Safe Haskell | None |
---|---|

Language | Haskell2010 |

Selda is not LINQ, but they're definitely related.

Selda is a high-level EDSL for interacting with relational databases. Please see https://github.com/valderman/selda/ for a brief tutorial.

- class Monad m => MonadIO m where
- class MonadIO m => MonadSelda m
- data SeldaT m a
- data Table a
- data Query s a
- data Col s a
- class Typeable (Res r) => Result r where
- type Res r

- query :: (MonadSelda m, Result a) => Query s a -> m [Res a]
- transaction :: (MonadSelda m, MonadThrow m, MonadCatch m) => m a -> m a
- setLocalCache :: MonadSelda m => Int -> m ()
- class SqlType a
- data Text :: *
- type family Cols s a where ...
- class Columns a
- data Order
- data a :*: b where
- select :: Columns (Cols s a) => Table a -> Query s (Cols s a)
- selectValues :: (Insert a, Columns (Cols s a)) => [a] -> Query s (Cols s a)
- restrict :: Col s Bool -> Query s ()
- limit :: Int -> Int -> Query s ()
- order :: Col s a -> Order -> Query s ()
- ascending :: Order
- descending :: Order
- (.==) :: SqlType a => Col s a -> Col s a -> Col s Bool
- (./=) :: SqlType a => Col s a -> Col s a -> Col s Bool
- (.>) :: SqlType a => Col s a -> Col s a -> Col s Bool
- (.<) :: SqlType a => Col s a -> Col s a -> Col s Bool
- (.>=) :: SqlType a => Col s a -> Col s a -> Col s Bool
- (.<=) :: SqlType a => Col s a -> Col s a -> Col s Bool
- like :: Col s Text -> Col s Text -> Col s Bool
- (.&&) :: Col s Bool -> Col s Bool -> Col s Bool
- (.||) :: Col s Bool -> Col s Bool -> Col s Bool
- not_ :: Col s Bool -> Col s Bool
- literal :: SqlType a => a -> Col s a
- int :: Int -> Col s Int
- float :: Double -> Col s Double
- text :: Text -> Col s Text
- true :: Col s Bool
- false :: Col s Bool
- null_ :: SqlType a => Col s (Maybe a)
- roundTo :: Col s Int -> Col s Double -> Col s Double
- length_ :: Col s Text -> Col s Int
- isNull :: Col s (Maybe a) -> Col s Bool
- round_ :: Num a => Col s Double -> Col s a
- just :: SqlType a => Col s a -> Col s (Maybe a)
- fromBool :: (SqlType a, Num a) => Col s Bool -> Col s a
- fromInt :: (SqlType a, Num a) => Col s Int -> Col s a
- toString :: Col s a -> Col s String
- data Aggr s a
- class Aggregates a
- type family OuterCols a where ...
- type family JoinCols a where ...
- data Inner s
- class SqlType a => MinMax a
- leftJoin :: (Columns a, Columns (OuterCols a), Columns (JoinCols a)) => (OuterCols a -> Col s Bool) -> Query (Inner s) a -> Query s (JoinCols a)
- aggregate :: (Columns (OuterCols a), Aggregates a) => Query (Inner s) a -> Query s (OuterCols a)
- groupBy :: Col (Inner s) a -> Query (Inner s) (Aggr (Inner s) a)
- count :: SqlType a => Col s a -> Aggr s Int
- avg :: (SqlType a, Num a) => Col s a -> Aggr s a
- sum_ :: (SqlType a, Num a) => Col s a -> Aggr s a
- max_ :: MinMax a => Col s a -> Aggr s a
- min_ :: MinMax a => Col s a -> Aggr s a
- class Insert a
- insert :: (MonadSelda m, Insert a) => Table a -> [a] -> m Int
- insert_ :: (MonadSelda m, Insert a) => Table a -> [a] -> m ()
- insertWithPK :: (MonadSelda m, Insert a) => Table a -> [a] -> m Int
- def :: SqlType a => a
- update :: (MonadSelda m, Columns (Cols s a), Result (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> (Cols s a -> Cols s a) -> m Int
- update_ :: (MonadSelda m, Columns (Cols s a), Result (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> (Cols s a -> Cols s a) -> m ()
- deleteFrom :: (MonadSelda m, Columns (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> m Int
- deleteFrom_ :: (MonadSelda m, Columns (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> m ()
- data ColSpec a
- type TableName = Text
- type ColName = Text
- class SqlType a => NonNull a
- type family IsNullable a where ...
- data Nullable
- data NotNullable
- table :: TableName -> ColSpec a -> Table a
- (¤) :: ColSpec a -> ColSpec b -> ColSpec (a :*: b)
- required :: NonNull a => ColName -> ColSpec a
- optional :: SqlType a => ColName -> ColSpec (Maybe a)
- primary :: NonNull a => ColName -> ColSpec a
- autoPrimary :: ColName -> ColSpec Int
- class ComposeSpec t a b where
- type family a :+++: b where ...
- (+++) :: ComposeSpec t a b => t a -> t b -> ColSpec (a :+++: b)
- createTable :: MonadSelda m => Table a -> m ()
- tryCreateTable :: MonadSelda m => Table a -> m ()
- dropTable :: MonadSelda m => Table a -> m ()
- tryDropTable :: MonadSelda m => Table a -> m ()
- data OnError
- compile :: Result a => Query s a -> (Text, [Param])
- compileCreateTable :: (Text -> [ColAttr] -> Maybe Text) -> OnError -> Table a -> Text
- compileDropTable :: OnError -> Table a -> Text
- compileInsert :: Insert a => Text -> Table a -> [a] -> (Text, [Param])
- compileUpdate :: forall s a. (Columns (Cols s a), Result (Cols s a)) => Table a -> (Cols s a -> Cols s a) -> (Cols s a -> Col s Bool) -> (Text, [Param])
- class Tup a
- type family Head a where ...
- first :: Tup a => a -> Head a
- second :: Tup b => (a :*: b) -> Head b
- third :: Tup c => (a :*: (b :*: c)) -> Head c
- fourth :: Tup d => (a :*: (b :*: (c :*: d))) -> Head d
- fifth :: Tup e => (a :*: (b :*: (c :*: (d :*: e)))) -> Head e
- sixth :: Tup f => (a :*: (b :*: (c :*: (d :*: (e :*: f))))) -> Head f
- seventh :: Tup g => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: g)))))) -> Head g
- eighth :: Tup h => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: (g :*: h))))))) -> Head h
- ninth :: Tup i => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: (h :*: (h :*: i)))))))) -> Head i
- tenth :: Tup j => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: (g :*: (h :*: (i :*: j))))))))) -> Head j

