semigroupoids-5.3: Semigroupoids: Category sans id

Data.Semigroup.Bitraversable

Description

# Documentation

class (Bifoldable1 t, Bitraversable t) => Bitraversable1 t where Source #

Minimal complete definition

Methods

bitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> t a c -> f (t b d) Source #

bisequence1 :: Apply f => t (f a) (f b) -> f (t a b) Source #

Instances
 Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Either a c -> f (Either b d) Source #bisequence1 :: Apply f => Either (f a) (f b) -> f (Either a b) Source # Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (a, c) -> f (b, d) Source #bisequence1 :: Apply f => (f a, f b) -> f (a, b) Source # Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Arg a c -> f (Arg b d) Source #bisequence1 :: Apply f => Arg (f a) (f b) -> f (Arg a b) Source # Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, a, c) -> f (x, b, d) Source #bisequence1 :: Apply f => (x, f a, f b) -> f (x, a, b) Source # Bitraversable1 (Const :: * -> * -> *) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Const a c -> f (Const b d) Source #bisequence1 :: Apply f => Const (f a) (f b) -> f (Const a b) Source # Bitraversable1 (Tagged :: * -> * -> *) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Tagged a c -> f (Tagged b d) Source #bisequence1 :: Apply f => Tagged (f a) (f b) -> f (Tagged a b) Source # Bitraversable1 ((,,,) x y) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, y, a, c) -> f (x, y, b, d) Source #bisequence1 :: Apply f => (x, y, f a, f b) -> f (x, y, a, b) Source # Bitraversable1 ((,,,,) x y z) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> (x, y, z, a, c) -> f (x, y, z, b, d) Source #bisequence1 :: Apply f => (x, y, z, f a, f b) -> f (x, y, z, a, b) Source # Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> WrappedBifunctor p a c -> f (WrappedBifunctor p b d) Source #bisequence1 :: Apply f => WrappedBifunctor p (f a) (f b) -> f (WrappedBifunctor p a b) Source # Traversable1 g => Bitraversable1 (Joker g :: * -> * -> *) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Joker g a c -> f (Joker g b d) Source #bisequence1 :: Apply f => Joker g (f a) (f b) -> f (Joker g a b) Source # Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f => (a -> f b) -> (c -> f d) -> Flip p a c -> f (Flip p b d) Source #bisequence1 :: Apply f => Flip p (f a) (f b) -> f (Flip p a b) Source # Traversable1 f => Bitraversable1 (Clown f :: * -> * -> *) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Clown f a c -> f0 (Clown f b d) Source #bisequence1 :: Apply f0 => Clown f (f0 a) (f0 b) -> f0 (Clown f a b) Source # (Bitraversable1 f, Bitraversable1 g) => Bitraversable1 (Product f g) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Product f g a c -> f0 (Product f g b d) Source #bisequence1 :: Apply f0 => Product f g (f0 a) (f0 b) -> f0 (Product f g a b) Source # (Traversable1 f, Bitraversable1 p) => Bitraversable1 (Tannen f p) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Tannen f p a c -> f0 (Tannen f p b d) Source #bisequence1 :: Apply f0 => Tannen f p (f0 a) (f0 b) -> f0 (Tannen f p a b) Source # (Bitraversable1 p, Traversable1 f, Traversable1 g) => Bitraversable1 (Biff p f g) Source # Instance detailsDefined in Data.Semigroup.Traversable.Class Methodsbitraverse1 :: Apply f0 => (a -> f0 b) -> (c -> f0 d) -> Biff p f g a c -> f0 (Biff p f g b d) Source #bisequence1 :: Apply f0 => Biff p f g (f0 a) (f0 b) -> f0 (Biff p f g a b) Source #

bifoldMap1Default :: (Bitraversable1 t, Semigroup m) => (a -> m) -> (b -> m) -> t a b -> m Source #