{-# LANGUAGE CPP #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -Wno-deprecations #-}
{-# OPTIONS_HADDOCK not-home #-}
module Data.Functor.Bind.Class (
  
    Apply(..)
  
  , WrappedApplicative(..)
  , MaybeApply(..)
  , (<.*>)
  , (<*.>)
  , traverse1Maybe
  
  , Bind(..)
  , apDefault
  , returning
  
  , Biapply(..)
  ) where
import Data.Semigroup
import Control.Applicative
import Control.Applicative.Backwards
import Control.Applicative.Lift
import Control.Arrow
import Control.Category
import Control.Monad (ap)
import Control.Monad.Trans.Cont
import Control.Monad.Trans.Except
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Maybe
import Control.Monad.Trans.Reader
#if MIN_VERSION_transformers(0,5,6)
import qualified Control.Monad.Trans.RWS.CPS as CPS
import qualified Control.Monad.Trans.Writer.CPS as CPS
import Semigroupoids.Internal
#endif
import qualified Control.Monad.Trans.RWS.Lazy as Lazy
import qualified Control.Monad.Trans.State.Lazy as Lazy
import qualified Control.Monad.Trans.Writer.Lazy as Lazy
import qualified Control.Monad.Trans.RWS.Strict as Strict
import qualified Control.Monad.Trans.State.Strict as Strict
import qualified Control.Monad.Trans.Writer.Strict as Strict
import Data.Biapplicative
import Data.Bifunctor.Biff
import Data.Bifunctor.Clown
import Data.Bifunctor.Flip
import Data.Bifunctor.Joker
import Data.Bifunctor.Join
import Data.Bifunctor.Product as Bifunctor
import Data.Bifunctor.Tannen
import Data.Bifunctor.Wrapped
import Data.Complex
import Data.Functor.Compose
import Data.Functor.Constant
import Data.Functor.Identity
import Data.Functor.Product as Functor
import Data.Functor.Reverse
import Data.Functor.Extend
import Data.List.NonEmpty (NonEmpty)
import Data.Ord (Down (..))
import Data.Proxy
import Data.Semigroup as Semigroup
import qualified Data.Monoid as Monoid
import Data.Orphans ()
import GHC.Generics as Generics
import Language.Haskell.TH (Q)
import Prelude hiding (id, (.))
#if !(MIN_VERSION_transformers(0,6,0))
import Control.Monad.Trans.Error
import Control.Monad.Trans.List
#endif
#ifdef MIN_VERSION_containers
import qualified Data.IntMap as IntMap
import Data.IntMap (IntMap)
import qualified Data.Map as Map
import Data.Map (Map)
import Data.Sequence (Seq)
import Data.Tree (Tree)
#endif
#ifdef MIN_VERSION_tagged
import Data.Tagged
#endif
#ifdef MIN_VERSION_unordered_containers
import Data.Hashable
import Data.HashMap.Lazy (HashMap)
import qualified Data.HashMap.Lazy as HashMap
#endif
#ifdef MIN_VERSION_comonad
import Control.Comonad
import Control.Comonad.Trans.Env
import Control.Comonad.Trans.Store
import Control.Comonad.Trans.Traced
#else
($>) :: Functor f => f a -> b -> f b
($>) = flip (<$)
#endif
infixl 1 >>-
infixl 4 <.>, <., .>
class Functor f => Apply f where
  (<.>) :: f (a -> b) -> f a -> f b
  (<.>) = forall (f :: * -> *) a b c.