# Running queries

class Monad m => MonadIO m where #

Monads in which `IO`

computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
`IO`

monad will be an instance of this class.

Instances should satisfy the following laws, which state that `liftIO`

is a transformer of monads:

MonadIO IO | |

MonadIO m => MonadIO (ListT m) | |

MonadIO m => MonadIO (MaybeT m) | |

MonadIO m => MonadIO (SeldaT m) # | |

(Error e, MonadIO m) => MonadIO (ErrorT e m) | |

MonadIO m => MonadIO (ExceptT e m) | |

MonadIO m => MonadIO (StateT s m) | |

MonadIO m => MonadIO (StateT s m) | |

(Monoid w, MonadIO m) => MonadIO (WriterT w m) | |

(Monoid w, MonadIO m) => MonadIO (WriterT w m) | |

MonadIO m => MonadIO (IdentityT * m) | |

MonadIO m => MonadIO (ContT * r m) | |

MonadIO m => MonadIO (ReaderT * r m) | |

(Monoid w, MonadIO m) => MonadIO (RWST r w s m) | |

(Monoid w, MonadIO m) => MonadIO (RWST r w s m) | |

class MonadIO m => MonadSelda m Source #

Some monad with Selda SQL capabilitites.

MonadIO m => MonadSelda (SeldaT m) Source # | |

Monad transformer adding Selda SQL capabilities.

MonadTrans SeldaT Source # | |

Monad m => Monad (SeldaT m) Source # | |

Functor m => Functor (SeldaT m) Source # | |

Monad m => Applicative (SeldaT m) Source # | |

MonadIO m => MonadIO (SeldaT m) Source # | |

MonadThrow m => MonadThrow (SeldaT m) Source # | |

MonadCatch m => MonadCatch (SeldaT m) Source # | |

MonadMask m => MonadMask (SeldaT m) Source # | |

MonadIO m => MonadSelda (SeldaT m) Source # | |

A database table.
Tables are parameterized over their column types. For instance, a table
containing one string and one integer, in that order, would have the type
`Table (Text :*: Int)`

, and a table containing only a single string column
would have the type `Table Text`

.

