{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wall -Werror #-}
module Data.SBV.Core.Data
( SBool, SWord8, SWord16, SWord32, SWord64
, SInt8, SInt16, SInt32, SInt64, SInteger, SReal, SFloat, SDouble
, SFloatingPoint, SFPHalf, SFPBFloat, SFPSingle, SFPDouble, SFPQuad
, SWord, SInt, WordN, IntN
, SRational
, SChar, SString, SList
, SEither, SMaybe, SArray, ArrayModel(..)
, STuple, STuple2, STuple3, STuple4, STuple5, STuple6, STuple7, STuple8
, RCSet(..), SSet
, nan, infinity, sNaN, sInfinity, RoundingMode(..), SRoundingMode
, sRoundNearestTiesToEven, sRoundNearestTiesToAway, sRoundTowardPositive, sRoundTowardNegative, sRoundTowardZero
, sRNE, sRNA, sRTP, sRTN, sRTZ
, SymVal(..)
, CV(..), CVal(..), AlgReal(..), AlgRealPoly(..), ExtCV(..), GeneralizedCV(..), isRegularCV, cvSameType, cvToBool
, mkConstCV , mapCV, mapCV2
, SV(..), trueSV, falseSV, trueCV, falseCV, normCV
, SVal(..)
, sTrue, sFalse, sNot, (.&&), (.||), (.<+>), (.~&), (.~|), (.=>), (.<=>), sAnd, sOr, sAny, sAll, fromBool
, SBV(..), NodeId(..), mkSymSBV
, sbvToSV, sbvToSymSV, forceSVArg
, SBVExpr(..), newExpr
, cache, Cached, uncache, HasKind(..)
, Op(..), PBOp(..), FPOp(..), StrOp(..), RegExOp(..), SeqOp(..), RegExp(..), NamedSymVar(..), OvOp(..), getTableIndex
, SBVPgm(..), Symbolic, runSymbolic, State, getPathCondition, extendPathCondition
, inSMTMode, SBVRunMode(..), Kind(..), Outputtable(..), Result(..)
, SolverContext(..), internalVariable, internalConstraint, isCodeGenMode
, SBVType(..), newUninterpreted
, Quantifier(..), needsExistentials
, SMTLibPgm(..), SMTLibVersion(..), smtLibVersionExtension, smtLibReservedNames
, SolverCapabilities(..)
, extractSymbolicSimulationState
, SMTScript(..), Solver(..), SMTSolver(..), SMTResult(..), SMTModel(..), SMTConfig(..)
, OptimizeStyle(..), Penalty(..), Objective(..)
, QueryState(..), QueryT(..), SMTProblem(..), Constraint(..), Lambda(..), Forall(..), Exists(..), ExistsUnique(..), ForallN(..), ExistsN(..)
, QuantifiedBool(..), EqSymbolic(..), QNot(..), Skolemize(SkolemsTo, skolemize, taggedSkolemize)
, bvExtract, (#), bvDrop, bvTake
) where
import GHC.TypeLits (KnownNat, Nat, Symbol, KnownSymbol, symbolVal, AppendSymbol, type (+), type (-), type (<=), natVal)
import GHC.Exts (IsList(..))
import Control.DeepSeq (NFData(..))
import Control.Monad (void, replicateM)
import Control.Monad.Trans (liftIO, MonadIO)
import Data.Int (Int8, Int16, Int32, Int64)
import Data.Word (Word8, Word16, Word32, Word64)
import Data.List (elemIndex)
import Data.Maybe (fromMaybe)
import Data.Kind (Type)
import Data.Proxy
import Data.Typeable (Typeable)
import GHC.Generics (Generic, U1(..), M1(..), (:*:)(..), K1(..), (:+:)(..))
import qualified GHC.Generics as G
import qualified Data.Generics as G (Data(..))
import System.Random
import Data.SBV.Core.AlgReals
import Data.SBV.Core.Sized
import Data.SBV.Core.SizedFloats
import Data.SBV.Core.Kind
import Data.SBV.Core.Concrete
import Data.SBV.Core.Symbolic
import Data.SBV.Core.Operations
import Data.SBV.Control.Types
import Data.SBV.SMT.SMTLibNames
import Data.SBV.Utils.Lib
getPathCondition :: State -> SBool
getPathCondition :: State -> SBool
getPathCondition State
st = SVal -> SBool
forall a. SVal -> SBV a
SBV (State -> SVal
getSValPathCondition State
st)
extendPathCondition :: State -> (SBool -> SBool) -> State
extendPathCondition :: State -> (SBool -> SBool) -> State
extendPathCondition State
st SBool -> SBool
f = State -> (SVal -> SVal) -> State
extendSValPathCondition State
st (SBool -> SVal
forall a. SBV a -> SVal
unSBV (SBool -> SVal) -> (SVal -> SBool) -> SVal -> SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBool -> SBool
f (SBool -> SBool) -> (SVal -> SBool) -> SVal -> SBool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SVal -> SBool
forall a. SVal -> SBV a
SBV)
newtype SBV a = SBV { forall a. SBV a -> SVal
unSBV :: SVal }
deriving ((forall x. SBV a -> Rep (SBV a) x)
-> (forall x. Rep (SBV a) x -> SBV a) -> Generic (SBV a)
forall x. Rep (SBV a) x -> SBV a
forall x. SBV a -> Rep (SBV a) x
forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall a x. Rep (SBV a) x -> SBV a
forall a x. SBV a -> Rep (SBV a) x
$cfrom :: forall a x. SBV a -> Rep (SBV a) x
from :: forall x. SBV a -> Rep (SBV a) x
$cto :: forall a x. Rep (SBV a) x -> SBV a
to :: forall x. Rep (SBV a) x -> SBV a
Generic, SBV a -> ()
(SBV a -> ()) -> NFData (SBV a)
forall a. SBV a -> ()
forall a. (a -> ()) -> NFData a
$crnf :: forall a. SBV a -> ()
rnf :: SBV a -> ()
NFData)
type SBool = SBV Bool
type SWord8 = SBV Word8
type SWord16 = SBV Word16
type SWord32 = SBV Word32
type SWord64 = SBV Word64
type SInt8 = SBV Int8
type SInt16 = SBV Int16
type SInt32 = SBV Int32
type SInt64 = SBV Int64
type SInteger = SBV Integer
type SReal = SBV AlgReal
type SFloat = SBV Float
type SDouble = SBV Double
type SFloatingPoint (eb :: Nat) (sb :: Nat) = SBV (FloatingPoint eb sb)
type SFPHalf = SBV FPHalf
type SFPBFloat = SBV FPBFloat
type SFPSingle = SBV FPSingle
type SFPDouble = SBV FPDouble
type SFPQuad = SBV FPQuad
type SWord (n :: Nat) = SBV (WordN n)
type SInt (n :: Nat) = SBV (IntN n)
type SChar = SBV Char
type SString = SBV String
type SRational = SBV Rational
type SList a = SBV [a]
type SEither a b = SBV (Either a b)
type SMaybe a = SBV (Maybe a)
type SArray a b = SBV (ArrayModel a b)
type SSet a = SBV (RCSet a)
type STuple a b = SBV (a, b)
type STuple2 a b = SBV (a, b)
type STuple3 a b c = SBV (a, b, c)
type STuple4 a b c d = SBV (a, b, c, d)
type STuple5 a b c d e = SBV (a, b, c, d, e)
type STuple6 a b c d e f = SBV (a, b, c, d, e, f)
type STuple7 a b c d e f g = SBV (a, b, c, d, e, f, g)
type STuple8 a b c d e f g h = SBV (a, b, c, d, e, f, g, h)
instance SymVal [a] => IsList (SList a) where
type Item (SList a) = a
fromList :: [Item (SList a)] -> SList a
fromList = [a] -> SList a
[Item (SList a)] -> SList a
forall a. SymVal a => a -> SBV a
literal
toList :: SList a -> [Item (SList a)]
toList SList a
x = [a] -> Maybe [a] -> [a]
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> [a]
forall a. HasCallStack => [Char] -> a
error [Char]
"IsList.toList used in a symbolic context!") (SList a -> Maybe [a]
