{-# LANGUAGE NoImplicitPrelude, BangPatterns #-}
{-# OPTIONS_HADDOCK show-extensions #-}

-- |
-- Module      :  Rhythmicity.MarkerSeqs
-- Copyright   :  (c) Oleksandr Zhabenko 2022-2023
-- License     :  MIT
-- Stability   :  Experimental
-- Maintainer  :  oleksandr.zhabenko@yahoo.com
-- 
-- Data and algorithmic basics to evaluate rhythmicity of the lists of 'Ord' instance data type.
-- Similar to @phonetic-languages-rhythmicity@ on Hackage.

module Rhythmicity.MarkerSeqs where

import GHC.Num
import GHC.Real
import GHC.Base
import Data.List hiding (foldr)
import GHC.Show
import Data.Bits
import Numeric (showIntAtBase,showInt)
import Data.Foldable (Foldable)
import GHC.Int
import Data.Char (isDigit)
import Data.Maybe (mapMaybe, catMaybes)
import Rhythmicity.BasicF
import Text.Read
import GHC.Enum (fromEnum)
import GHC.Arr (listArray,unsafeAt)

-- | The similar function is since @base-4.16.0.0@ in the 'Numeric' module. Is not used 
-- further, is provided here mostly for testing purposes.
showBin :: Int -> [Char]
showBin :: Int -> [Char]
showBin Int
x = Char
'0'forall a. a -> [a] -> [a]
:Char
'b'forall a. a -> [a] -> [a]
:forall a. (Integral a, Show a) => a -> (Int -> Char) -> a -> ShowS
showIntAtBase Int
2 (forall a. [a] -> a
head forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a. Integral a => a -> ShowS
showInt [Char]
"") Int
x [Char]
""
{-# INLINE showBin #-}

-- | Basic counting of the same bits in the 'Bits' arguments.
unionCount :: (Bits a) => a -> a -> Integer
unionCount :: forall a. Bits a => a -> a -> Integer
unionCount a
x = forall a. Integral a => a -> Integer
toInteger forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Bits a => a -> Int
popCount forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Bits a => a -> a -> a
(.&.) a
x
{-# INLINE unionCount #-}

-- | Some idea function to evaluate the rhythmicity data. Is not used further in the package,
-- can be thought of as an alternative way of computation.
countWeightsQs :: (Foldable t) => [t a -> Int] -> [t a] -> [[Int]]
countWeightsQs :: forall (t :: * -> *) a.
Foldable t =>
[t a -> Int] -> [t a] -> [[Int]]
countWeightsQs [t a -> Int]
fs [t a]
xs = forall a b. (a -> b) -> [a] -> [b]
map (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall a b. (a -> b) -> [a] -> [b]
map [t a]
xs) [t a -> Int]
fs

-- | Data type used to provide somewhat \'array sorting with its indices\'.
data Sort2 a = S2 { 
 forall a. Sort2 a -> Int8
id :: Int8,
 forall a. Sort2 a -> a
val :: a
}

instance Eq a => Eq (Sort2 a) where
  S2 Int8
_ a
x == :: Sort2 a -> Sort2 a -> Bool
== S2 Int8
_ a
y = a
x forall a. Eq a => a -> a -> Bool
== a
y

instance Ord a => Ord (Sort2 a) where
  compare :: Sort2 a -> Sort2 a -> Ordering
compare (S2 Int8
_ a
x) (S2 Int8
_ a
y) = forall a. Ord a => a -> a -> Ordering
compare a
y a
x
  S2 Int8
_ a
x > :: Sort2 a -> Sort2 a -> Bool
> S2 Int8
_ a
y = a
x forall a. Ord a => a -> a -> Bool
< a
y
  S2 Int8
_ a
x < :: Sort2 a -> Sort2 a -> Bool
< S2 Int8
_ a
y = a
x forall a. Ord a => a -> a -> Bool
> a
y
  S2 Int8
_ a
x >= :: Sort2 a -> Sort2 a -> Bool
>= S2 Int8
_ a
y = a
x forall a. Ord a => a -> a -> Bool
<= a
y
  S2 Int8
_ a
x <= :: Sort2 a -> Sort2 a -> Bool
<= S2 Int8
_ a
y = a
x forall a. Ord a => a -> a -> Bool
>= a
y

instance Functor Sort2 where
  fmap :: forall a b. (a -> b) -> Sort2 a -> Sort2 b
fmap a -> b
f (S2 Int8
k a
x) = forall a. Int8 -> a -> Sort2 a
S2 Int8
k forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f forall a b. (a -> b) -> a -> b
$ a
x

instance Show a => Show (Sort2 a) where
  show :: Sort2 a -> [Char]
show (S2 Int8
k a
x) = forall a. Show a => a -> [Char]
show Int8
k forall a. [a] -> [a] -> [a]
++ Char
'~'forall a. a -> [a] -> [a]
:forall a. Show a => a -> [Char]
show a
x