(~) * ((:+++:) a b) ((:*:) a b) => ComposeSpec Table a b Source # | |

(ComposeSpec Table a b, ComposeSpec Table b c) => ComposeSpec Table ((:*:) a b) c Source # | |

An SQL query.

A database column. A column is often a literal column table, but can also be an expression over such a column or a constant expression.

Columns b => Columns ((:*:) (Col k s a) b) Source # | |

(Typeable * a, SqlType a, Result b) => Result ((:*:) (Col * s a) b) Source # | |

Fractional (Col k s (Maybe Int)) Source # | |

Fractional (Col k s Int) Source # | |

Fractional (Col k s (Maybe Double)) Source # | |

Fractional (Col k s Double) Source # | |

(SqlType a, Num a) => Num (Col k s (Maybe a)) Source # | |

(SqlType a, Num a) => Num (Col k s a) Source # | |

IsString (Col k s Text) Source # | |

Columns (Col k s a) Source # | |

(Typeable * a, SqlType a) => Result (Col * s a) Source # | |

type Res ((:*:) (Col * s a) b) Source # | |

type Res (Col * s a) Source # | |

class Typeable (Res r) => Result r Source #

An acceptable query result type; one or more columns stitched together
with `:*:`

.

toRes, finalCols

query :: (MonadSelda m, Result a) => Query s a -> m [Res a] Source #

Run a query within a Selda monad. In practice, this is often a `SeldaT`

transformer on top of some other monad.
Selda transformers are entered using backend-specific `withX`

functions,
such as `withSQLite`

from the SQLite backend.

transaction :: (MonadSelda m, MonadThrow m, MonadCatch m) => m a -> m a Source #

Perform the given computation atomically. If an exception is raised during its execution, the enture transaction will be rolled back, and the exception re-thrown.

setLocalCache :: MonadSelda m => Int -> m () Source #

Set the maximum local cache size to `n`

. A cache size of zero disables
local cache altogether. Changing the cache size will also flush all
entries.

By default, local caching is turned off.

WARNING: local caching is guaranteed to be consistent with the underlying database, ONLY under the assumption that no other process will modify it. Also note that the cache is shared between ALL Selda computations running within the same process.

# Constructing queries

Any datatype representable in (Selda's subset of) SQL.

mkLit, sqlType, fromSql

A space efficient, packed, unboxed Unicode text type.

Any column tuple.

toTup, fromTup

The order in which to sort result rows.

data a :*: b where infixr 1 Source #

An inductively defined "tuple", or heterogeneous, non-empty list.

(ComposeSpec ColSpec a b, ComposeSpec ColSpec b c) => ComposeSpec ColSpec ((:*:) a b) c Source # | |

(ComposeSpec Table a b, ComposeSpec Table b c) => ComposeSpec Table ((:*:) a b) c Source # | |

(Eq a, Eq b) => Eq ((:*:) a b) Source # | |

(Ord a, Ord b) => Ord ((:*:) a b) Source # | |

(Show a, Show b) => Show ((:*:) a b) Source # | |

Tup ((:*:) a b) Source # | |

Columns b => Columns ((:*:) (Col k s a) b) Source # | |

Aggregates b => Aggregates ((:*:) (Aggr (Inner s) a) b) Source # | |

(SqlType a, Insert b) => Insert ((:*:) a b) Source # | |

(Typeable * a, SqlType a, Result b) => Result ((:*:) (Col * s a) b) Source # | |

type Res ((:*:) (Col * s a) b) Source # | |

select :: Columns (Cols s a) => Table a -> Query s (Cols s a) Source #

Query the given table. Result is returned as an inductive tuple, i.e.
`first :*: second :*: third <- query tableOfThree`

.

selectValues :: (Insert a, Columns (Cols s a)) => [a] -> Query s (Cols s a) Source #

Query an ad hoc table of type `a`

. Each element in the given list represents
one row in the ad hoc table.

restrict :: Col s Bool -> Query s () Source #

Restrict the query somehow. Roughly equivalent to `WHERE`

.

limit :: Int -> Int -> Query s () Source #

Drop the first `m`

rows, then get at most `n`

of the remaining rows.

order :: Col s a -> Order -> Query s () Source #

Sort the result rows in ascending or descending order on the given row.

descending :: Order Source #

Ordering for `order`

.