forall a. SymVal a => SBV a -> Maybe a
unliteral SList a
x)
nan :: Floating a => a
nan :: forall a. Floating a => a
nan = a
0a -> a -> a
forall a. Fractional a => a -> a -> a
/a
0
infinity :: Floating a => a
infinity :: forall a. Floating a => a
infinity = a
1a -> a -> a
forall a. Fractional a => a -> a -> a
/a
0
sNaN :: (Floating a, SymVal a) => SBV a
sNaN :: forall a. (Floating a, SymVal a) => SBV a
sNaN = a -> SBV a
forall a. SymVal a => a -> SBV a
literal a
forall a. Floating a => a
nan
sInfinity :: (Floating a, SymVal a) => SBV a
sInfinity :: forall a. (Floating a, SymVal a) => SBV a
sInfinity = a -> SBV a
forall a. SymVal a => a -> SBV a
literal a
forall a. Floating a => a
infinity
newtype SMTProblem = SMTProblem {SMTProblem -> SMTConfig -> SMTLibPgm
smtLibPgm :: SMTConfig -> SMTLibPgm}
sTrue :: SBool
sTrue :: SBool
sTrue = SVal -> SBool
forall a. SVal -> SBV a
SBV (Bool -> SVal
svBool Bool
True)
sFalse :: SBool
sFalse :: SBool
sFalse = SVal -> SBool
forall a. SVal -> SBV a
SBV (Bool -> SVal
svBool Bool
False)
sNot :: SBool -> SBool
sNot :: SBool -> SBool
sNot (SBV SVal
b) = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal -> SVal
svNot SVal
b)
infixr 3 .&&
(.&&) :: SBool -> SBool -> SBool
SBV SVal
x .&& :: SBool -> SBool -> SBool
.&& SBV SVal
y = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal
x SVal -> SVal -> SVal
`svAnd` SVal
y)
infixr 2 .||
(.||) :: SBool -> SBool -> SBool
SBV SVal
x .|| :: SBool -> SBool -> SBool
.|| SBV SVal
y = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal
x SVal -> SVal -> SVal
`svOr` SVal
y)
infixl 6 .<+>
(.<+>) :: SBool -> SBool -> SBool
SBV SVal
x .<+> :: SBool -> SBool -> SBool
.<+> SBV SVal
y = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal
x SVal -> SVal -> SVal
`svXOr` SVal
y)
infixr 3 .~&
(.~&) :: SBool -> SBool -> SBool
SBool
x .~& :: SBool -> SBool -> SBool
.~& SBool
y = SBool -> SBool
sNot (SBool
x SBool -> SBool -> SBool
.&& SBool
y)
infixr 2 .~|
(.~|) :: SBool -> SBool -> SBool
SBool
x .~| :: SBool -> SBool -> SBool
.~| SBool
y = SBool -> SBool
sNot (SBool
x SBool -> SBool -> SBool
.|| SBool
y)
infixr 1 .=>
(.=>) :: SBool -> SBool -> SBool
SBV SVal
x .=> :: SBool -> SBool -> SBool
.=> SBV SVal
y = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal
x SVal -> SVal -> SVal
`svImplies` SVal
y)
infixr 1 .<=>
(.<=>) :: SBool -> SBool -> SBool
SBV SVal
x .<=> :: SBool -> SBool -> SBool
.<=> SBV SVal
y = SVal -> SBool
forall a. SVal -> SBV a
SBV (SVal
x SVal -> SVal -> SVal
`svEqual` SVal
y)
fromBool :: Bool -> SBool
fromBool :: Bool -> SBool
fromBool Bool
True = SBool
sTrue
fromBool Bool
False = SBool
sFalse
sAnd :: [SBool] -> SBool
sAnd :: [SBool] -> SBool
sAnd = (SBool -> SBool -> SBool) -> SBool -> [SBool] -> SBool
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr SBool -> SBool -> SBool
(.&&) SBool
sTrue
sOr :: [SBool] -> SBool
sOr :: [SBool] -> SBool
sOr = (SBool -> SBool -> SBool) -> SBool -> [SBool] -> SBool
forall a b. (a -> b -> b) -> b -> [a] -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr SBool -> SBool -> SBool
(.||) SBool
sFalse
sAny :: (a -> SBool) -> [a] -> SBool
sAny :: forall a. (a -> SBool) -> [a] -> SBool
sAny a -> SBool
f = [SBool] -> SBool
sOr ([SBool] -> SBool) -> ([a] -> [SBool]) -> [a] -> SBool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> SBool) -> [a] -> [SBool]
forall a b. (a -> b) -> [a] -> [b]
map a -> SBool
f
sAll :: (a -> SBool) -> [a] -> SBool
sAll :: forall a. (a -> SBool) -> [a] -> SBool
sAll a -> SBool
f = [SBool] -> SBool
sAnd ([SBool] -> SBool) -> ([a] -> [SBool]) -> [a] -> SBool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> SBool) -> [a] -> [SBool]
forall a b. (a -> b) -> [a] -> [b]
map a -> SBool
f
instance SymVal RoundingMode
type SRoundingMode = SBV RoundingMode
sRoundNearestTiesToEven :: SRoundingMode
sRoundNearestTiesToEven :: SBV RoundingMode
sRoundNearestTiesToEven = RoundingMode -> SBV RoundingMode
forall a. SymVal a => a -> SBV a
literal RoundingMode
RoundNearestTiesToEven
sRoundNearestTiesToAway :: SRoundingMode
sRoundNearestTiesToAway :: SBV RoundingMode
sRoundNearestTiesToAway = RoundingMode -> SBV RoundingMode
forall a. SymVal a => a -> SBV a
literal RoundingMode
RoundNearestTiesToAway
sRoundTowardPositive :: SRoundingMode
sRoundTowardPositive :: SBV RoundingMode
sRoundTowardPositive = RoundingMode -> SBV RoundingMode
forall a. SymVal a => a -> SBV a
literal RoundingMode
RoundTowardPositive
sRoundTowardNegative :: SRoundingMode
sRoundTowardNegative :: SBV RoundingMode
sRoundTowardNegative = RoundingMode -> SBV RoundingMode
forall a. SymVal a => a -> SBV a
literal RoundingMode
RoundTowardNegative
sRoundTowardZero :: SRoundingMode
sRoundTowardZero :: SBV RoundingMode
sRoundTowardZero = RoundingMode -> SBV RoundingMode
forall a. SymVal a => a -> SBV a
literal RoundingMode
RoundTowardZero
sRNE :: SRoundingMode
sRNE :: SBV RoundingMode
sRNE = SBV RoundingMode
sRoundNearestTiesToEven
sRNA :: SRoundingMode
sRNA :: SBV RoundingMode
sRNA = SBV RoundingMode
sRoundNearestTiesToAway
sRTP :: SRoundingMode
sRTP :: SBV RoundingMode
sRTP = SBV RoundingMode
sRoundTowardPositive
sRTN :: SRoundingMode
sRTN :: SBV RoundingMode
sRTN = SBV RoundingMode
sRoundTowardNegative
sRTZ :: SRoundingMode
sRTZ :: SBV RoundingMode
sRTZ = SBV RoundingMode
sRoundTowardZero
instance Show (SBV a) where
show :: SBV a -> [Char]
show (SBV SVal
sv) = SVal -> [Char]
forall a. Show a => a -> [Char]
show SVal
sv
instance Eq (SBV a) where
SBV SVal
a == :: SBV a -> SBV a -> Bool
== SBV SVal
b = SVal
a SVal -> SVal -> Bool
forall a. Eq a => a -> a -> Bool
== SVal
b
SBV SVal
a /= :: SBV a -> SBV a -> Bool
/= SBV SVal
b = SVal
a SVal -> SVal -> Bool
forall a. Eq a => a -> a -> Bool
/= SVal
b
instance HasKind a => HasKind (SBV a) where
kindOf :: SBV a -> Kind
kindOf SBV a
_ = Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)
sbvToSV :: State -> SBV a -> IO SV
sbvToSV :: forall a. State -> SBV a -> IO SV
sbvToSV State
st (SBV SVal
s) = State -> SVal -> IO SV
svToSV State
st SVal
s
mkSymSBV :: forall a m. MonadSymbolic m => VarContext -> Kind -> Maybe String -> m (SBV a)
mkSymSBV :: forall a (m :: * -> *).