-- | Data type to contain the needed for hashing algorithm information about the sorted 
-- \'array sorting with its indices\'.
data ASort3 a = As3 { 
 forall a. ASort3 a -> Int8
id3 :: Int8,
 forall a. ASort3 a -> Int8
orD :: Int8,
 forall a. ASort3 a -> a
val3 :: a
}

instance Eq a => Eq (ASort3 a) where
  As3 Int8
_ Int8
_ a
x == :: ASort3 a -> ASort3 a -> Bool
== As3 Int8
_ Int8
_ a
y = a
x forall a. Eq a => a -> a -> Bool
== a
y

instance Show a => Show (ASort3 a) where
  show :: ASort3 a -> [Char]
show (As3 Int8
n Int8
k a
x) = forall a. Show a => a -> [Char]
show Int8
n forall a. [a] -> [a] -> [a]
++ Char
'&'forall a. a -> [a] -> [a]
:forall a. Show a => a -> [Char]
show Int8
k forall a. [a] -> [a] -> [a]
++ Char
'~'forall a. a -> [a] -> [a]
:forall a. Show a => a -> [Char]
show a
x

-- | Split the list into lists of @n@ elements where @n@ is the first parameter. Can be used 
-- efficiently just for the finite lists. Contains the modified code of the 'Data.List.unfoldr'
-- function from the @base@ package.
splitF :: Int -> [a] -> [[a]]
splitF :: forall a. Int -> [a] -> [[a]]
splitF Int
n [a]
ys = let q :: Int
q = forall (t :: * -> *) a. Foldable t => t a -> Int
length [a]
ys forall a. Integral a => a -> a -> a
`quot` Int
n in forall a. Int -> [a] -> [a]
take Int
q forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {t} {a}. (t -> (a, t)) -> t -> [a]
g (forall a. Int -> [a] -> ([a], [a])
splitAt Int
n) forall a b. (a -> b) -> a -> b
$ [a]
ys
  where {-# INLINE g #-} -- Is a modified 'Data.List.unfoldr' code.
        g :: (t -> (a, t)) -> t -> [a]
g t -> (a, t)
f t
b0 = forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
build (\a -> b -> b
c b
n ->
          let go :: t -> b
go t
b = case t -> (a, t)
f t
b of
                      (a
a, t
new_b) -> a
a a -> b -> b
`c` t -> b
go t
new_b in t -> b
go t
b0)