# Expressions over columns

like :: Col s Text -> Col s Text -> Col s Bool infixl 4 Source #

The SQL `LIKE`

operator; matches strings with `%`

wildcards.
For instance:

"%gon" `like` "dragon" .== true

roundTo :: Col s Int -> Col s Double -> Col s Double Source #

Round a column to the given number of decimals places.

# Converting between column types

round_ :: Num a => Col s Double -> Col s a Source #

Round a value to the nearest integer. Equivalent to `roundTo 0`

.

just :: SqlType a => Col s a -> Col s (Maybe a) Source #

Lift a non-nullable column to a nullable one. Useful for creating expressions over optional columns:

people :: Table (Text :*: Int :*: Maybe Text) people = table "people" $ required "name" ¤ required "age" ¤ optional "pet" peopleWithCats = do name :*: _ :*: pet <- select people restrict (pet .== just "cat") return name

fromBool :: (SqlType a, Num a) => Col s Bool -> Col s a Source #

Convert a boolean column to any numeric type.

fromInt :: (SqlType a, Num a) => Col s Int -> Col s a Source #

Convert an integer column to any numeric type.

# Inner queries

A single aggregate column.
Aggregate columns may not be used to restrict queries.
When returned from an `aggregate`

subquery, an aggregate column is
converted into a non-aggregate column.

Aggregates b => Aggregates ((:*:) (Aggr (Inner s) a) b) Source # | |

Aggregates (Aggr (Inner s) a) Source # | |

class Aggregates a Source #

One or more aggregate columns.

unAggrs

Aggregates b => Aggregates ((:*:) (Aggr (Inner s) a) b) Source # | |

Aggregates (Aggr (Inner s) a) Source # | |

type family OuterCols a where ... Source #

Convert one or more inner column to equivalent columns in the outer query.
`OuterCols (Aggr (Inner s) a :*: Aggr (Inner s) b) = Col s a :*: Col s b`

,
for instance.

type family JoinCols a where ... Source #

The results of a join are always nullable, as there is no guarantee that
all joined columns will be non-null.
`JoinCols a`

where `a`

is an extensible tuple is that same tuple, but in
the outer query and with all elements nullable.
For instance:

JoinCols (Col (Inner s) Int :*: Col (Inner s) Text) = Col s (Maybe Int) :*: Col s (Maybe Text)

Denotes an inner query.
For aggregation, treating sequencing as the cartesian product of queries
does not work well.
Instead, we treat the sequencing of `aggregate`

with other
queries as the cartesian product of the aggregated result of the query,
a small but important difference.

However, for this to work, the aggregate query must not depend on any
columns in the outer product. Therefore, we let the aggregate query be
parameterized over `Inner s`

if the parent query is parameterized over `s`

,
to enforce this separation.

Aggregates b => Aggregates ((:*:) (Aggr (Inner s) a) b) Source # | |

Aggregates (Aggr (Inner s) a) Source # | |

:: (Columns a, Columns (OuterCols a), Columns (JoinCols a)) | |

=> (OuterCols a -> Col s Bool) | Predicate determining which lines to join. | Right-hand query to join. |

-> Query (Inner s) a | |

-> Query s (JoinCols a) |

Perform a `LEFT JOIN`

with the current result set (i.e. the outer query)
as the left hand side, and the given query as the right hand side.
Like with `aggregate`

, the inner (or right) query must not depend on the
outer (or right) one.

The given predicate over the values returned by the inner query determines for each row whether to join or not. This predicate may depend on any values from the outer query.

For instance, the following will list everyone in the `people`

table
together with their address if they have one; if they don't, the address
field will be `NULL`

.

getAddresses :: Query s (Col s Text :*: Col s (Maybe Text)) getAddresses = do name :*: _ <- select people _ :*: address <- leftJoin (\(n :*: _) -> n .== name) (select addresses) return (name :*: address)

aggregate :: (Columns (OuterCols a), Aggregates a) => Query (Inner s) a -> Query s (OuterCols a) Source #

Execute a query, returning an aggregation of its results.
The query must return an inductive tuple of `Aggregate`

columns.
When `aggregate`

returns, those columns are converted into non-aggregate
columns, which may then be used to further restrict the query.

Note that aggregate queries must not depend on outer queries, nor must they return any non-aggregate columns. Attempting to do either results in a type error.