MonadSymbolic m =>
VarContext -> Kind -> Maybe [Char] -> m (SBV a)
mkSymSBV VarContext
vc Kind
k Maybe [Char]
mbNm = SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> m SVal -> m (SBV a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (m State
forall (m :: * -> *). MonadSymbolic m => m State
symbolicEnv m State -> (State -> m SVal) -> m SVal
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= IO SVal -> m SVal
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO SVal -> m SVal) -> (State -> IO SVal) -> State -> m SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. VarContext -> Kind -> Maybe [Char] -> State -> IO SVal
svMkSymVar VarContext
vc Kind
k Maybe [Char]
mbNm)
sbvToSymSV :: MonadSymbolic m => SBV a -> m SV
sbvToSymSV :: forall (m :: * -> *) a. MonadSymbolic m => SBV a -> m SV
sbvToSymSV SBV a
sbv = do
st <- m State
forall (m :: * -> *). MonadSymbolic m => m State
symbolicEnv
liftIO $ sbvToSV st sbv
class MonadSymbolic m => Constraint m a where
mkConstraint :: State -> a -> m ()
instance MonadSymbolic m => Constraint m SBool where
mkConstraint :: State -> SBool -> m ()
mkConstraint State
_ SBool
out = m SBool -> m ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (m SBool -> m ()) -> m SBool -> m ()
forall a b. (a -> b) -> a -> b
$ SBool -> m SBool
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => SBool -> m SBool
output SBool
out
newtype Exists (nm :: Symbol) a = Exists (SBV a)
newtype ExistsUnique (nm :: Symbol) a = ExistsUnique (SBV a)
newtype Forall (nm :: Symbol) a = Forall (SBV a)
newtype ExistsN (n :: Nat) (nm :: Symbol) a = ExistsN [SBV a]
newtype ForallN (n :: Nat) (nm :: Symbol) a = ForallN [SBV a]
mkQArg :: forall m a. (HasKind a, MonadIO m) => State -> Quantifier -> m (SBV a)
mkQArg :: forall (m :: * -> *) a.
(HasKind a, MonadIO m) =>
State -> Quantifier -> m (SBV a)
mkQArg State
st Quantifier
q = do let k :: Kind
k = Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)
sv <- IO SV -> m SV
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO SV -> m SV) -> IO SV -> m SV
forall a b. (a -> b) -> a -> b
$ Quantifier -> State -> Kind -> IO SV
quantVar Quantifier
q State
st Kind
k
pure $ SBV $ SVal k (Right (cache (const (return sv))))
instance (SymVal a, Constraint m r) => Constraint m (Exists nm a -> r) where
mkConstraint :: State -> (Exists nm a -> r) -> m ()
mkConstraint State
st Exists nm a -> r
fn = State -> Quantifier -> m (SBV a)
forall (m :: * -> *) a.
(HasKind a, MonadIO m) =>
State -> Quantifier -> m (SBV a)
mkQArg State
st Quantifier
EX m (SBV a) -> (SBV a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= State -> r -> m ()
forall (m :: * -> *) a. Constraint m a => State -> a -> m ()
mkConstraint State
st (r -> m ()) -> (SBV a -> r) -> SBV a -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Exists nm a -> r
fn (Exists nm a -> r) -> (SBV a -> Exists nm a) -> SBV a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV a -> Exists nm a
forall (nm :: Symbol) a. SBV a -> Exists nm a
Exists
instance (SymVal a, Constraint m r, EqSymbolic (SBV a), QuantifiedBool r) => Constraint m (ExistsUnique nm a -> r) where
mkConstraint :: State -> (ExistsUnique nm a -> r) -> m ()
mkConstraint State
st = State
-> (Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> m ()
forall (m :: * -> *) a. Constraint m a => State -> a -> m ()
mkConstraint State
st ((Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> m ())
-> ((ExistsUnique nm a -> r)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> (ExistsUnique nm a -> r)
-> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ExistsUnique nm a -> r)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
forall b a (nm :: Symbol).
(QuantifiedBool b, EqSymbolic (SBV a)) =>
(ExistsUnique nm a -> b)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
rewriteExistsUnique
instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ExistsN n nm a -> r) where
mkConstraint :: State -> (ExistsN n nm a -> r) -> m ()
mkConstraint State
st ExistsN n nm a -> r
fn = Int -> m (SBV a) -> m [SBV a]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM (Proxy n -> Int
forall (n :: Nat). KnownNat n => Proxy n -> Int
intOfProxy (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)) (State -> Quantifier -> m (SBV a)
forall (m :: * -> *) a.
(HasKind a, MonadIO m) =>
State -> Quantifier -> m (SBV a)
mkQArg State
st Quantifier
EX) m [SBV a] -> ([SBV a] -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= State -> r -> m ()
forall (m :: * -> *) a. Constraint m a => State -> a -> m ()
mkConstraint State
st (r -> m ()) -> ([SBV a] -> r) -> [SBV a] -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ExistsN n nm a -> r
fn (ExistsN n nm a -> r)
-> ([SBV a] -> ExistsN n nm a) -> [SBV a] -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [SBV a] -> ExistsN n nm a
forall (n :: Nat) (nm :: Symbol) a. [SBV a] -> ExistsN n nm a
ExistsN
instance (SymVal a, Constraint m r) => Constraint m (Forall nm a -> r) where
mkConstraint :: State -> (Forall nm a -> r) -> m ()
mkConstraint State
st Forall nm a -> r
fn = State -> Quantifier -> m (SBV a)
forall (m :: * -> *) a.
(HasKind a, MonadIO m) =>
State -> Quantifier -> m (SBV a)
mkQArg State
st Quantifier
ALL m (SBV a) -> (SBV a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= State -> r -> m ()
forall (m :: * -> *) a. Constraint m a => State -> a -> m ()
mkConstraint State
st (r -> m ()) -> (SBV a -> r) -> SBV a -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Forall nm a -> r
fn (Forall nm a -> r) -> (SBV a -> Forall nm a) -> SBV a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV a -> Forall nm a
forall (nm :: Symbol) a. SBV a -> Forall nm a
Forall
instance (KnownNat n, SymVal a, Constraint m r) => Constraint m (ForallN n nm a -> r) where
mkConstraint :: State -> (ForallN n nm a -> r) -> m ()
mkConstraint State
st ForallN n nm a -> r
fn = Int -> m (SBV a) -> m [SBV a]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM (Proxy n -> Int
forall (n :: Nat). KnownNat n => Proxy n -> Int
intOfProxy (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)) (State -> Quantifier -> m (SBV a)
forall (m :: * -> *) a.