Apply f =>
(a -> b -> c) -> f a -> f b -> f c
liftF2 forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
  
  (.>) :: f a -> f b -> f b
  f a
a .> f b
b = forall a b. a -> b -> a
const forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
b
  
  (<.) :: f a -> f b -> f a
  f a
a <. f b
b = forall a b. a -> b -> a
const forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
b
  
  liftF2 :: (a -> b -> c) -> f a -> f b -> f c
  liftF2 a -> b -> c
f f a
a f b
b = a -> b -> c
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f b
b
  {-# INLINE liftF2 #-}
  {-# MINIMAL (<.>) | liftF2 #-}
#ifdef MIN_VERSION_tagged
instance Apply (Tagged a) where
  <.> :: forall a b. Tagged a (a -> b) -> Tagged a a -> Tagged a b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  <. :: forall a b. Tagged a a -> Tagged a b -> Tagged a a
(<.) = forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
  .> :: forall a b. Tagged a a -> Tagged a b -> Tagged a b
(.>) = forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
#endif
instance Apply Proxy where
  <.> :: forall a b. Proxy (a -> b) -> Proxy a -> Proxy b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  <. :: forall a b. Proxy a -> Proxy b -> Proxy a
(<.) = forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
  .> :: forall a b. Proxy a -> Proxy b -> Proxy b
(.>) = forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>)
instance Apply f => Apply (Backwards f) where
  Backwards f (a -> b)
f <.> :: forall a b. Backwards f (a -> b) -> Backwards f a -> Backwards f b
<.> Backwards f a
a = forall {k} (f :: k -> *) (a :: k). f a -> Backwards f a
Backwards (forall a b c. (a -> b -> c) -> b -> a -> c
flip forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f (a -> b)
f)
instance (Apply f, Apply g) => Apply (Compose f g) where
  Compose f (g (a -> b))
f <.> :: forall a b. Compose f g (a -> b) -> Compose f g a -> Compose f g b
<.> Compose f (g a)
x = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g (a -> b))
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f (g a)
x)
instance Semigroup f => Apply (Constant f) where
  Constant f
a <.> :: forall a b. Constant f (a -> b) -> Constant f a -> Constant f b
<.> Constant f
b = forall {k} a (b :: k). a -> Constant a b
Constant (f
a forall a. Semigroup a => a -> a -> a
<> f
b)
  Constant f
a <. :: forall a b. Constant f a -> Constant f b -> Constant f a
<.  Constant f
b = forall {k} a (b :: k). a -> Constant a b
Constant (f
a forall a. Semigroup a => a -> a -> a
<> f
b)
  Constant f
a  .> :: forall a b. Constant f a -> Constant f b -> Constant f b
.> Constant f
b = forall {k} a (b :: k). a -> Constant a b
Constant (f
a forall a. Semigroup a => a -> a -> a
<> f
b)
instance Apply f => Apply (Lift f) where
  Pure a -> b
f  <.> :: forall a b. Lift f (a -> b) -> Lift f a -> Lift f b
<.> Pure a
x  = forall (f :: * -> *) a. a -> Lift f a
Pure (a -> b
f a
x)
  Pure a -> b
f  <.> Other f a
y = forall (f :: * -> *) a. f a -> Lift f a
Other (a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
y)
  Other f (a -> b)
f <.> Pure a
x  = forall (f :: * -> *) a. f a -> Lift f a
Other ((forall a b. (a -> b) -> a -> b
$ a
x) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (a -> b)
f)
  Other f (a -> b)
f <.> Other f a
y = forall (f :: * -> *) a. f a -> Lift f a
Other (f (a -> b)
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
y)
instance (Apply f, Apply g) => Apply (Functor.Product f g) where
  Functor.Pair f (a -> b)
f g (a -> b)
g <.> :: forall a b. Product f g (a -> b) -> Product f g a -> Product f g b
<.> Functor.Pair f a
x g a
y = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Functor.Pair (f (a -> b)
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
x) (g (a -> b)
g forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> g a
y)
instance Apply f => Apply (Reverse f) where
  Reverse f (a -> b)
a <.> :: forall a b. Reverse f (a -> b) -> Reverse f a -> Reverse f b
<.> Reverse f a
b = forall {k} (f :: k -> *) (a :: k). f a -> Reverse f a
Reverse (f (a -> b)
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
b)
instance Semigroup m => Apply ((,)m) where
  (m
m, a -> b
f) <.> :: forall a b. (m, a -> b) -> (m, a) -> (m, b)
<.> (m
n, a
a) = (m
m forall a. Semigroup a => a -> a -> a
<> m
n, a -> b
f a
a)
  (m
m, a
a) <. :: forall a b. (m, a) -> (m, b) -> (m, a)
<.  (m
n, b
_) = (m
m forall a. Semigroup a => a -> a -> a
<> m
n, a
a)
  (m
m, a
_)  .> :: forall a b. (m, a) -> (m, b) -> (m, b)
.> (m
n, b
b) = (m
m forall a. Semigroup a => a -> a -> a
<> m
n, b
b)
instance Apply NonEmpty where
  <.> :: forall a b. NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b
(<.>) = forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Apply (Either a) where
  Left a
a  <.> :: forall a b. Either a (a -> b) -> Either a a -> Either a b