-- | Function to get basic data for hash-based evaluation of the rhythmicity of the list data. Is
-- used internally in the 'countHashesG'.
-- Provided here mostly for testing purposes.
getHashes2 
  :: Ord a => Int8 -- ^ A period of the groups (the length of the lists into which the general sequence is splitted at first).
  -> [Int8] -- ^ The list must be sorted in the descending order, the elements must be greater or equal to 0 and less than the first argument of 'getHashes2' here; besides, there must not be repetitions (any duplicates) in the list so all the elements must be pairwise not equal.  
  -> [a] -- ^ A list of 'Ord' data values that is evaluated for its rhythmic properties.
  -> [[Integer]]
getHashes2 :: forall a. Ord a => Int8 -> [Int8] -> [a] -> [[Integer]]
getHashes2 Int8
selmarkNum [Int8]
ks [a]
xs = forall a b. (a -> b) -> [a] -> [b]
map (forall a b. (a -> b) -> [a] -> [b]
map [Int8] -> Integer
toNum forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t a -> Bool
null) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall a. Eq a => [Int8] -> [ASort3 a] -> [Int8]
idList [Int8]
ks) forall b c a. (b -> c) -> (a -> b) -> a -> c
.  -- before this mapping the smallest element can potentially have 'orD' equal to 0 or greater than 0. The greatest element has 'orD' equal to @selmarkNum - 1@ (@= periodLength - 1@).
 forall {a}. Eq a => [Int8] -> [Sort2 a] -> [[ASort3 a]]
g [Int8
selmarkNumforall a. Num a => a -> a -> a
-Int8
1,Int8
selmarkNumforall a. Num a => a -> a -> a
-Int8
2..] forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => [a] -> [a]
sort forall b c a. (b -> c) -> (a -> b) -> a -> c
. 
   forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall a. Int8 -> a -> Sort2 a
S2 [Int8
selmarkNumforall a. Num a => a -> a -> a
-Int8
1,Int8
selmarkNumforall a. Num a => a -> a -> a
-Int8
2..]) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Int -> [a] -> [[a]]
splitF (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int8
selmarkNum) forall a b. (a -> b) -> a -> b
$ [a]
xs
     where g :: [Int8] -> [Sort2 a] -> [[ASort3 a]]
g (Int8
q:[Int8]
qs) xs :: [Sort2 a]
xs@(Sort2 a
x:[Sort2 a]
ys) = let ([Sort2 a]
js,[Sort2 a]
rs) = forall a. (a -> Bool) -> [a] -> ([a], [a])
span (forall a. Eq a => a -> a -> Bool
== Sort2 a
x) [Sort2 a]
ys in forall a b. (a -> b) -> [a] -> [b]
map (\(S2 Int8
k a
y) -> forall a. Int8 -> Int8 -> a -> ASort3 a
As3 Int8
k Int8
q a
y) (Sort2 a
xforall a. a -> [a] -> [a]
:[Sort2 a]
js) forall a. a -> [a] -> [a]
: [Int8] -> [Sort2 a] -> [[ASort3 a]]
g [Int8]
qs [Sort2 a]
rs
           g [Int8]
_ [Sort2 a]
_ = []

-- | Convert hashes into basic simler data to evaluate rhythmicity of the list data.
countHashesPrioritized :: [[b]] -> [[Integer]]
countHashesPrioritized tss :: [[b]]
tss@([b]
ts:[b]
vs:[[b]]
xss) = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith forall a. Bits a => a -> a -> Integer
unionCount [b]
ts [b]
vs forall a. a -> [a] -> [a]
: [[b]] -> [[Integer]]
countHashesPrioritized ([b]
vsforall a. a -> [a] -> [a]
:[[b]]
xss)
countHashesPrioritized [[b]]
_ = []

-- | Mostly for testing.
count1Hashes 
  :: Ord a => Int8
  -> [Int8]
  -> [a]
  -> Integer
count1Hashes :: forall a. Ord a => Int8 -> [Int8] -> [a] -> Integer
count1Hashes Int8
groupLength [Int8]
ks = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map [Integer] -> Integer
createNewHash forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {b}. Bits b => [[b]] -> [[Integer]]
countHashesPrioritized forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => Int8 -> [Int8] -> [a] -> [[Integer]]
getHashes2 Int8
groupLength [Int8]
ws 
    where !ws :: [Int8]
ws = forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn (forall a. Num a => a -> a -> a
*(-Int8
1)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Ord a => a -> a -> Bool
>= Int8
0) forall a b. (a -> b) -> a -> b
$ [Int8]
ks
{-# INLINE count1Hashes #-}

{-| Data type to encode the changes  that are introduced by the position  of the group 
 of values in general sequence to the general result of the 'createHashesG' function. If the second parameter  in the 'HashCorrections' is 1 then the result is more 
 sensitive to beginning of the line; if it is set to 2 then the result is more sensitive
 to ending of the line; if it is greater than 2 then the result is sensitive to some
user weights provided as the first parameter to 'HashCorrections' and otherwise 
the computation result does not depend on the first parameter to 'HashCorrections' (this
one can be considered  the basic option for the computation).
-}
data HashCorrections = H [Int8] Int8 deriving (HashCorrections -> HashCorrections -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: HashCorrections -> HashCorrections -> Bool
$c/= :: HashCorrections -> HashCorrections -> Bool
== :: HashCorrections -> HashCorrections -> Bool
$c== :: HashCorrections -> HashCorrections -> Bool
Eq, Int -> HashCorrections -> ShowS
[HashCorrections] -> ShowS
HashCorrections -> [Char]
forall a.
(Int -> a -> ShowS) -> (a -> [Char]) -> ([a] -> ShowS) -> Show a
showList :: [HashCorrections] -> ShowS
$cshowList :: [HashCorrections] -> ShowS
show :: HashCorrections -> [Char]
$cshow :: HashCorrections -> [Char]
showsPrec :: Int -> HashCorrections -> ShowS
$cshowsPrec :: Int -> HashCorrections -> ShowS
Show)