(HasKind a, MonadIO m) =>
State -> Quantifier -> m (SBV a)
mkQArg State
st Quantifier
ALL) m [SBV a] -> ([SBV a] -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= State -> r -> m ()
forall (m :: * -> *) a. Constraint m a => State -> a -> m ()
mkConstraint State
st (r -> m ()) -> ([SBV a] -> r) -> [SBV a] -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ForallN n nm a -> r
fn (ForallN n nm a -> r)
-> ([SBV a] -> ForallN n nm a) -> [SBV a] -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [SBV a] -> ForallN n nm a
forall (n :: Nat) (nm :: Symbol) a. [SBV a] -> ForallN n nm a
ForallN
class MonadSymbolic m => Lambda m a where
mkLambda :: State -> a -> m ()
instance MonadSymbolic m => Lambda m (SBV a) where
mkLambda :: State -> SBV a -> m ()
mkLambda State
_ SBV a
out = m (SBV a) -> m ()
forall (f :: * -> *) a. Functor f => f a -> f ()
void (m (SBV a) -> m ()) -> m (SBV a) -> m ()
forall a b. (a -> b) -> a -> b
$ SBV a -> m (SBV a)
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => SBV a -> m (SBV a)
output SBV a
out
instance (SymVal a, Lambda m r) => Lambda m (SBV a -> r) where
mkLambda :: State -> (SBV a -> r) -> m ()
mkLambda State
st SBV a -> r
fn = m (SBV a)
mkArg m (SBV a) -> (SBV a -> m ()) -> m ()
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= State -> r -> m ()
forall (m :: * -> *) a. Lambda m a => State -> a -> m ()
mkLambda State
st (r -> m ()) -> (SBV a -> r) -> SBV a -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV a -> r
fn
where mkArg :: m (SBV a)
mkArg = do let k :: Kind
k = Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)
sv <- IO SV -> m SV
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO SV -> m SV) -> IO SV -> m SV
forall a b. (a -> b) -> a -> b
$ State -> Kind -> IO SV
lambdaVar State
st Kind
k
pure $ SBV $ SVal k (Right (cache (const (return sv))))
class QuantifiedBool a where
quantifiedBool :: a -> SBool
instance {-# OVERLAPPING #-} QuantifiedBool SBool where
quantifiedBool :: SBool -> SBool
quantifiedBool = SBool -> SBool
forall a. a -> a
id
class SolverContext m where
constrain :: QuantifiedBool a => a -> m ()
softConstrain :: QuantifiedBool a => a -> m ()
namedConstraint :: QuantifiedBool a => String -> a -> m ()
constrainWithAttribute :: QuantifiedBool a => [(String, String)] -> a -> m ()
setInfo :: String -> [String] -> m ()
setOption :: SMTOption -> m ()
setLogic :: Logic -> m ()
setTimeOut :: Integer -> m ()
contextState :: m State
{-# MINIMAL constrain, softConstrain, namedConstraint, constrainWithAttribute, setOption, contextState #-}
setTimeOut Integer
t = SMTOption -> m ()
forall (m :: * -> *). SolverContext m => SMTOption -> m ()
setOption (SMTOption -> m ()) -> SMTOption -> m ()
forall a b. (a -> b) -> a -> b
$ [Char] -> [[Char]] -> SMTOption
OptionKeyword [Char]
":timeout" [Integer -> [Char]
forall a. Show a => a -> [Char]
show Integer
t]
setLogic = SMTOption -> m ()
forall (m :: * -> *). SolverContext m => SMTOption -> m ()
setOption (SMTOption -> m ()) -> (Logic -> SMTOption) -> Logic -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Logic -> SMTOption
SetLogic
setInfo [Char]
k = SMTOption -> m ()
forall (m :: * -> *). SolverContext m => SMTOption -> m ()
setOption (SMTOption -> m ()) -> ([[Char]] -> SMTOption) -> [[Char]] -> m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [[Char]] -> SMTOption
SetInfo [Char]
k
class Outputtable a where
output :: MonadSymbolic m => a -> m a
instance Outputtable (SBV a) where
output :: forall (m :: * -> *). MonadSymbolic m => SBV a -> m (SBV a)
output SBV a
i = do
SVal -> m ()
forall (m :: * -> *). MonadSymbolic m => SVal -> m ()
outputSVal (SBV a -> SVal
forall a. SBV a -> SVal
unSBV SBV a
i)
SBV a -> m (SBV a)
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return SBV a
i
instance Outputtable a => Outputtable [a] where
output :: forall (m :: * -> *). MonadSymbolic m => [a] -> m [a]
output = (a -> m a) -> [a] -> m [a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output
instance Outputtable () where
output :: forall (m :: * -> *). MonadSymbolic m => () -> m ()
output = () -> m ()
forall a. a -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return
instance (Outputtable a, Outputtable b) => Outputtable (a, b) where
output :: forall (m :: * -> *). MonadSymbolic m => (a, b) -> m (a, b)
output = (a -> b -> (a, b))
-> (a -> m a) -> (b -> m b) -> (a, b) -> m (a, b)
forall (m :: * -> *) a' b' r a b.
Monad m =>
(a' -> b' -> r) -> (a -> m a') -> (b -> m b') -> (a, b) -> m r
mlift2 (,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output
instance (Outputtable a, Outputtable b, Outputtable c) => Outputtable (a, b, c) where
output :: forall (m :: * -> *). MonadSymbolic m => (a, b, c) -> m (a, b, c)
output = (a -> b -> c -> (a, b, c))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (a, b, c)
-> m (a, b, c)
forall (m :: * -> *) a' b' c' r a b c.
Monad m =>
(a' -> b' -> c' -> r)
-> (a -> m a') -> (b -> m b') -> (c -> m c') -> (a, b, c) -> m r
mlift3 (,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output
instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d) => Outputtable (a, b, c, d) where
output :: forall (m :: * -> *).
MonadSymbolic m =>
(a, b, c, d) -> m (a, b, c, d)
output = (a -> b -> c -> d -> (a, b, c, d))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (d -> m d)
-> (a, b, c, d)
-> m (a, b, c, d)
forall (m :: * -> *) a' b' c' d' r a b c d.
Monad m =>
(a' -> b' -> c' -> d' -> r)
-> (a -> m a')
-> (b -> m b')
-> (c -> m c')
-> (d -> m d')
-> (a, b, c, d)
-> m r
mlift4 (,,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output d -> m d
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => d -> m d
output
instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e) => Outputtable (a, b, c, d, e) where
output :: forall (m :: * -> *).
MonadSymbolic m =>
(a, b, c, d, e) -> m (a, b, c, d, e)
output = (a -> b -> c -> d -> e -> (a, b, c, d, e))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (d -> m d)
-> (e -> m e)
-> (a, b, c, d, e)
-> m (a, b, c, d, e)
forall (m :: * -> *) a' b' c' d' e' r a b c d e.
Monad m =>
(a' -> b' -> c' -> d' -> e' -> r)
-> (a -> m a')
-> (b -> m b')
-> (c -> m c')
-> (d -> m d')
-> (e -> m e')
-> (a, b, c, d, e)
-> m r
mlift5 (,,,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output d -> m d
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => d -> m d
output e -> m e
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => e -> m e
output
instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f) => Outputtable (a, b, c, d, e, f) where
output :: forall (m :: * -> *).
MonadSymbolic m =>
(a, b, c, d, e, f) -> m (a, b, c, d, e, f)
output = (a -> b -> c -> d -> e -> f -> (a, b, c, d, e, f))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (d -> m d)
-> (e -> m e)
-> (f -> m f)
-> (a, b, c, d, e, f)
-> m (a, b, c, d, e, f)
forall (m :: * -> *) a' b' c' d' e' f' r a b c d e f.
Monad m =>
(a' -> b' -> c' -> d' -> e' -> f' -> r)
-> (a -> m a')
-> (b -> m b')
-> (c -> m c')
-> (d -> m d')
-> (e -> m e')
-> (f -> m f')
-> (a, b, c, d, e, f)
-> m r
mlift6 (,,,,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output d -> m d
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => d -> m d
output e -> m e
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => e -> m e
output f -> m f
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => f -> m f
output
instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g) => Outputtable (a, b, c, d, e, f, g) where
output :: forall (m :: * -> *).
MonadSymbolic m =>
(a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g)
output = (a -> b -> c -> d -> e -> f -> g -> (a, b, c, d, e, f, g))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (d -> m d)
-> (e -> m e)
-> (f -> m f)
-> (g -> m g)
-> (a, b, c, d, e, f, g)
-> m (a, b, c, d, e, f, g)
forall (m :: * -> *) a' b' c' d' e' f' g' r a b c d e f g.
Monad m =>
(a' -> b' -> c' -> d' -> e' -> f' -> g' -> r)
-> (a -> m a')
-> (b -> m b')
-> (c -> m c')
-> (d -> m d')
-> (e -> m e')
-> (f -> m f')
-> (g -> m g')
-> (a, b, c, d, e, f, g)
-> m r
mlift7 (,,,,,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output d -> m d
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => d -> m d
output e -> m e
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => e -> m e
output f -> m f
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => f -> m f
output g -> m g
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => g -> m g
output
instance (Outputtable a, Outputtable b, Outputtable c, Outputtable d, Outputtable e, Outputtable f, Outputtable g, Outputtable h) => Outputtable (a, b, c, d, e, f, g, h) where
output :: forall (m :: * -> *).
MonadSymbolic m =>
(a, b, c, d, e, f, g, h) -> m (a, b, c, d, e, f, g, h)
output = (a -> b -> c -> d -> e -> f -> g -> h -> (a, b, c, d, e, f, g, h))
-> (a -> m a)
-> (b -> m b)
-> (c -> m c)
-> (d -> m d)
-> (e -> m e)
-> (f -> m f)
-> (g -> m g)
-> (h -> m h)
-> (a, b, c, d, e, f, g, h)
-> m (a, b, c, d, e, f, g, h)
forall (m :: * -> *) a' b' c' d' e' f' g' h' r a b c d e f g h.
Monad m =>
(a' -> b' -> c' -> d' -> e' -> f' -> g' -> h' -> r)
-> (a -> m a')
-> (b -> m b')
-> (c -> m c')
-> (d -> m d')
-> (e -> m e')
-> (f -> m f')
-> (g -> m g')
-> (h -> m h')
-> (a, b, c, d, e, f, g, h)
-> m r
mlift8 (,,,,,,,) a -> m a
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => a -> m a
output b -> m b
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => b -> m b
output c -> m c
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => c -> m c
output d -> m d
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => d -> m d
output e -> m e
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => e -> m e
output f -> m f
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => f -> m f
output g -> m g
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => g -> m g
output h -> m h
forall a (m :: * -> *).