<.> Either a a
_       = forall a b. a -> Either a b
Left a
a
  Right a -> b
_ <.> Left a
a  = forall a b. a -> Either a b
Left a
a
  Right a -> b
f <.> Right a
b = forall a b. b -> Either a b
Right (a -> b
f a
b)
  Left a
a  <. :: forall a b. Either a a -> Either a b -> Either a a
<.  Either a b
_       = forall a b. a -> Either a b
Left a
a
  Right a
_ <.  Left a
a  = forall a b. a -> Either a b
Left a
a
  Right a
a <.  Right b
_ = forall a b. b -> Either a b
Right a
a
  Left a
a   .> :: forall a b. Either a a -> Either a b -> Either a b
.> Either a b
_       = forall a b. a -> Either a b
Left a
a
  Right a
_  .> Left a
a  = forall a b. a -> Either a b
Left a
a
  Right a
_  .> Right b
b = forall a b. b -> Either a b
Right b
b
instance Semigroup m => Apply (Const m) where
  Const m
m <.> :: forall a b. Const m (a -> b) -> Const m a -> Const m b
<.> Const m
n = forall {k} a (b :: k). a -> Const a b
Const (m
m forall a. Semigroup a => a -> a -> a
<> m
n)
  Const m
m <. :: forall a b. Const m a -> Const m b -> Const m a
<.  Const m
n = forall {k} a (b :: k). a -> Const a b
Const (m
m forall a. Semigroup a => a -> a -> a
<> m
n)
  Const m
m  .> :: forall a b. Const m a -> Const m b -> Const m b
.> Const m
n = forall {k} a (b :: k). a -> Const a b
Const (m
m forall a. Semigroup a => a -> a -> a
<> m
n)
instance Apply ((->)m) where
  <.> :: forall a b. (m -> (a -> b)) -> (m -> a) -> m -> b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply ZipList where
  <.> :: forall a b. ZipList (a -> b) -> ZipList a -> ZipList b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply [] where
  <.> :: forall a b. [a -> b] -> [a] -> [b]
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply IO where
  <.> :: forall a b. IO (a -> b) -> IO a -> IO b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply Maybe where
  <.> :: forall a b. Maybe (a -> b) -> Maybe a -> Maybe b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
#if !(MIN_VERSION_base(4,16,0))
instance Apply Option where
  (<.>) = (<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
#endif
instance Apply Identity where
  <.> :: forall a b. Identity (a -> b) -> Identity a -> Identity b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply w => Apply (IdentityT w) where
  IdentityT w (a -> b)
wa <.> :: forall a b. IdentityT w (a -> b) -> IdentityT w a -> IdentityT w b
<.> IdentityT w a
wb = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (w (a -> b)
wa forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> w a
wb)
instance Monad m => Apply (WrappedMonad m) where
  <.> :: forall a b.
WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Arrow a => Apply (WrappedArrow a b) where
  <.> :: forall a b.
WrappedArrow a b (a -> b)
-> WrappedArrow a b a -> WrappedArrow a b b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
instance Apply Complex where
  (a -> b
a :+ a -> b
b) <.> :: forall a b. Complex (a -> b) -> Complex a -> Complex b
<.> (a
c :+ a
d) = a -> b
a a
c forall a. a -> a -> Complex a
:+ a -> b
b a
d
instance Apply Q where
  <.> :: forall a b. Q (a -> b) -> Q a -> Q b
(<.>) = forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
#ifdef MIN_VERSION_containers
instance Ord k => Apply (Map k) where
  <.> :: forall a b. Map k (a -> b) -> Map k a -> Map k b
(<.>) = forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
Map.intersectionWith forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
  (<. ) = forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
Map.intersectionWith forall a b. a -> b -> a
const
  ( .>) = forall k a b c.
Ord k =>
(a -> b -> c) -> Map k a -> Map k b -> Map k c
Map.intersectionWith (forall a b. a -> b -> a
const forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id)
instance Apply IntMap where
  <.> :: forall a b. IntMap (a -> b) -> IntMap a -> IntMap b
(<.>) = forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
IntMap.intersectionWith forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
  (<. ) = forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
IntMap.intersectionWith forall a b. a -> b -> a
const
  ( .>) = forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
IntMap.intersectionWith (forall a b. a -> b -> a
const forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id)
instance Apply Seq where
  <.> :: forall a b. Seq (a -> b) -> Seq a -> Seq b
(<.>) = forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Apply Tree where
  <.> :: forall a b. Tree (a -> b) -> Tree a -> Tree b
(<.>) = forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>)
  (<. ) = (<* )
  ( .>) = ( *>)
#endif
#ifdef MIN_VERSION_unordered_containers
instance (Hashable k, Eq k) => Apply (HashMap k) where
  <.> :: forall a b. HashMap k (a -> b) -> HashMap k a -> HashMap k b
(<.>) = forall k v1 v2 v3.