The SQL `HAVING`

keyword can be implemented by combining `aggregate`

and `restrict`

:

-- Find the number of people living on every address, for all addresses -- with more than one tenant: -- SELECT COUNT(name) AS c, address FROM housing GROUP BY name HAVING c > 1 numPpl = do num_tenants :*: address <- aggregate $ do _ :*: address <- select housing groupBy address return (count address :*: some address) restrict (num_tenants .> 1) return (num_tenants :*: address)

groupBy :: Col (Inner s) a -> Query (Inner s) (Aggr (Inner s) a) Source #

Group an aggregate query by a column. Attempting to group a non-aggregate query is a type error. An aggregate representing the grouped-by column is returned, which can be returned from the aggregate query. For instance, if you want to find out how many people have a pet at home:

aggregate $ do name :*: pet_name <- select people name' <- groupBy name return (name' :*: count(pet_name) > 0)

count :: SqlType a => Col s a -> Aggr s Int Source #

The number of non-null values in the given column.

avg :: (SqlType a, Num a) => Col s a -> Aggr s a Source #

The average of all values in the given column.

max_ :: MinMax a => Col s a -> Aggr s a Source #

The greatest value in the given column. Texts are compared lexically.

min_ :: MinMax a => Col s a -> Aggr s a Source #

The smallest value in the given column. Texts are compared lexically.

# Modifying tables

An inductive tuple of Haskell-level values (i.e. `Int :*: Maybe Text`

)
which can be inserted into a table.

params

insert :: (MonadSelda m, Insert a) => Table a -> [a] -> m Int Source #

Insert the given values into the given table. All columns of the table
must be present. If your table has an auto-incrementing primary key,
use the special value `def`

for that column to get the auto-incrementing
behavior.
Returns the number of rows that were inserted.

To insert a list of tuples into a table with auto-incrementing primary key:

people :: Table (Auto Int :*: Text :*: Int :*: Maybe Text) people = table "ppl" $ autoPrimary "id" ¤ required "name" ¤ required "age" ¤ optional "pet" main = withSQLite "my_database.sqlite" $ do insert_ people [ def :*: "Link" :*: 125 :*: Just "horse" , def :*: "Zelda" :*: 119 :*: Nothing , ... ]

insert_ :: (MonadSelda m, Insert a) => Table a -> [a] -> m () Source #

Like `insert`

, but does not return anything.
Use this when you really don't care about how many rows were inserted.

insertWithPK :: (MonadSelda m, Insert a) => Table a -> [a] -> m Int Source #

Like `insert`

, but returns the primary key of the last inserted row.
Attempting to run this operation on a table without an auto-incrementing
primary key is a type error.

def :: SqlType a => a Source #

The default value for a column during insertion. For an auto-incrementing primary key, the default value is the next key.

Using `def`

in any other context than insertion results in a runtime error.
Likewise, if `def`

is given for a column that does not have a default
value, the insertion will fail.

:: (MonadSelda m, Columns (Cols s a), Result (Cols s a)) | |

=> Table a | The table to update. |

-> (Cols s a -> Col s Bool) | Predicate. |

-> (Cols s a -> Cols s a) | Update function. |

-> m Int |

Update the given table using the given update function, for all rows matching the given predicate. Returns the number of updated rows.

update_ :: (MonadSelda m, Columns (Cols s a), Result (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> (Cols s a -> Cols s a) -> m () Source #

Like `update`

, but doesn't return the number of updated rows.

deleteFrom :: (MonadSelda m, Columns (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> m Int Source #

From the given table, delete all rows matching the given predicate. Returns the number of deleted rows.

deleteFrom_ :: (MonadSelda m, Columns (Cols s a)) => Table a -> (Cols s a -> Col s Bool) -> m () Source #

Like `deleteFrom`

, but does not return the number of deleted rows.

# Defining schemas

A table column specification.

(~) * ((:+++:) a b) ((:*:) a b) => ComposeSpec ColSpec a b Source # | |

(ComposeSpec ColSpec a b, ComposeSpec ColSpec b c) => ComposeSpec ColSpec ((:*:) a b) c Source # | |

class SqlType a => NonNull a Source #

Any SQL type which is NOT nullable.

(SqlType a, (~) * (IsNullable a) NotNullable) => NonNull a Source # | |

type family IsNullable a where ... Source #

Is the given type nullable?