hashCorrections2F :: HashCorrections -> (Int8 -> [Integer] -> Integer)
hashCorrections2F :: HashCorrections -> Int8 -> [Integer] -> Integer
hashCorrections2F (H [Int8]
_ Int8
k) 
 | Int8
k forall a. Ord a => a -> a -> Bool
> Int8
0  = Int8 -> [Integer] -> Integer
hashPosLF2
 | Int8
k forall a. Eq a => a -> a -> Bool
== Int8
0 = Int8 -> [Integer] -> Integer
hashBalancingLF2
 | Bool
otherwise = Int8 -> [Integer] -> Integer
hashBasicLF2
{-# INLINE hashCorrections2F #-}

{-| If the second parameter  in the 'HashCorrections' is 1 then the result is more 
 sensitive to beginning of the line; if it is set to 2 then the result is more sensitive
 to ending of the line; if it is greater than 2 then the result is sensitive to some
user weights provided as the first parameter to 'HashCorrections' and otherwise 
the computation result does not depend on the first parameter to 'HashCorrections' (this
one can be considered  the basic option for the computation).
-}
hashList :: HashCorrections -> [Int8]
hashList :: HashCorrections -> [Int8]
hashList (H [Int8]
_ Int8
1) = [Int8
24,Int8
23..]
hashList (H [Int8]
_ Int8
2) = [Int8
1..Int8
21] forall a. Monoid a => a -> a -> a
`mappend` forall a. [a] -> [a]
cycle [Int8
0]
hashList (H [Int8]
xs Int8
_) = [Int8]
xs forall a. Monoid a => a -> a -> a
`mappend` forall a. [a] -> [a]
cycle [Int8
0]
{-# INLINE hashList #-}

-- | If you would like to specify just your own values then specify the 'String' \"a...\" where
-- \'a\' here means the minus sign \'-\' or some not equal to 1 or 2 digit, 
-- instead of dots specify some digits that are the beginning of the ['Int8'] list in
-- 'HashCorrections'. If \'a\' is \'-\', then the next not equal to \'a\' symbol should be
-- some digit not equal to 1 or 2 if you want to specify your own list of @[Int8]@ for 
-- 'HashCorrections'.
--
-- Caution: 
-- 
-- > readHashCorrections . show $ xs /= xs
--
-- > show . readHashCorrections $ xs /= xs
--
-- in general case. The default value is @H [0,0..] 0@. This one corresponds to usage of the
-- 'hashBalancingLF2' without any corrections (equi-sensitive to all the parts of the line except 
-- probably the last syllables if the number of syllables is not wholely divisible without remainder
-- to the groupLength parameter in the 'countHashesG' function). And this is equivalent to just
-- use the 'hashBasicLF2'.
-- 
readHashCorrections :: String -> HashCorrections
readHashCorrections :: [Char] -> HashCorrections
readHashCorrections [Char]
xs = if forall (t :: * -> *) a. Foldable t => t a -> Int
length [Char]
ys forall a. Ord a => a -> a -> Bool
> Int
1 then let ([Char]
ts,[Char]
us) = forall a. Int -> [a] -> ([a], [a])
splitAt Int
1 [Char]
ys in [Int8] -> Int8 -> HashCorrections
H (forall a b. (a -> b) -> [a] -> [b]
map (\Char
x -> forall a. Read a => [Char] -> a
read [Char
x]::Int8) [Char]
us) (if Bool
sgn then (-(forall a. Read a => [Char] -> a
read [Char]
ts::Int8)) else (forall a. Read a => [Char] -> a
read [Char]
ts::Int8)) else [Int8] -> Int8 -> HashCorrections
H [Int8
0,Int8
0..] Int8
0
   where ys :: [Char]
ys = forall a. (a -> Bool) -> [a] -> [a]
filter (\Char
x -> Char -> Bool
isDigit Char
x) [Char]
xs
         sgn :: Bool
sgn = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (forall a. Eq a => a -> a -> Bool
== Char
'-') [Char]
xs