(Eq k, Hashable k) =>
(v1 -> v2 -> v3) -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
HashMap.intersectionWith forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id
#endif
instance (Functor m, Monad m) => Apply (MaybeT m) where
  <.> :: forall a b. MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
#if !(MIN_VERSION_transformers(0,6,0))
instance (Functor m, Monad m) => Apply (ErrorT e m) where
  <.> :: forall a b. ErrorT e m (a -> b) -> ErrorT e m a -> ErrorT e m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
instance Apply m => Apply (ListT m) where
  ListT m [a -> b]
f <.> :: forall a b. ListT m (a -> b) -> ListT m a -> ListT m b
<.> ListT m [a]
a = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m [a -> b]
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> m [a]
a
#endif
instance (Functor m, Monad m) => Apply (ExceptT e m) where
  <.> :: forall a b. ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
instance Apply m => Apply (ReaderT e m) where
  ReaderT e -> m (a -> b)
f <.> :: forall a b. ReaderT e m (a -> b) -> ReaderT e m a -> ReaderT e m b
<.> ReaderT e -> m a
a = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \e
e -> e -> m (a -> b)
f e
e forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> e -> m a
a e
e
instance (Apply m, Semigroup w) => Apply (Strict.WriterT w m) where
  Strict.WriterT m (a -> b, w)
f <.> :: forall a b. WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b
<.> Strict.WriterT m (a, w)
a = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$ forall {b} {t} {a}. Semigroup b => (t -> a, b) -> (t, b) -> (a, b)
flap forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (a -> b, w)
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> m (a, w)
a where
    flap :: (t -> a, b) -> (t, b) -> (a, b)
flap (t -> a
x,b
m) (t
y,b
n) = (t -> a
x t
y, b
m forall a. Semigroup a => a -> a -> a
<> b
n)
instance (Apply m, Semigroup w) => Apply (Lazy.WriterT w m) where
  Lazy.WriterT m (a -> b, w)
f <.> :: forall a b. WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b
<.> Lazy.WriterT m (a, w)
a = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$ forall {b} {t} {a}. Semigroup b => (t -> a, b) -> (t, b) -> (a, b)
flap forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m (a -> b, w)
f forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> m (a, w)
a where
    flap :: (t -> a, b) -> (t, b) -> (a, b)
flap ~(t -> a
x,b
m) ~(t
y,b
n) = (t -> a
x t
y, b
m forall a. Semigroup a => a -> a -> a
<> b
n)
#if MIN_VERSION_transformers(0,5,6)
instance (Bind m) => Apply (CPS.WriterT w m) where
  WriterT w m (a -> b)
mf <.> :: forall a b. WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b
<.> WriterT w m a
mx = forall w (m :: * -> *) a. (w -> m (a, w)) -> WriterT w m a
mkWriterT forall a b. (a -> b) -> a -> b
$ \w
w ->
    forall w (m :: * -> *) a. WriterT w m a -> w -> m (a, w)
unWriterT WriterT w m (a -> b)
mf w
w forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \(a -> b
f, w
w') -> forall w (m :: * -> *) a. WriterT w m a -> w -> m (a, w)
unWriterT (a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WriterT w m a
mx) w
w'
#endif
instance Bind m => Apply (Strict.StateT s m) where
  <.> :: forall a b. StateT s m (a -> b) -> StateT s m a -> StateT s m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
instance Bind m => Apply (Lazy.StateT s m) where
  <.> :: forall a b. StateT s m (a -> b) -> StateT s m a -> StateT s m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
instance (Bind m, Semigroup w) => Apply (Strict.RWST r w s m) where
  <.> :: forall a b.
RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
instance (Bind m, Semigroup w) => Apply (Lazy.RWST r w s m) where
  <.> :: forall a b.
RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b
(<.>) = forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault
#if MIN_VERSION_transformers(0,5,6)
instance (Bind m) => Apply (CPS.RWST r w s m) where
  RWST r w s m (a -> b)
mf <.> :: forall a b.
RWST r w s m (a -> b) -> RWST r w s m a -> RWST r w s m b
<.> RWST r w s m a
mx = forall r s w (m :: * -> *) a.
