-----------------------------------------------------------------------------
-- |
-- Module    : Documentation.SBV.Examples.Uninterpreted.Multiply
-- Copyright : (c) Levent Erkok
-- License   : BSD3
-- Maintainer: erkokl@gmail.com
-- Stability : experimental
--
-- Demonstrates how to use uninterpreted function models to synthesize
-- a simple two-bit multiplier.
-----------------------------------------------------------------------------

{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wall -Werror #-}

module Documentation.SBV.Examples.Uninterpreted.Multiply where

import Data.SBV

-- | The uninterpreted implementation of our 2x2 multiplier. We simply
-- receive two 2-bit values, and return the high and the low bit of the
-- resulting multiplication via two uninterpreted functions that we
-- called @mul22_hi@ and @mul22_lo@. Note that there is absolutely
-- no computation going on here, aside from simply passing the arguments
-- to the uninterpreted functions and stitching it back together.
--
-- NB. While defining @mul22_lo@ we used our domain knowledge that the
-- low-bit of the multiplication only depends on the low bits of the inputs.
-- However, this is merely a simplifying assumption; we could have passed
-- all the arguments as well.
mul22 :: (SBool, SBool) -> (SBool, SBool) -> (SBool, SBool)
mul22 :: (SBool, SBool) -> (SBool, SBool) -> (SBool, SBool)
mul22 (SBool
a1, SBool
a0) (SBool
b1, SBool
b0) = (SBool
mul22_hi, SBool
mul22_lo)
  where mul22_hi :: SBool
mul22_hi = String -> SBool -> SBool -> SBool -> SBool -> SBool
forall a. Uninterpreted a => String -> a
uninterpret String
"mul22_hi" SBool
a1 SBool
a0 SBool
b1 SBool
b0
        mul22_lo :: SBool
mul22_lo = String -> SBool -> SBool -> SBool
forall a. Uninterpreted a => String -> a
uninterpret String
"mul22_lo"    SBool
a0    SBool
b0


-- | Synthesize a 2x2 multiplier. We use 8-bit inputs merely because that is
-- the lowest bit-size SBV supports but that is more or less irrelevant. (Larger
-- sizes would work too.) We simply assert this for all input values, extract
-- the bottom two bits, and assert that our "uninterpreted" implementation in 'mul22'
-- is precisely the same. We have:
--
-- >>> sat synthMul22
-- Satisfiable. Model:
--   mul22_hi :: Bool -> Bool -> Bool -> Bool -> Bool
--   mul22_hi False True  True  False = True
--   mul22_hi False True  True  True  = True
--   mul22_hi True  False False True  = True
--   mul22_hi True  False True  True  = True
--   mul22_hi True  True  False True  = True
--   mul22_hi True  True  True  False = True
--   mul22_hi _     _     _     _     = False
-- <BLANKLINE>
--   mul22_lo :: Bool -> Bool -> Bool
--   mul22_lo True True = True
--   mul22_lo _    _    = False
--
-- It is easy to see that the low bit is simply the logical-and of the low bits. It takes a moment of
-- staring, but you can see that the high bit is correct as well: The logical formula is @a1b xor a0b1@,
-- and if you work out the truth-table presented, you'll see that it is exactly that. Of course,
-- you can use SBV to prove this. First, define the model we were given to make it symbolic:
--
--- mul22_hi :: SBool -> SBool -> SBool -> SBool -> SBool
-- mul22_hi a1 a0 b1 b0 = ite ([a1, a0, b1, b0] .== [sFalse, sTrue , sTrue , sFalse]) sTrue
--                      $ ite ([a1, a0, b1, b0] .== [sFalse, sTrue , sTrue , sTrue ]) sTrue
--                      $ ite ([a1, a0, b1, b0] .== [sTrue , sFalse, sFalse, sTrue ]) sTrue
--                      $ ite ([a1, a0, b1, b0] .== [sTrue , sFalse, sTrue , sTrue ]) sTrue
--                      $ ite ([a1, a0, b1, b0] .== [sTrue , sTrue , sFalse, sTrue ]) sTrue
--                      $ ite ([a1, a0, b1, b0] .== [sTrue , sTrue , sTrue , sFalse]) sTrue
--                        sFalse- >>> :{
-- :}
--
-- Now we can say:
--
-- >>> prove $ \a1 a0 b1 b0 -> mul22_hi a1 a0 b1 b0 .== (a1 .&& b0) .<+> (a0 .&& b1)
-- Q.E.D.
--
-- and rest assured that we have a correctly synthesized circuit!
synthMul22 :: Goal
synthMul22 :: Goal
synthMul22 = do SWord8
a :: SWord8 <- String -> Symbolic SWord8
forall a. SymVal a => String -> Symbolic (SBV a)
forall String
"a"
                SWord8
b :: SWord8 <- String -> Symbolic SWord8
forall a. SymVal a => String -> Symbolic (SBV a)
forall String
"b"

                let lsb2 :: SBV a -> (SBool, SBool)
lsb2 SBV a
x = let [SBool
x1, SBool
x0] = [SBool] -> [SBool]
forall a. [a] -> [a]
reverse ([SBool] -> [SBool]) -> [SBool] -> [SBool]
forall a b. (a -> b) -> a -> b
$ Int -> [SBool] -> [SBool]
forall a. Int -> [a] -> [a]
take Int
2 ([SBool] -> [SBool]) -> [SBool] -> [SBool]
forall a b. (a -> b) -> a -> b
$ SBV a -> [SBool]
forall a. SFiniteBits a => SBV a -> [SBool]
blastLE SBV a
x
                             in (SBool
x1, SBool
x0)

                SBool -> Goal
forall (m :: * -> *). SolverContext m => SBool -> m ()
constrain (SBool -> Goal) -> SBool -> Goal
forall a b. (a -> b) -> a -> b
$ (SBool, SBool) -> (SBool, SBool) -> (SBool, SBool)
mul22 (SWord8 -> (SBool, SBool)
forall a. SFiniteBits a => SBV a -> (SBool, SBool)
lsb2 SWord8
a) (SWord8 -> (SBool, SBool)
forall a. SFiniteBits a => SBV a -> (SBool, SBool)
lsb2 SWord8
b) (SBool, SBool) -> (SBool, SBool) -> SBool
forall a. EqSymbolic a => a -> a -> SBool
.== SWord8 -> (SBool, SBool)
forall a. SFiniteBits a => SBV a -> (SBool, SBool)
lsb2 (SWord8
a SWord8 -> SWord8 -> SWord8
forall a. Num a => a -> a -> a
* SWord8
b)