-- | This is used to provide the second and the third arguments to 'countHashesG' function. The
-- default value is @(4,[3,2])@. This means that the line is divided into groups of 4-syllables 
-- then there are searched for rhythmic repetitions of the positions of the most maximum values
-- and the less maximum values. This scheme should is related to disyllables metrical feet for SaaW 
-- (syllables-as-a-whole) mode of operation for PhLADiPreLiO (see: 
-- https://oleksandrzhabenko.github.io/uk/rhythmicity/PhLADiPreLiO.Eng.21.html#SaaW).
-- For more information on the metrical feet you can see e. g. 
--
-- > @article{hyde2002restrictive,
-- >   title={A restrictive theory of metrical stress},
-- >   author={Hyde, Brett},
-- >   journal={Phonology},
-- >   volume={19},
-- >   number={3},
-- >   pages={313--359},
-- >   year={2002},
-- >   publisher={Cambridge University Press}
-- > }
--
grouppingR :: String -> (Int8, [Int8])
grouppingR :: [Char] -> (Int8, [Int8])
grouppingR [Char]
xs = if forall (t :: * -> *) a. Foldable t => t a -> Int
length [Char]
ys forall a. Ord a => a -> a -> Bool
> Int
1 then let ([Char]
ts,[Char]
us) = forall a. Int -> [a] -> ([a], [a])
splitAt Int
1 [Char]
ys in (forall a. Read a => [Char] -> a
read [Char]
ts::Int8, forall a b. (a -> b) -> [a] -> [b]
map (\Char
x -> forall a. Read a => [Char] -> a
read [Char
x]::Int8) [Char]
us) else (Int8
4,[Int8
3,Int8
2])
   where ys :: [Char]
ys = forall a. Int -> [a] -> [a]
take Int
8 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (\Char
x -> Char -> Bool
isDigit Char
x) forall a b. (a -> b) -> a -> b
$ [Char]
xs

-- | General implementation of  the hash-based algorithm to evaluate the level of rhythmicity 
-- of the list data. The relatively greater result (for PhLADiPreLiO) corresponds to greater detected periodicity.
countHashesG 
  :: Ord a => HashCorrections -- ^ Data that specifies how the arguments influence the result. Somewhat the kernel of the 'countHashesG' computation.
  -> Int8 -- ^ The period of the length of the initial list.
  -> [Int8] -- ^ List of ordinary positions of the maximum-minimum levels for values of the list in the group. The length of the unique elements together in the list is expected to be
  -- in the list [1..7]. 
  -> [a]
  -> [Integer]
countHashesG :: forall a.
Ord a =>
HashCorrections -> Int8 -> [Int8] -> [a] -> [Integer]
countHashesG HashCorrections
hc Int8
groupLength [Int8]
ks  = -- sum . 
  forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith ((Int8 -> [Integer] -> Integer) -> Int8 -> [Integer] -> Integer
createHashG Int8 -> [Integer] -> Integer
f) [Int8]
positions forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {b}. Bits b => [[b]] -> [[Integer]]
countHashesPrioritized forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => Int8 -> [Int8] -> [a] -> [[Integer]]
getHashes2 Int8
groupLength [Int8]
ws
   where f :: Int8 -> [Integer] -> Integer
f = HashCorrections -> Int8 -> [Integer] -> Integer
hashCorrections2F HashCorrections
hc
         positions :: [Int8]
positions = HashCorrections -> [Int8]
hashList HashCorrections
hc
         !ws :: [Int8]
ws = forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn (forall a. Num a => a -> a -> a
*(-Int8
1)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Ord a => a -> a -> Bool
>= Int8
0) forall a b. (a -> b) -> a -> b
$ [Int8]
ks
{-# INLINE countHashesG #-}