(r -> s -> w -> m (a, s, w)) -> RWST r w s m a
mkRWST forall a b. (a -> b) -> a -> b
$ \ r
r s
s w
w ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> w -> m (a, s, w)
unRWST RWST r w s m (a -> b)
mf r
r s
s w
w forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \(a -> b
f, s
s', w
w') -> forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> w -> m (a, s, w)
unRWST (a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> RWST r w s m a
mx) r
r s
s' w
w'
#endif
instance Apply (ContT r m) where
  ContT ((a -> b) -> m r) -> m r
f <.> :: forall a b. ContT r m (a -> b) -> ContT r m a -> ContT r m b
<.> ContT (a -> m r) -> m r
v = forall {k} (r :: k) (m :: k -> *) a.
((a -> m r) -> m r) -> ContT r m a
ContT forall a b. (a -> b) -> a -> b
$ \b -> m r
k -> ((a -> b) -> m r) -> m r
f forall a b. (a -> b) -> a -> b
$ \a -> b
g -> (a -> m r) -> m r
v (b -> m r
k forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
g)
#ifdef MIN_VERSION_comonad
instance (Semigroup e, Apply w) => Apply (EnvT e w) where
  EnvT e
ef w (a -> b)
wf <.> :: forall a b. EnvT e w (a -> b) -> EnvT e w a -> EnvT e w b
<.> EnvT e
ea w a
wa = forall e (w :: * -> *) a. e -> w a -> EnvT e w a
EnvT (e
ef forall a. Semigroup a => a -> a -> a
<> e
ea) (w (a -> b)
wf forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> w a
wa)
instance (Apply w, Semigroup s) => Apply (StoreT s w) where
  StoreT w (s -> a -> b)
ff s
m <.> :: forall a b. StoreT s w (a -> b) -> StoreT s w a -> StoreT s w b
<.> StoreT w (s -> a)
fa s
n = forall s (w :: * -> *) a. w (s -> a) -> s -> StoreT s w a
StoreT (forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> w (s -> a -> b)
ff forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> w (s -> a)
fa) (s
m forall a. Semigroup a => a -> a -> a
<> s
n)
instance Apply w => Apply (TracedT m w) where
  TracedT w (m -> a -> b)
wf <.> :: forall a b. TracedT m w (a -> b) -> TracedT m w a -> TracedT m w b
<.> TracedT w (m -> a)
wa = forall m (w :: * -> *) a. w (m -> a) -> TracedT m w a
TracedT (forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> w (m -> a -> b)
wf forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> w (m -> a)
wa)
#endif
newtype WrappedApplicative f a = WrapApplicative { forall (f :: * -> *) a. WrappedApplicative f a -> f a
unwrapApplicative :: f a }
instance Functor f => Functor (WrappedApplicative f) where
  fmap :: forall a b.
(a -> b) -> WrappedApplicative f a -> WrappedApplicative f b
fmap a -> b
f (WrapApplicative f a
a) = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
a)
instance Applicative f => Apply (WrappedApplicative f) where
  WrapApplicative f (a -> b)
f <.> :: forall a b.
WrappedApplicative f (a -> b)
-> WrappedApplicative f a -> WrappedApplicative f b
<.> WrapApplicative f a
a = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f (a -> b)
f forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f a
a)
  WrapApplicative f a
a <. :: forall a b.
WrappedApplicative f a
-> WrappedApplicative f b -> WrappedApplicative f a
<.  WrapApplicative f b
b = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f a
a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<*  f b
b)
  WrapApplicative f a
a  .> :: forall a b.
WrappedApplicative f a
-> WrappedApplicative f b -> WrappedApplicative f b
.> WrapApplicative f b
b = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f a
a  forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> f b
b)
instance Applicative f => Applicative (WrappedApplicative f) where
  pure :: forall a. a -> WrappedApplicative f a
pure = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall (f :: * -> *) a. Applicative f => a -> f a
pure
  WrapApplicative f (a -> b)
f <*> :: forall a b.
WrappedApplicative f (a -> b)
-> WrappedApplicative f a -> WrappedApplicative f b
<*> WrapApplicative f a
a = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f (a -> b)
f forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> f a
a)
  WrapApplicative f a
a <* :: forall a b.
WrappedApplicative f a
-> WrappedApplicative f b -> WrappedApplicative f a
<*  WrapApplicative f b
b = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f a
a forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<*  f b
b)
  WrapApplicative f a
a  *> :: forall a b.