(Outputtable a, MonadSymbolic m) =>
a -> m a
forall (m :: * -> *). MonadSymbolic m => h -> m h
output
class (HasKind a, Typeable a) => SymVal a where
mkSymVal :: MonadSymbolic m => VarContext -> Maybe String -> m (SBV a)
literal :: a -> SBV a
fromCV :: CV -> a
isConcretely :: SBV a -> (a -> Bool) -> Bool
default mkSymVal :: (MonadSymbolic m, Read a, G.Data a) => VarContext -> Maybe String -> m (SBV a)
mkSymVal VarContext
vc Maybe [Char]
mbNm = SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> m SVal -> m (SBV a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (m State
forall (m :: * -> *). MonadSymbolic m => m State
symbolicEnv m State -> (State -> m SVal) -> m SVal
forall a b. m a -> (a -> m b) -> m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= IO SVal -> m SVal
forall a. IO a -> m a
forall (m :: * -> *) a. MonadIO m => IO a -> m a
liftIO (IO SVal -> m SVal) -> (State -> IO SVal) -> State -> m SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. VarContext -> Kind -> Maybe [Char] -> State -> IO SVal
svMkSymVar VarContext
vc Kind
k Maybe [Char]
mbNm)
where
k :: Kind
k = a -> Kind
forall a. (Read a, Data a) => a -> Kind
constructUKind (a
forall a. HasCallStack => a
undefined :: a)
default literal :: Show a => a -> SBV a
literal a
x = let k :: Kind
k = a -> Kind
forall a. HasKind a => a -> Kind
kindOf a
x
sx :: [Char]
sx = a -> [Char]
forall a. Show a => a -> [Char]
show a
x
conts :: Maybe [[Char]]
conts = case Kind
k of
KUserSort [Char]
_ Maybe [[Char]]
cts -> Maybe [[Char]]
cts
Kind
_ -> Maybe [[Char]]
forall a. Maybe a
Nothing
mbIdx :: Maybe Int
mbIdx = case Maybe [[Char]]
conts of
Just [[Char]]
xs -> [Char]
sx [Char] -> [[Char]] -> Maybe Int
forall a. Eq a => a -> [a] -> Maybe Int
`elemIndex` [[Char]]
xs
Maybe [[Char]]
Nothing -> Maybe Int
forall a. Maybe a
Nothing
in SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> SVal -> SBV a
forall a b. (a -> b) -> a -> b
$ Kind -> Either CV (Cached SV) -> SVal
SVal Kind
k (CV -> Either CV (Cached SV)
forall a b. a -> Either a b
Left (Kind -> CVal -> CV
CV Kind
k ((Maybe Int, [Char]) -> CVal
CUserSort (Maybe Int
mbIdx, [Char]
sx))))
default fromCV :: Read a => CV -> a
fromCV (CV Kind
_ (CUserSort (Maybe Int
_, [Char]
s))) = [Char] -> a
forall a. Read a => [Char] -> a
read [Char]
s
fromCV CV
cv = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ [Char]
"Cannot convert CV " [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ CV -> [Char]
forall a. Show a => a -> [Char]
show CV
cv [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
" to kind " [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Kind -> [Char]
forall a. Show a => a -> [Char]
show (Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a))
isConcretely SBV a
s a -> Bool
p
| Just a
i <- SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
s = a -> Bool
p a
i
| Bool
True = Bool
False
free :: MonadSymbolic m => String -> m (SBV a)
free = VarContext -> Maybe [Char] -> m (SBV a)
forall a (m :: * -> *).
(SymVal a, MonadSymbolic m) =>
VarContext -> Maybe [Char] -> m (SBV a)
forall (m :: * -> *).
MonadSymbolic m =>
VarContext -> Maybe [Char] -> m (SBV a)
mkSymVal (Maybe Quantifier -> VarContext
NonQueryVar Maybe Quantifier
forall a. Maybe a
Nothing) (Maybe [Char] -> m (SBV a))
-> ([Char] -> Maybe [Char]) -> [Char] -> m (SBV a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> Maybe [Char]
forall a. a -> Maybe a
Just
free_ :: MonadSymbolic m => m (SBV a)
free_ = VarContext -> Maybe [Char] -> m (SBV a)
forall a (m :: * -> *).
(SymVal a, MonadSymbolic m) =>
VarContext -> Maybe [Char] -> m (SBV a)
forall (m :: * -> *).
MonadSymbolic m =>
VarContext -> Maybe [Char] -> m (SBV a)
mkSymVal (Maybe Quantifier -> VarContext
NonQueryVar Maybe Quantifier
forall a. Maybe a
Nothing) Maybe [Char]
forall a. Maybe a
Nothing
mkFreeVars :: MonadSymbolic m => Int -> m [SBV a]
mkFreeVars Int
n = (Int -> m (SBV a)) -> [Int] -> m [SBV a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (m (SBV a) -> Int -> m (SBV a)
forall a b. a -> b -> a
const m (SBV a)
forall a (m :: * -> *). (SymVal a, MonadSymbolic m) => m (SBV a)
forall (m :: * -> *). MonadSymbolic m => m (SBV a)
free_) [Int
1 .. Int
n]
symbolic :: MonadSymbolic m => String -> m (SBV a)
symbolic = [Char] -> m (SBV a)
forall a (m :: * -> *).
(SymVal a, MonadSymbolic m) =>
[Char] -> m (SBV a)
forall (m :: * -> *). MonadSymbolic m => [Char] -> m (SBV a)
free
symbolics :: MonadSymbolic m => [String] -> m [SBV a]
symbolics = ([Char] -> m (SBV a)) -> [[Char]] -> m [SBV a]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM [Char] -> m (SBV a)
forall a (m :: * -> *).
(SymVal a, MonadSymbolic m) =>
[Char] -> m (SBV a)
forall (m :: * -> *). MonadSymbolic m => [Char] -> m (SBV a)
symbolic
unliteral :: SBV a -> Maybe a
unliteral (SBV (SVal Kind
_ (Left CV
c))) = a -> Maybe a
forall a. a -> Maybe a
Just (a -> Maybe a) -> a -> Maybe a
forall a b. (a -> b) -> a -> b
$ CV -> a
forall a. SymVal a => CV -> a
fromCV CV
c
unliteral SBV a
_ = Maybe a
forall a. Maybe a
Nothing
isConcrete :: SBV a -> Bool
isConcrete (SBV (SVal Kind
_ (Left CV
_))) = Bool
True
isConcrete SBV a
_ = Bool
False
isSymbolic :: SBV a -> Bool
isSymbolic = Bool -> Bool
not (Bool -> Bool) -> (SBV a -> Bool) -> SBV a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV a -> Bool
forall a. SymVal a => SBV a -> Bool
isConcrete
instance (Random a, SymVal a) => Random (SBV a) where
randomR :: forall g. RandomGen g => (SBV a, SBV a) -> g -> (SBV a, g)
randomR (SBV a
l, SBV a
h) g
g = case (SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
l, SBV a -> Maybe a
forall a. SymVal a => SBV a -> Maybe a
unliteral SBV a
h) of
(Just a
lb, Just a
hb) -> let (a
v, g
g') = (a, a) -> g -> (a, g)
forall g. RandomGen g => (a, a) -> g -> (a, g)
forall a g. (Random a, RandomGen g) => (a, a) -> g -> (a, g)
randomR (a
lb, a
hb) g
g in (a -> SBV a
forall a. SymVal a => a -> SBV a
literal (a
v :: a), g
g')
(Maybe a, Maybe a)
_ -> [Char] -> (SBV a, g)
forall a. HasCallStack => [Char] -> a
error [Char]
"SBV.Random: Cannot generate random values with symbolic bounds"
random :: forall g. RandomGen g => g -> (SBV a, g)
random g
g = let (a
v, g
g') = g -> (a, g)
forall g. RandomGen g => g -> (a, g)
forall a g. (Random a, RandomGen g) => g -> (a, g)
random g
g in (a -> SBV a
forall a. SymVal a => a -> SBV a
literal (a
v :: a) , g
g')
infix 4 .==, ./=, .===, ./==
class EqSymbolic a where
(.==) :: a -> a -> SBool
(./=) :: a -> a -> SBool
(.===) :: a -> a -> SBool
(./==) :: a -> a -> SBool
distinct :: [a] -> SBool
distinctExcept :: [a] -> [a] -> SBool
allEqual :: [a] -> SBool
sElem :: a -> [a] -> SBool
sNotElem :: a -> [a] -> SBool
a
x ./= a
y = SBool -> SBool
sNot (a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== a