-- | General implementation of  the hash-based algorithm to evaluate the level of rhythmicity 
-- of the list data. The relatively greater result (for PhLADiPreLiO) corresponds to greater detected periodicity.
countHashes2G 
  :: Ord a => Int -- ^ The first parameter for 'createHash2G' function — the step of hashing shift. For 'countHashesG' it is equal to 20 (the default sensible value). Is expected to be greater than 2.
  -> HashCorrections -- ^ Data that specifies how the arguments influence the result. Somewhat the kernel of the 'countHashesG' computation.
  -> Int8 -- ^ The period of the length of the initial list.
  -> [Int8] -- ^ List of ordinary positions of the maximum-minimum levels for values of the list in the group. The length of the unique elements together in the list is expected to be
  -- in the list [1..7]. 
  -> [a]
  -> [Integer]
countHashes2G :: forall a.
Ord a =>
Int -> HashCorrections -> Int8 -> [Int8] -> [a] -> [Integer]
countHashes2G Int
k HashCorrections
hc Int8
groupLength [Int8]
ks  = -- sum . 
  forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (Int -> HashCorrections -> Int8 -> [Integer] -> Integer
createHash2G Int
k HashCorrections
hc) [Int8]
positions forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {b}. Bits b => [[b]] -> [[Integer]]
countHashesPrioritized forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => Int8 -> [Int8] -> [a] -> [[Integer]]
getHashes2 Int8
groupLength [Int8]
ws
   where positions :: [Int8]
positions = HashCorrections -> [Int8]
hashList HashCorrections
hc
         !ws :: [Int8]
ws = forall b a. Ord b => (a -> b) -> [a] -> [a]
sortOn (forall a. Num a => a -> a -> a
*(-Int8
1)) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (forall a. Ord a => a -> a -> Bool
>= Int8
0) forall a b. (a -> b) -> a -> b
$ [Int8]
ks
{-# INLINE countHashes2G #-}

-- | Provided for testing.
createNewHash :: [Integer] -> Integer
createNewHash :: [Integer] -> Integer
createNewHash (Integer
x1:Integer
x2:Integer
x3:Integer
x4:Integer
x5:Integer
x6:Integer
x7:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100, forall a. Bits a => a -> Int -> a
shiftL Integer
x3 Int
80, forall a. Bits a => a -> Int -> a
shiftL Integer
x4 Int
60, forall a. Bits a => a -> Int -> a
shiftL Integer
x5 Int
40, forall a. Bits a => a -> Int -> a
shiftL Integer
x6 Int
20, Integer
x7]
createNewHash (Integer
x1:Integer
x2:Integer
x3:Integer
x4:Integer
x5:Integer
x6:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100, forall a. Bits a => a -> Int -> a
shiftL Integer
x3 Int
80, forall a. Bits a => a -> Int -> a
shiftL Integer
x4 Int
60, forall a. Bits a => a -> Int -> a
shiftL Integer
x5 Int
40, forall a. Bits a => a -> Int -> a
shiftL Integer
x6 Int
20]
createNewHash (Integer
x1:Integer
x2:Integer
x3:Integer
x4:Integer
x5:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100, forall a. Bits a => a -> Int -> a
shiftL Integer
x3 Int
80, forall a. Bits a => a -> Int -> a
shiftL Integer
x4 Int
60, forall a. Bits a => a -> Int -> a
shiftL Integer
x5 Int
40]
createNewHash (Integer
x1:Integer
x2:Integer
x3:Integer
x4:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100, forall a. Bits a => a -> Int -> a
shiftL Integer
x3 Int
80, forall a. Bits a => a -> Int -> a
shiftL Integer
x4 Int
60]
createNewHash (Integer
x1:Integer
x2:Integer
x3:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100, forall a. Bits a => a -> Int -> a
shiftL Integer
x3 Int
80]
createNewHash (Integer
x1:Integer
x2:[Integer]
_) = forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum [forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120, forall a. Bits a => a -> Int -> a
shiftL Integer
x2 Int
100]
createNewHash (Integer
x1:[Integer]
_) = forall a. Bits a => a -> Int -> a
shiftL Integer
x1 Int
120
createNewHash [Integer]
_ = Integer
0

-- | General implementation of the second hashing of the data for the algorithm.
createHashG :: (Int8 -> [Integer] -> Integer) -> Int8 -> [Integer] -> Integer
createHashG :: (Int8 -> [Integer] -> Integer) -> Int8 -> [Integer] -> Integer
createHashG Int8 -> [Integer] -> Integer
f Int8
pos = Int8 -> [Integer] -> Integer
f Int8
pos forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
n Integer
x -> forall a. Bits a => a -> Int -> a
shift Integer
x (Int
nforall a. Num a => a -> a -> a
*Int
20)) [Int
6,Int
5..Int
0]
{-# INLINE createHashG #-}