WrappedApplicative f a
-> WrappedApplicative f b -> WrappedApplicative f b
*> WrapApplicative f b
b = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f a
a  forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> f b
b)
instance Alternative f => Alternative (WrappedApplicative f) where
  empty :: forall a. WrappedApplicative f a
empty = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative forall (f :: * -> *) a. Alternative f => f a
empty
  WrapApplicative f a
a <|> :: forall a.
WrappedApplicative f a
-> WrappedApplicative f a -> WrappedApplicative f a
<|> WrapApplicative f a
b = forall (f :: * -> *) a. f a -> WrappedApplicative f a
WrapApplicative (f a
a forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> f a
b)
newtype MaybeApply f a = MaybeApply { forall (f :: * -> *) a. MaybeApply f a -> Either (f a) a
runMaybeApply :: Either (f a) a }
(<.*>) :: (Apply f) => f (a -> b) -> MaybeApply f a -> f b
f (a -> b)
ff <.*> :: forall (f :: * -> *) a b.
Apply f =>
f (a -> b) -> MaybeApply f a -> f b
<.*> MaybeApply (Left f a
fa) = f (a -> b)
ff forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
fa
f (a -> b)
ff <.*> MaybeApply (Right a
a) = (forall a b. (a -> b) -> a -> b
$ a
a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (a -> b)
ff
infixl 4 <.*>
(<*.>) :: (Apply f) => MaybeApply f (a -> b) -> f a -> f b
MaybeApply (Left f (a -> b)
ff) <*.> :: forall (f :: * -> *) a b.
Apply f =>
MaybeApply f (a -> b) -> f a -> f b
<*.> f a
fa = f (a -> b)
ff forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
fa
MaybeApply (Right a -> b
f) <*.> f a
fa = a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
fa
infixl 4 <*.>
traverse1Maybe :: (Traversable t, Apply f) => (a -> f b) -> t a -> MaybeApply f (t b)
traverse1Maybe :: forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Apply f) =>
(a -> f b) -> t a -> MaybeApply f (t b)
traverse1Maybe a -> f b
f = forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. a -> Either a b
Left forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> f b
f)
instance Functor f => Functor (MaybeApply f) where
  fmap :: forall a b. (a -> b) -> MaybeApply f a -> MaybeApply f b
fmap a -> b
f (MaybeApply (Right a
a)) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. b -> Either a b
Right (a -> b
f     a
a ))
  fmap a -> b
f (MaybeApply (Left f a
fa)) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left  (a -> b
f forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
fa))
instance Apply f => Apply (MaybeApply f) where
  MaybeApply (Right a -> b
f) <.> :: forall a b.
MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b
<.> MaybeApply (Right a
a) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. b -> Either a b
Right (a -> b
f         a
a ))
  MaybeApply (Right a -> b
f) <.> MaybeApply (Left f a
fa) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left  (a -> b
f     forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
fa))
  MaybeApply (Left f (a -> b)
ff) <.> MaybeApply (Right a
a) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left  ((forall a b. (a -> b) -> a -> b
$ a
a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (a -> b)
ff))
  MaybeApply (Left f (a -> b)
ff) <.> MaybeApply (Left f a
fa) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left  (f (a -> b)
ff    forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
fa))
  MaybeApply Either (f a) a
a         <. :: forall a b. MaybeApply f a -> MaybeApply f b -> MaybeApply f a
<. MaybeApply (Right b
_) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply Either (f a) a
a
  MaybeApply (Right a
a) <. MaybeApply (Left f b
fb) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (a
a  forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ f b
fb))
  MaybeApply (Left f a
fa) <. MaybeApply (Left f b
fb) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (f a
fa forall (f :: * -> *) a b. Apply f => f a -> f b -> f a
<. f b
fb))
  MaybeApply (Right a
_) .> :: forall a b. MaybeApply f a -> MaybeApply f b -> MaybeApply f b
.> MaybeApply Either (f b) b
b = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply Either (f b) b
b
  MaybeApply (Left f a
fa) .> MaybeApply (Right b
b) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (f a
fa forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> b
b ))
  MaybeApply (Left f a
fa) .> MaybeApply (Left f b
fb) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (f a
fa forall (f :: * -> *) a b. Apply f => f a -> f b -> f b
.> f b
fb))
instance Apply f => Applicative (MaybeApply f) where
  pure :: forall a. a -> MaybeApply f a
pure a
a = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. b -> Either a b
Right a
a)
  <*> :: forall a b.