IsNullable (Maybe a) = Nullable | |

IsNullable a = NotNullable |

Used by `IsNullable`

to indicate a nullable type.

data NotNullable Source #

Used by `IsNullable`

to indicate a nullable type.

(¤) :: ColSpec a -> ColSpec b -> ColSpec (a :*: b) infixr 1 Source #

Combine two column specifications. Table descriptions are built by chaining columns using this operator:

people :: Table (Text :*: Int :*: Maybe Text) people = table "people" $ required "name" ¤ required "age" ¤ optional "pet"

To combine two pre-built tables into a table comprised of both tables' fields, see '(+++)'.

optional :: SqlType a => ColName -> ColSpec (Maybe a) Source #

A nullable column with the given name.

primary :: NonNull a => ColName -> ColSpec a Source #

Marks the given column as the table's primary key. A table may only have one primary key; marking more than one key as primary will result in a run-time error.

autoPrimary :: ColName -> ColSpec Int Source #

Automatically increment the given attribute if not specified during insert.
Also adds the `PRIMARY KEY`

attribute on the column.

# Combining schemas

class ComposeSpec t a b where Source #

(+++) :: t a -> t b -> ColSpec (a :+++: b) infixr 5 Source #

Combine the given tables or column specifications into a new column specification which can be used to create a new table. Useful for building composable table specifications.

Note that this function is only suitable for combining specifications which have a concrete type. To build a column specification from scratch, use '(¤)' instead.

(~) * ((:+++:) a b) ((:*:) a b) => ComposeSpec ColSpec a b Source # | |

(~) * ((:+++:) a b) ((:*:) a b) => ComposeSpec Table a b Source # | |

(ComposeSpec ColSpec a b, ComposeSpec ColSpec b c) => ComposeSpec ColSpec ((:*:) a b) c Source # | |

(ComposeSpec Table a b, ComposeSpec Table b c) => ComposeSpec Table ((:*:) a b) c Source # | |

(+++) :: ComposeSpec t a b => t a -> t b -> ColSpec (a :+++: b) Source #

Combine the given tables or column specifications into a new column specification which can be used to create a new table. Useful for building composable table specifications.

Note that this function is only suitable for combining specifications which have a concrete type. To build a column specification from scratch, use '(¤)' instead.

# Creating and dropping tables

createTable :: MonadSelda m => Table a -> m () Source #

Create a table from the given schema.

tryCreateTable :: MonadSelda m => Table a -> m () Source #

Create a table from the given schema, unless it already exists.

dropTable :: MonadSelda m => Table a -> m () Source #

Drop the given table.

tryDropTable :: MonadSelda m => Table a -> m () Source #

Drop the given table, if it exists.

# Compiling and inspecting queries

compile :: Result a => Query s a -> (Text, [Param]) Source #

Compile a query into a parameterised SQL statement.

compileCreateTable :: (Text -> [ColAttr] -> Maybe Text) -> OnError -> Table a -> Text Source #

Compile a `CREATE TABLE`

query from a table definition.

compileInsert :: Insert a => Text -> Table a -> [a] -> (Text, [Param]) Source #

Compile an `INSERT`

query, given the keyword representing default values
in the target SQL dialect, a table and a list of items corresponding
to the table.

:: (Columns (Cols s a), Result (Cols s a)) | |

=> Table a | The table to update. |

-> (Cols s a -> Cols s a) | Update function. |

-> (Cols s a -> Col s Bool) | Predicate: update only when true. |

-> (Text, [Param]) |

Compile an `UPDATE`

query.

# Tuple convenience functions

fourth :: Tup d => (a :*: (b :*: (c :*: d))) -> Head d Source #

Get the fourth element of an inductive tuple.

fifth :: Tup e => (a :*: (b :*: (c :*: (d :*: e)))) -> Head e Source #

Get the fifth element of an inductive tuple.

sixth :: Tup f => (a :*: (b :*: (c :*: (d :*: (e :*: f))))) -> Head f Source #

Get the sixth element of an inductive tuple.

seventh :: Tup g => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: g)))))) -> Head g Source #

Get the seventh element of an inductive tuple.

eighth :: Tup h => (a :*: (b :*: (c :*: (d :*: (e :*: (f :*: (g :*: h))))))) -> Head h Source #

Get the eighth element of an inductive tuple.