-- | General implementation of the second hashing of the data for the algorithm with the additional
-- parameter that specifies the step of hashing (by default, e. g. in 'createHashG' it is equal to
-- 20, but here you can provide your own value). Therefore, is more flexible than 'createHashG', but
-- can lead to not well coordinated evaluations in general case that wipe by hashing some
-- information in the data. Is intended that the first argument is greater than 2 though it is not
-- checked.
createHash2G :: Int -> HashCorrections -> Int8 -> [Integer] -> Integer
createHash2G :: Int -> HashCorrections -> Int8 -> [Integer] -> Integer
createHash2G Int
k hc :: HashCorrections
hc@(H [Int8]
_ Int8
0) Int8
pos = (Int -> Int8 -> [Integer] -> Integer
hashBalancingLF2G Int
k) Int8
pos forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
n Integer
x -> forall a. Bits a => a -> Int -> a
shift Integer
x (Int
nforall a. Num a => a -> a -> a
*Int
k)) [Int
6,Int
5..Int
0]
createHash2G Int
k (H [Int8]
_ Int8
m) Int8
pos = (if Int8
m forall a. Ord a => a -> a -> Bool
> Int8
0 then Int8 -> [Integer] -> Integer
hashPosLF2 else Int8 -> [Integer] -> Integer
hashBasicLF2) Int8
pos forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (\Int
n Integer
x -> forall a. Bits a => a -> Int -> a
shift Integer
x (Int
nforall a. Num a => a -> a -> a
*Int
k)) [Int
6,Int
5..Int
0]
{-# INLINE createHash2G #-}

-- | A variant of the 'createHashG' that actually must be equal to the 'createNewHash' for the
-- second argument lists 
-- with less than 8 elements. For greater values is not correctly defined, so do not use it for 
-- the lists with 8 or more elements in them. Actually should be equal to 'createNewHash' for the
-- second argument.
createNHash :: [Int8] -> [Integer] -> Integer
createNHash :: [Int8] -> [Integer] -> Integer
createNHash [Int8]
_ = [Integer] -> Integer
createNewHash forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Int -> [a] -> [a]
take Int
7
{-# INLINE createNHash #-}

-- | Function to filter the elements by the second parameter of the 'ASort3' data 
-- and then to get the first ones.
idList :: Eq a => [Int8] -> [ASort3 a] -> [Int8]
idList :: forall a. Eq a => [Int8] -> [ASort3 a] -> [Int8]
idList [Int8]
orDs [ASort3 a]
ys = forall a b. (a -> b) -> [a] -> [b]
map (\(As3 Int8
k Int8
_ a
_) -> Int8
k) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. (a -> Bool) -> [a] -> [a]
filter (\(As3 Int8
_ Int8
n a
_) -> Int8
n forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int8]
orDs) forall a b. (a -> b) -> a -> b
$ [ASort3 a]
ys

-- | Function to create bitwise representation of the intermediate data for the algorithm.
-- Should be very optimized to run fast.
toNum :: [Int8] -> Integer
toNum :: [Int8] -> Integer
toNum [Int8]
xs = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' forall a. Bits a => a -> Int -> a
setBit Integer
0 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map forall a. Enum a => a -> Int
fromEnum forall a b. (a -> b) -> a -> b
$ [Int8]
xs

-- | The alternative implementation of the 'toNum' (on the Linux x86_64 for some CPU is 
-- slower than the former one).
toNum2 :: [Int8] -> Integer
toNum2 :: [Int8] -> Integer
toNum2 [Int8]
xs = (forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
sum forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall a. Bits a => a -> Int -> a
shiftL Integer
1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Enum a => a -> Int
fromEnum) forall a b. (a -> b) -> a -> b
$ [Int8]
xs)::Integer