y)
a
x .=== a
y = a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== a
y
a
x ./== a
y = SBool -> SBool
sNot (a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.=== a
y)
allEqual [] = SBool
sTrue
allEqual (a
x:[a]
xs) = (a -> SBool) -> [a] -> SBool
forall a. (a -> SBool) -> [a] -> SBool
sAll (a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.==) [a]
xs
distinct [] = SBool
sTrue
distinct (a
x:[a]
xs) = (a -> SBool) -> [a] -> SBool
forall a. (a -> SBool) -> [a] -> SBool
sAll (a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
./=) [a]
xs SBool -> SBool -> SBool
.&& [a] -> SBool
forall a. EqSymbolic a => [a] -> SBool
distinct [a]
xs
distinctExcept [a]
es [a]
ignored = [a] -> SBool
go [a]
es
where isIgnored :: a -> SBool
isIgnored = (a -> [a] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [a]
ignored)
go :: [a] -> SBool
go [] = SBool
sTrue
go (a
x:[a]
xs) = let xOK :: SBool
xOK = a -> SBool
isIgnored a
x SBool -> SBool -> SBool
.|| (a -> SBool) -> [a] -> SBool
forall a. (a -> SBool) -> [a] -> SBool
sAll (\a
y -> a -> SBool
isIgnored a
y SBool -> SBool -> SBool
.|| a
x a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
./= a
y) [a]
xs
in SBool
xOK SBool -> SBool -> SBool
.&& [a] -> SBool
go [a]
xs
a
x `sElem` [a]
xs = (a -> SBool) -> [a] -> SBool
forall a. (a -> SBool) -> [a] -> SBool
sAny (a -> a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== a
x) [a]
xs
a
x `sNotElem` [a]
xs = SBool -> SBool
sNot (a
x a -> [a] -> SBool
forall a. EqSymbolic a => a -> [a] -> SBool
`sElem` [a]
xs)
default (.==) :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool
(.==) = a -> a -> SBool
forall a. (Generic a, GEqSymbolic (Rep a)) => a -> a -> SBool
symbolicEqDefault
symbolicEqDefault :: (G.Generic a, GEqSymbolic (G.Rep a)) => a -> a -> SBool
symbolicEqDefault :: forall a. (Generic a, GEqSymbolic (Rep a)) => a -> a -> SBool
symbolicEqDefault a
x a
y = Rep a Any -> Rep a Any -> SBool
forall a. Rep a a -> Rep a a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq (a -> Rep a Any
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
G.from a
x) (a -> Rep a Any
forall x. a -> Rep a x
forall a x. Generic a => a -> Rep a x
G.from a
y)
class GEqSymbolic f where
symbolicEq :: f a -> f a -> SBool
instance GEqSymbolic U1 where
symbolicEq :: forall a. U1 a -> U1 a -> SBool
symbolicEq U1 a
_ U1 a
_ = SBool
sTrue
instance (EqSymbolic c) => GEqSymbolic (K1 i c) where
symbolicEq :: forall a. K1 i c a -> K1 i c a -> SBool
symbolicEq (K1 c
x) (K1 c
y) = c
x c -> c -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== c
y
instance (GEqSymbolic f) => GEqSymbolic (M1 i c f) where
symbolicEq :: forall a. M1 i c f a -> M1 i c f a -> SBool
symbolicEq (M1 f a
x) (M1 f a
y) = f a -> f a -> SBool
forall a. f a -> f a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq f a
x f a
y
instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :*: g) where
symbolicEq :: forall a. (:*:) f g a -> (:*:) f g a -> SBool
symbolicEq (f a
x1 :*: g a
y1) (f a
x2 :*: g a
y2) = f a -> f a -> SBool
forall a. f a -> f a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq f a
x1 f a
x2 SBool -> SBool -> SBool
.&& g a -> g a -> SBool
forall a. g a -> g a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq g a
y1 g a
y2
instance (GEqSymbolic f, GEqSymbolic g) => GEqSymbolic (f :+: g) where
symbolicEq :: forall a. (:+:) f g a -> (:+:) f g a -> SBool
symbolicEq (L1 f a
l) (L1 f a
r) = f a -> f a -> SBool
forall a. f a -> f a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq f a
l f a
r
symbolicEq (R1 g a
l) (R1 g a
r) = g a -> g a -> SBool
forall a. g a -> g a -> SBool
forall (f :: * -> *) a. GEqSymbolic f => f a -> f a -> SBool
symbolicEq g a
l g a
r
symbolicEq (L1 f a
_) (R1 g a
_) = SBool
sFalse
symbolicEq (R1 g a
_) (L1 f a
_) = SBool
sFalse
#define MKSNUM(CSTR, TYPE, KIND) \
instance (CSTR) => Num (TYPE) where { \
fromInteger i = SBV $ SVal (KIND) $ Left $ mkConstCV (KIND) (fromIntegral i :: Integer); \
SBV a + SBV b = SBV $ a `svPlus` b; \
SBV a * SBV b = SBV $ a `svTimes` b; \
SBV a - SBV b = SBV $ a `svMinus` b; \
abs (SBV a) = SBV $ svAbs a; \
signum (SBV a) = SBV $ svSignum a; \
negate (SBV a) = SBV $ svUNeg a; \
}
MKSNUM((), SInteger, KUnbounded)
MKSNUM((), SWord8, KBounded False 8)
MKSNUM((), SWord16, KBounded False 16)
MKSNUM((), SWord32, KBounded False 32)
MKSNUM((), SWord64, KBounded False 64)
MKSNUM((), SInt8, KBounded True 8)
MKSNUM((), SInt16, KBounded True 16)
MKSNUM((), SInt32, KBounded True 32)
MKSNUM((), SInt64, KBounded True 64)
MKSNUM((), SFloat, KFloat)
MKSNUM((), SDouble, KDouble)
MKSNUM((), SReal, KReal)
MKSNUM(KnownNat n, SWord n, KBounded False (intOfProxy (Proxy @n)))
MKSNUM(KnownNat n, SInt n, KBounded True (intOfProxy (Proxy @n)))
MKSNUM(ValidFloat eb sb, SFloatingPoint eb sb, KFP (intOfProxy (Proxy @eb)) (intOfProxy (Proxy @sb)))
bvExtract :: forall i j n bv proxy. ( KnownNat n, BVIsNonZero n, SymVal (bv n)
, KnownNat i
, KnownNat j
, i + 1 <= n
, j <= i
, BVIsNonZero (i - j + 1)
) => proxy i
-> proxy j
-> SBV (bv n)
-> SBV (bv (i - j + 1))
proxy i
start proxy j
end = SVal -> SBV (bv ((i - j) + 1))
forall a. SVal -> SBV a
SBV (SVal -> SBV (bv ((i - j) + 1)))
-> (SBV (bv n) -> SVal) -> SBV (bv n) -> SBV (bv ((i - j) + 1))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int -> SVal -> SVal
svExtract Int
i Int
j (SVal -> SVal) -> (SBV (bv n) -> SVal) -> SBV (bv n) -> SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV (bv n) -> SVal
forall a. SBV a -> SVal
unSBV
where i :: Int
i = Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (proxy i -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy i
start)
j :: Int
j = Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (proxy j -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy j
end)
(#) :: ( KnownNat n, BVIsNonZero n, SymVal (bv n)
, KnownNat m, BVIsNonZero m, SymVal (bv m)
) => SBV (bv n)
-> SBV (bv m)
-> SBV (bv (n + m))
SBV (bv n)
n # :: forall (n :: Nat) (bv :: Nat -> *) (m :: Nat).
(KnownNat n, BVIsNonZero n, SymVal (bv n), KnownNat m,
BVIsNonZero m, SymVal (bv m)) =>
SBV (bv n) -> SBV (bv m) -> SBV (bv (n + m))
# SBV (bv m)
m = SVal -> SBV (bv (n + m))
forall a. SVal -> SBV a
SBV (SVal -> SBV (bv (n + m))) -> SVal -> SBV (bv (n + m))
forall a b. (a -> b) -> a -> b
$ SVal -> SVal -> SVal
svJoin (SBV (bv n) -> SVal
forall a. SBV a -> SVal
unSBV SBV (bv n)
n) (SBV (bv m) -> SVal
forall a. SBV a -> SVal
unSBV SBV (bv m)
m)
infixr 5 #
bvDrop :: forall i n m bv proxy. ( KnownNat n, BVIsNonZero n
, KnownNat i
, i + 1 <= n
, i + m - n <= 0
, BVIsNonZero (n - i)
) => proxy i
-> SBV (bv n)
-> SBV (bv m)
bvDrop :: forall (i :: Nat) (n :: Nat) (m :: Nat) (bv :: Nat -> *)
(proxy :: Nat -> *).