MaybeApply f (a -> b) -> MaybeApply f a -> MaybeApply f b
(<*>) = forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>)
  (<* ) = (<. )
  ( *>) = ( .>)
instance Extend f => Extend (MaybeApply f) where
  duplicated :: forall a. MaybeApply f a -> MaybeApply f (MaybeApply f a)
duplicated w :: MaybeApply f a
w@(MaybeApply Right{}) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. b -> Either a b
Right MaybeApply f a
w)
  duplicated (MaybeApply (Left f a
fa)) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (forall (w :: * -> *) a b. Extend w => (w a -> b) -> w a -> w b
extended (forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. a -> Either a b
Left) f a
fa))
#ifdef MIN_VERSION_comonad
instance Comonad f => Comonad (MaybeApply f) where
  duplicate :: forall a. MaybeApply f a -> MaybeApply f (MaybeApply f a)
duplicate w :: MaybeApply f a
w@(MaybeApply Right{}) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. b -> Either a b
Right MaybeApply f a
w)
  duplicate (MaybeApply (Left f a
fa)) = forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply (forall a b. a -> Either a b
Left (forall (w :: * -> *) a b. Comonad w => (w a -> b) -> w a -> w b
extend (forall (f :: * -> *) a. Either (f a) a -> MaybeApply f a
MaybeApply forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. forall a b. a -> Either a b
Left) f a
fa))
  extract :: forall a. MaybeApply f a -> a
extract (MaybeApply (Left f a
fa)) = forall (w :: * -> *) a. Comonad w => w a -> a
extract f a
fa
  extract (MaybeApply (Right a
a)) = a
a
instance Apply (Cokleisli w a) where
  Cokleisli w a -> a -> b
f <.> :: forall a b.
Cokleisli w a (a -> b) -> Cokleisli w a a -> Cokleisli w a b
<.> Cokleisli w a -> a
a = forall {k} (w :: k -> *) (a :: k) b. (w a -> b) -> Cokleisli w a b
Cokleisli (\w a
w -> (w a -> a -> b
f w a
w) (w a -> a
a w a
w))
#endif
instance Apply Down where <.> :: forall a b. Down (a -> b) -> Down a -> Down b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Down a -> Down b -> Down b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Down a -> Down b -> Down a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Monoid.Sum where <.> :: forall a b. Sum (a -> b) -> Sum a -> Sum b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Sum a -> Sum b -> Sum b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Sum a -> Sum b -> Sum a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Monoid.Product where <.> :: forall a b. Product (a -> b) -> Product a -> Product b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Product a -> Product b -> Product b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Product a -> Product b -> Product a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Monoid.Dual where <.> :: forall a b. Dual (a -> b) -> Dual a -> Dual b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Dual a -> Dual b -> Dual b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Dual a -> Dual b -> Dual a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Monoid.First where <.> :: forall a b. First (a -> b) -> First a -> First b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. First a -> First b -> First b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. First a -> First b -> First a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Monoid.Last where <.> :: forall a b. Last (a -> b) -> Last a -> Last b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Last a -> Last b -> Last b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Last a -> Last b -> Last a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
deriving instance Apply f => Apply (Monoid.Alt f)
instance Apply Semigroup.First where <.> :: forall a b. First (a -> b) -> First a -> First b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. First a -> First b -> First b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. First a -> First b -> First a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Semigroup.Last where <.> :: forall a b. Last (a -> b) -> Last a -> Last b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Last a -> Last b -> Last b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Last a -> Last b -> Last a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Semigroup.Min where <.> :: forall a b. Min (a -> b) -> Min a -> Min b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Min a -> Min b -> Min b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Min a -> Min b -> Min a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Semigroup.Max where <.> :: forall a b. Max (a -> b) -> Max a -> Max b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Max a -> Max b -> Max b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Max a -> Max b -> Max a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance (Apply f, Apply g) => Apply (f :*: g) where