------------------------------------------------------

-- | Function for generating the information to be used for evaluation of the points of the uncongruencies' influences on the pauses in the case of the period of the line is equal to 2 (two-syllable meter).
--  See for the theoretical idea the paper by the link:
--  https://www.academia.edu/105067761/Why_some_lines_are_easy_to_pronounce_and_others_are_not_or_prosodic_unpredictability_as_a_characteristic_of_text (English text)
--  https://www.academia.edu/105067723/%D0%A7%D0%BE%D0%BC%D1%83_%D0%B4%D0%B5%D1%8F%D0%BA%D1%96_%D1%80%D1%8F%D0%B4%D0%BA%D0%B8_%D0%BB%D0%B5%D0%B3%D0%BA%D0%BE_%D0%B2%D0%B8%D0%BC%D0%BE%D0%B2%D0%BB%D1%8F%D1%82%D0%B8_%D0%B0_%D1%96%D0%BD%D1%88%D1%96_%D0%BD%D1%96_%D0%B0%D0%B1%D0%BE_%D0%BF%D1%80%D0%BE%D1%81%D0%BE%D0%B4%D0%B8%D1%87%D0%BD%D0%B0_%D0%BD%D0%B5%D1%81%D0%BF%D1%80%D0%BE%D0%B3%D0%BD%D0%BE%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D1%96%D1%81%D1%82%D1%8C_%D1%8F%D0%BA_%D1%85%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D1%81%D1%82%D0%B8%D0%BA%D0%B0_%D1%82%D0%B5%D0%BA%D1%81%D1%82%D1%83 (Ukrainian text)
showZerosFor2Period 
  :: (Ord a) => [[a]] -- The representation of the data to be analysed.
  -> Int 
  -> (b -> String)
  -> [[[b]]]
  -> (String, [Integer])
showZerosFor2Period :: forall a b.
Ord a =>
[[a]] -> Int -> (b -> [Char]) -> [[[b]]] -> ([Char], [Integer])
showZerosFor2Period [[a]]
structData Int
syllN b -> [Char]
f [[[b]]]
sylls = ([Char]
breaks, [Integer]
rs)
  where rs :: [Integer]
rs = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {b}. Bits b => [[b]] -> [[Integer]]
countHashesPrioritized forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Ord a => Int8 -> [Int8] -> [a] -> [[Integer]]
getHashes2 Int8
2 [Int8
1] forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => [a] -> a
mconcat forall a b. (a -> b) -> a -> b
$ [[a]]
structData
        indeces :: [Int]
indeces = forall a. (a -> Bool) -> [a] -> [Int]
findIndices (forall a. Eq a => a -> a -> Bool
== Integer
0) [Integer]
rs
        resSylls :: Array Int [Char]
resSylls = forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Int
0,Int
syllN forall a. Num a => a -> a -> a
- Int
1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map (forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap b -> [Char]
f) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat forall a b. (a -> b) -> a -> b
$ [[[b]]]
sylls
        addlist :: [[Int]]
addlist 
           | Int
syllN forall a. Integral a => a -> a -> a
`rem` Int
2 forall a. Eq a => a -> a -> Bool
== Int
0 = [Int
0,Int
1,Int
2] forall a. a -> [a] -> [a]
: ((forall a. Int -> [a] -> [[a]]
splitF Int
2 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Int -> [a] -> [a]
take (Int
syllN forall a. Num a => a -> a -> a
- Int
6) forall a b. (a -> b) -> a -> b
$ [Int
3,Int
4..]) forall a. Monoid a => a -> a -> a
`mappend` [[Int
syllN forall a. Num a => a -> a -> a
- Int
3, Int
syllN forall a. Num a => a -> a -> a
- Int
2, Int
syllN forall a. Num a => a -> a -> a
- Int
1]])
           | Bool
otherwise = [Int
0,Int
1,Int
2] forall a. a -> [a] -> [a]
: (forall a. Int -> [a] -> [[a]]
splitF Int
2 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Int -> [a] -> [a]
take (Int
syllN forall a. Num a => a -> a -> a
- Int
3) forall a b. (a -> b) -> a -> b
$ [Int
3,Int
4..])
        arrinds :: Array Int [Int]
arrinds = forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Int
0,Int
syllN forall a. Integral a => a -> a -> a
`quot` Int
2) [[Int]]
addlist
        neededinds :: [[Int]]
neededinds = forall a b. (a -> b) -> [a] -> [b]
map (forall i e. Array i e -> Int -> e
unsafeAt Array Int [Int]
arrinds) [Int]
indeces
        neededsylls :: [[[Char]]]
neededsylls = forall a b. (a -> b) -> [a] -> [b]
map (forall a b. (a -> b) -> [a] -> [b]
map (forall i e. Array i e -> Int -> e
unsafeAt Array Int [Char]
resSylls)) [[Int]]
neededinds
        breaks :: [Char]
breaks = forall a. [a] -> [[a]] -> [a]
intercalate [Char]
" ... " forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map [[Char]] -> [Char]
unwords forall a b. (a -> b) -> a -> b
$ [[[Char]]]
neededsylls