(KnownNat n, BVIsNonZero n, KnownNat i, (i + 1) <= n,
((i + m) - n) <= 0, BVIsNonZero (n - i)) =>
proxy i -> SBV (bv n) -> SBV (bv m)
bvDrop proxy i
i = SVal -> SBV (bv m)
forall a. SVal -> SBV a
SBV (SVal -> SBV (bv m))
-> (SBV (bv n) -> SVal) -> SBV (bv n) -> SBV (bv m)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int -> SVal -> SVal
svExtract Int
start Int
0 (SVal -> SVal) -> (SBV (bv n) -> SVal) -> SBV (bv n) -> SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV (bv n) -> SVal
forall a. SBV a -> SVal
unSBV
where nv :: Int
nv = Proxy n -> Int
forall (n :: Nat). KnownNat n => Proxy n -> Int
intOfProxy (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)
start :: Int
start = Int
nv Int -> Int -> Int
forall a. Num a => a -> a -> a
- Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (proxy i -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy i
i) Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
bvTake :: forall i n bv proxy. ( KnownNat n, BVIsNonZero n
, KnownNat i, BVIsNonZero i
, i <= n
) => proxy i
-> SBV (bv n)
-> SBV (bv i)
bvTake :: forall (i :: Nat) (n :: Nat) (bv :: Nat -> *) (proxy :: Nat -> *).
(KnownNat n, BVIsNonZero n, KnownNat i, BVIsNonZero i, i <= n) =>
proxy i -> SBV (bv n) -> SBV (bv i)
bvTake proxy i
i = SVal -> SBV (bv i)
forall a. SVal -> SBV a
SBV (SVal -> SBV (bv i))
-> (SBV (bv n) -> SVal) -> SBV (bv n) -> SBV (bv i)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> Int -> SVal -> SVal
svExtract Int
start Int
end (SVal -> SVal) -> (SBV (bv n) -> SVal) -> SBV (bv n) -> SVal
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SBV (bv n) -> SVal
forall a. SBV a -> SVal
unSBV
where nv :: Int
nv = Proxy n -> Int
forall (n :: Nat). KnownNat n => Proxy n -> Int
intOfProxy (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)
start :: Int
start = Int
nv Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1
end :: Int
end = Int
start Int -> Int -> Int
forall a. Num a => a -> a -> a
- Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral (proxy i -> Integer
forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal proxy i
i) Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1
class Skolemize a where
type SkolemsTo a :: Type
skolem :: String -> [(SVal, String)] -> a -> SkolemsTo a
skolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => a -> SkolemsTo a
skolemize = [Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
"" []
taggedSkolemize :: (Constraint Symbolic (SkolemsTo a), Skolemize a) => String -> a -> SkolemsTo a
taggedSkolemize [Char]
scope = [Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem ([Char]
scope [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"_") []
instance Skolemize (SBV a) where
type SkolemsTo (SBV a) = SBV a
skolem :: [Char] -> [(SVal, [Char])] -> SBV a -> SkolemsTo (SBV a)
skolem [Char]
_ [(SVal, [Char])]
_ = SBV a -> SkolemsTo (SBV a)
SBV a -> SBV a
forall a. a -> a
id
instance (KnownSymbol nm, Skolemize r) => Skolemize (Forall nm a -> r) where
type SkolemsTo (Forall nm a -> r) = Forall nm a -> SkolemsTo r
skolem :: [Char]
-> [(SVal, [Char])]
-> (Forall nm a -> r)
-> SkolemsTo (Forall nm a -> r)
skolem [Char]
scope [(SVal, [Char])]
args Forall nm a -> r
f arg :: Forall nm a
arg@(Forall SBV a
a) = [Char] -> [(SVal, [Char])] -> r -> SkolemsTo r
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
scope ([(SVal, [Char])]
args [(SVal, [Char])] -> [(SVal, [Char])] -> [(SVal, [Char])]
forall a. [a] -> [a] -> [a]
++ [(SBV a -> SVal
forall a. SBV a -> SVal
unSBV SBV a
a, Proxy nm -> [Char]
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> [Char]
symbolVal (forall {k} (t :: k). Proxy t
forall (t :: Symbol). Proxy t
Proxy @nm))]) (Forall nm a -> r
f Forall nm a
arg)
instance (KnownSymbol nm, Skolemize r) => Skolemize (ForallN n nm a -> r) where
type SkolemsTo (ForallN n nm a -> r) = ForallN n nm a -> SkolemsTo r
skolem :: [Char]
-> [(SVal, [Char])]
-> (ForallN n nm a -> r)
-> SkolemsTo (ForallN n nm a -> r)
skolem [Char]
scope [(SVal, [Char])]
args ForallN n nm a -> r
f arg :: ForallN n nm a
arg@(ForallN [SBV a]
xs) = [Char] -> [(SVal, [Char])] -> r -> SkolemsTo r
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
scope ([(SVal, [Char])]
args [(SVal, [Char])] -> [(SVal, [Char])] -> [(SVal, [Char])]
forall a. [a] -> [a] -> [a]
++ (SBV a -> Int -> (SVal, [Char]))
-> [SBV a] -> [Int] -> [(SVal, [Char])]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith SBV a -> Int -> (SVal, [Char])
grab [SBV a]
xs [(Int
1::Int)..]) (ForallN n nm a -> r
f ForallN n nm a
arg)
where pre :: [Char]
pre = Proxy nm -> [Char]
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> [Char]
symbolVal (forall {k} (t :: k). Proxy t
forall (t :: Symbol). Proxy t
Proxy @nm)
grab :: SBV a -> Int -> (SVal, [Char])
grab SBV a
x Int
i = (SBV a -> SVal
forall a. SBV a -> SVal
unSBV SBV a
x, [Char]
pre [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"_" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
i)
instance (HasKind a, KnownSymbol nm, Skolemize r) => Skolemize (Exists nm a -> r) where
type SkolemsTo (Exists nm a -> r) = SkolemsTo r
skolem :: [Char]
-> [(SVal, [Char])]
-> (Exists nm a -> r)
-> SkolemsTo (Exists nm a -> r)
skolem [Char]
scope [(SVal, [Char])]
args Exists nm a -> r
f = [Char] -> [(SVal, [Char])] -> r -> SkolemsTo r
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
scope [(SVal, [Char])]
args (Exists nm a -> r
f (SBV a -> Exists nm a
forall (nm :: Symbol) a. SBV a -> Exists nm a
Exists SBV a
skolemized))
where skolemized :: SBV a
skolemized = SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> SVal -> SBV a
forall a b. (a -> b) -> a -> b
$ Kind -> [Char] -> UICodeKind -> [(SVal, [Char])] -> SVal
svUninterpretedNamedArgs (Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)) ([Char]
scope [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Proxy nm -> [Char]
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> [Char]
symbolVal (forall {k} (t :: k). Proxy t
forall (t :: Symbol). Proxy t
Proxy @nm)) (Bool -> UICodeKind
UINone Bool
True) [(SVal, [Char])]
args
instance (HasKind a, KnownNat n, KnownSymbol nm, Skolemize r) => Skolemize (ExistsN n nm a -> r) where
type SkolemsTo (ExistsN n nm a -> r) = SkolemsTo r
skolem :: [Char]
-> [(SVal, [Char])]
-> (ExistsN n nm a -> r)
-> SkolemsTo (ExistsN n nm a -> r)
skolem [Char]
scope [(SVal, [Char])]
args ExistsN n nm a -> r
f = [Char] -> [(SVal, [Char])] -> r -> SkolemsTo r
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
scope [(SVal, [Char])]
args (ExistsN n nm a -> r
f ([SBV a] -> ExistsN n nm a
forall (n :: Nat) (nm :: Symbol) a. [SBV a] -> ExistsN n nm a
ExistsN [SBV a]
skolemized))
where need :: Int
need = Proxy n -> Int
forall (n :: Nat). KnownNat n => Proxy n -> Int
intOfProxy (forall (t :: Nat). Proxy t
forall {k} (t :: k). Proxy t
Proxy @n)
prefix :: [Char]
prefix = Proxy nm -> [Char]
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> [Char]
symbolVal (forall {k} (t :: k). Proxy t
forall (t :: Symbol). Proxy t
Proxy @nm)
fs :: [[Char]]
fs = [[Char]
prefix [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
"_" [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
i | Int
i <- [Int
1 .. Int
need]]
skolemized :: [SBV a]
skolemized = [SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> SVal -> SBV a
forall a b. (a -> b) -> a -> b
$ Kind -> [Char] -> UICodeKind -> [(SVal, [Char])] -> SVal
svUninterpretedNamedArgs (Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)) ([Char]
scope [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ [Char]
n) (Bool -> UICodeKind
UINone Bool
True) [(SVal, [Char])]
args | [Char]
n <- [[Char]]
fs]
instance ( HasKind a
, EqSymbolic (SBV a)
, KnownSymbol nm
, QuantifiedBool r
, Skolemize (Forall (AppendSymbol nm "_eu1") a -> Forall (AppendSymbol nm "_eu2") a -> SBool)
) => Skolemize (ExistsUnique nm a -> r) where
type SkolemsTo (ExistsUnique nm a -> r) = Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
skolem :: [Char]
-> [(SVal, [Char])]
-> (ExistsUnique nm a -> r)
-> SkolemsTo (ExistsUnique nm a -> r)
skolem [Char]
scope [(SVal, [Char])]
args ExistsUnique nm a -> r
f = [Char]
-> [(SVal, [Char])]
-> (Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a -> SBool)
-> SkolemsTo
(Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a -> SBool)
forall a.
