compute all elements in an rank-2 array. |
| type SliceShape Z Source # | |
| type FullShape Z Source # | |
data tail :. head infixl 3 Source #
Our index type, used for both shapes and indices.
Constructors
| !tail :. !head infixl 3 |
Instances
| Elt e => LoadRange D DIM2 e Source # | Compute a range of elements in a rank-2 array. |
| Elt e => LoadRange C DIM2 e Source # | Compute a range of elements in a rank-2 array. |
| Elt e => Load C DIM2 e Source # | Compute all elements in an rank-2 array. |
| (Eq head, Eq tail) => Eq ((:.) tail head) Source # | |
| (Ord head, Ord tail) => Ord ((:.) tail head) Source # | |
| (Read head, Read tail) => Read ((:.) tail head) Source # | |
| (Show head, Show tail) => Show ((:.) tail head) Source # | |
| Shape sh => Shape ((:.) sh Int) Source # | |
| Slice sl => Slice ((:.) sl All) Source # | |
| Slice sl => Slice ((:.) sl Int) Source # | |
| type SliceShape ((:.) sl All) Source # | |
| type SliceShape ((:.) sl Int) Source # | |
| type FullShape ((:.) sl All) Source # | |
| type FullShape ((:.) sl Int) Source # | |
Common dimensions.
Helper for index construction.
Use this instead of explicit constructors like (Z :. (x :: Int)).
The this is sometimes needed to ensure that x is constrained to
be in Int.