Skolemize a =>
[Char] -> [(SVal, [Char])] -> a -> SkolemsTo a
skolem [Char]
scope [(SVal, [Char])]
args ((ExistsUnique nm a -> r)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
forall b a (nm :: Symbol).
(QuantifiedBool b, EqSymbolic (SBV a)) =>
(ExistsUnique nm a -> b)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
rewriteExistsUnique ExistsUnique nm a -> r
f (SBV a -> Exists nm a
forall (nm :: Symbol) a. SBV a -> Exists nm a
Exists SBV a
skolemized))
where skolemized :: SBV a
skolemized = SVal -> SBV a
forall a. SVal -> SBV a
SBV (SVal -> SBV a) -> SVal -> SBV a
forall a b. (a -> b) -> a -> b
$ Kind -> [Char] -> UICodeKind -> [(SVal, [Char])] -> SVal
svUninterpretedNamedArgs (Proxy a -> Kind
forall a. HasKind a => a -> Kind
kindOf (forall t. Proxy t
forall {k} (t :: k). Proxy t
Proxy @a)) ([Char]
scope [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Proxy nm -> [Char]
forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> [Char]
symbolVal (forall {k} (t :: k). Proxy t
forall (t :: Symbol). Proxy t
Proxy @nm)) (Bool -> UICodeKind
UINone Bool
True) [(SVal, [Char])]
args
class QNot a where
type NegatesTo a :: Type
qNot :: a -> NegatesTo a
instance QNot SBool where
type NegatesTo SBool = SBool
qNot :: SBool -> NegatesTo SBool
qNot = SBool -> NegatesTo SBool
SBool -> SBool
sNot
instance QNot r => QNot (Forall nm a -> r) where
type NegatesTo (Forall nm a -> r) = Exists nm a -> NegatesTo r
qNot :: (Forall nm a -> r) -> NegatesTo (Forall nm a -> r)
qNot Forall nm a -> r
f (Exists SBV a
a) = r -> NegatesTo r
forall a. QNot a => a -> NegatesTo a
qNot (Forall nm a -> r
f (SBV a -> Forall nm a
forall (nm :: Symbol) a. SBV a -> Forall nm a
Forall SBV a
a))
instance QNot r => QNot (ForallN nm n a -> r) where
type NegatesTo (ForallN nm n a -> r) = ExistsN nm n a -> NegatesTo r
qNot :: (ForallN nm n a -> r) -> NegatesTo (ForallN nm n a -> r)
qNot ForallN nm n a -> r
f (ExistsN [SBV a]
xs) = r -> NegatesTo r
forall a. QNot a => a -> NegatesTo a
qNot (ForallN nm n a -> r
f ([SBV a] -> ForallN nm n a
forall (n :: Nat) (nm :: Symbol) a. [SBV a] -> ForallN n nm a
ForallN [SBV a]
xs))
instance QNot r => QNot (Exists nm a -> r) where
type NegatesTo (Exists nm a -> r) = Forall nm a -> NegatesTo r
qNot :: (Exists nm a -> r) -> NegatesTo (Exists nm a -> r)
qNot Exists nm a -> r
f (Forall SBV a
a) = r -> NegatesTo r
forall a. QNot a => a -> NegatesTo a
qNot (Exists nm a -> r
f (SBV a -> Exists nm a
forall (nm :: Symbol) a. SBV a -> Exists nm a
Exists SBV a
a))
instance QNot r => QNot (ExistsN nm n a -> r) where
type NegatesTo (ExistsN nm n a -> r) = ForallN nm n a -> NegatesTo r
qNot :: (ExistsN nm n a -> r) -> NegatesTo (ExistsN nm n a -> r)
qNot ExistsN nm n a -> r
f (ForallN [SBV a]
xs) = r -> NegatesTo r
forall a. QNot a => a -> NegatesTo a
qNot (ExistsN nm n a -> r
f ([SBV a] -> ExistsN nm n a
forall (n :: Nat) (nm :: Symbol) a. [SBV a] -> ExistsN n nm a
ExistsN [SBV a]
xs))
instance (QNot r, QuantifiedBool r, EqSymbolic (SBV a)) => QNot (ExistsUnique nm a -> r) where
type NegatesTo (ExistsUnique nm a -> r) = Forall nm a
-> Exists (AppendSymbol nm "_eu1") a
-> Exists (AppendSymbol nm "_eu2") a
-> SBool
qNot :: (ExistsUnique nm a -> r) -> NegatesTo (ExistsUnique nm a -> r)
qNot = (Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> NegatesTo
(Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
(Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> Forall nm a
-> Exists (AppendSymbol nm "_eu1") a
-> Exists (AppendSymbol nm "_eu2") a
-> SBool
forall a. QNot a => a -> NegatesTo a
qNot ((Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> Forall nm a
-> Exists (AppendSymbol nm "_eu1") a
-> Exists (AppendSymbol nm "_eu2") a
-> SBool)
-> ((ExistsUnique nm a -> r)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool)
-> (ExistsUnique nm a -> r)
-> Forall nm a
-> Exists (AppendSymbol nm "_eu1") a
-> Exists (AppendSymbol nm "_eu2") a
-> SBool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ExistsUnique nm a -> r)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
forall b a (nm :: Symbol).
(QuantifiedBool b, EqSymbolic (SBV a)) =>
(ExistsUnique nm a -> b)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
rewriteExistsUnique
rewriteExistsUnique :: ( QuantifiedBool b
, EqSymbolic (SBV a)
)
=> (ExistsUnique nm a -> b)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
rewriteExistsUnique :: forall b a (nm :: Symbol).
(QuantifiedBool b, EqSymbolic (SBV a)) =>
(ExistsUnique nm a -> b)
-> Exists nm a
-> Forall (AppendSymbol nm "_eu1") a
-> Forall (AppendSymbol nm "_eu2") a
-> SBool
rewriteExistsUnique ExistsUnique nm a -> b
f (Exists SBV a
x) (Forall SBV a
x1) (Forall SBV a
x2) = SBool
fx SBool -> SBool -> SBool
.&& SBool
unique
where fx :: SBool
fx = b -> SBool
forall a. QuantifiedBool a => a -> SBool
quantifiedBool (b -> SBool) -> b -> SBool
forall a b. (a -> b) -> a -> b
$ ExistsUnique nm a -> b
f (SBV a -> ExistsUnique nm a
forall (nm :: Symbol) a. SBV a -> ExistsUnique nm a
ExistsUnique SBV a
x)
fx1 :: b
fx1 = ExistsUnique nm a -> b
f (SBV a -> ExistsUnique nm a
forall (nm :: Symbol) a. SBV a -> ExistsUnique nm a
ExistsUnique SBV a
x1)
fx2 :: b
fx2 = ExistsUnique nm a -> b
f (SBV a -> ExistsUnique nm a
forall (nm :: Symbol) a. SBV a -> ExistsUnique nm a
ExistsUnique SBV a
x2)
bothHolds :: SBool
bothHolds = b -> SBool
forall a. QuantifiedBool a => a -> SBool
quantifiedBool b
fx1 SBool -> SBool -> SBool
.&& b -> SBool
forall a. QuantifiedBool a => a -> SBool
quantifiedBool b
fx2
mustEqual :: SBool
mustEqual = SBV a
x1 SBV a -> SBV a -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SBV a
x2
unique :: SBool
unique = SBool
bothHolds SBool -> SBool -> SBool
.=> SBool
mustEqual