  (f (a -> b)
a :*: g (a -> b)
b) <.> :: forall a b. (:*:) f g (a -> b) -> (:*:) f g a -> (:*:) f g b
<.> (f a
c :*: g a
d) = (f (a -> b)
a forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
c) forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g (a -> b)
b forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> g a
d)
deriving instance Apply f => Apply (M1 i t f)
deriving instance Apply f => Apply (Rec1 f)
instance (Apply f, Apply g) => Apply (f :.: g) where
  Comp1 f (g (a -> b))
m <.> :: forall a b. (:.:) f g (a -> b) -> (:.:) f g a -> (:.:) f g b
<.> Comp1 f (g a)
n = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (g (a -> b))
m forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f (g a)
n
instance Apply U1 where <.> :: forall a b. U1 (a -> b) -> U1 a -> U1 b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. U1 a -> U1 b -> U1 b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. U1 a -> U1 b -> U1 a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Semigroup c => Apply (K1 i c) where
  K1 c
a <.> :: forall a b. K1 i c (a -> b) -> K1 i c a -> K1 i c b
<.> K1 c
b = forall k i c (p :: k). c -> K1 i c p
K1 (c
a forall a. Semigroup a => a -> a -> a
<> c
b)
  K1 c
a <. :: forall a b. K1 i c a -> K1 i c b -> K1 i c a
<.  K1 c
b = forall k i c (p :: k). c -> K1 i c p
K1 (c
a forall a. Semigroup a => a -> a -> a
<> c
b)
  K1 c
a  .> :: forall a b. K1 i c a -> K1 i c b -> K1 i c b
.> K1 c
b = forall k i c (p :: k). c -> K1 i c p
K1 (c
a forall a. Semigroup a => a -> a -> a
<> c
b)
instance Apply Par1 where <.> :: forall a b. Par1 (a -> b) -> Par1 a -> Par1 b
(<.>)=forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>);.> :: forall a b. Par1 a -> Par1 b -> Par1 b
(.>)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
(*>);<. :: forall a b. Par1 a -> Par1 b -> Par1 a
(<.)=forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
(<*)
instance Apply Generics.V1 where
  V1 (a -> b)
e <.> :: forall a b. V1 (a -> b) -> V1 a -> V1 b
<.> V1 a
_ = case V1 (a -> b)
e of {}
class Apply m => Bind m where
  (>>-) :: m a -> (a -> m b) -> m b
  m a
m >>- a -> m b
f = forall (m :: * -> *) a. Bind m => m (m a) -> m a
join (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> m b
f m a
m)
  join :: m (m a) -> m a
  join = (forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id)
  {-# MINIMAL (>>-) | join #-}
returning :: Functor f => f a -> (a -> b) -> f b
returning :: forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
returning = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
apDefault :: Bind f => f (a -> b) -> f a -> f b
apDefault :: forall (f :: * -> *) a b. Bind f => f (a -> b) -> f a -> f b
apDefault f (a -> b)
f f a
x = f (a -> b)
f forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \a -> b
f' -> a -> b
f' forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a
x
instance Semigroup m => Bind ((,) m) where
  ~(m
m, a
a) >>- :: forall a b. (m, a) -> (a -> (m, b)) -> (m, b)
>>- a -> (m, b)
f = let (m
n, b
b) = a -> (m, b)
f a
a in (m
m forall a. Semigroup a => a -> a -> a
<> m
n, b
b)
#ifdef MIN_VERSION_tagged
instance Bind (Tagged a) where
  Tagged a
a >>- :: forall a b. Tagged a a -> (a -> Tagged a b) -> Tagged a b
>>- a -> Tagged a b
f = a -> Tagged a b
f a
a
  join :: forall a. Tagged a (Tagged a a) -> Tagged a a
join (Tagged Tagged a a
a) = Tagged a a
a
#endif
instance Bind Proxy where
  Proxy a
_ >>- :: forall a b. Proxy a -> (a -> Proxy b) -> Proxy b
>>- a -> Proxy b
_ = forall {k} (t :: k). Proxy t
Proxy
  join :: forall a. Proxy (Proxy a) -> Proxy a
join Proxy (Proxy a)
_ = forall {k} (t :: k). Proxy t
Proxy
instance Bind (Either a) where
  Left a
a  >>- :: forall a b. Either a a -> (a -> Either a b) -> Either a b
>>- a -> Either a b
_ = forall a b. a -> Either a b
Left a
a
  Right a
a >>- a -> Either a b
f = a -> Either a b
f a
a
instance (Bind f, Bind g) => Bind (Functor.Product f g) where
  Functor.Pair f a
m g a
n >>- :: forall a b. Product f g a -> (a -> Product f g b) -> Product f g b
>>- a -> Product f g b
f = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Functor.Pair (f a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {f :: * -> *} {g :: * -> *} {a}. Product f g a -> f a
fstP forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Product f g b
f) (g a
n forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {f :: * -> *} {g :: * -> *} {a}. Product f g a -> g a
sndP forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Product f g b
f) where
    fstP :: Product f g a -> f a
fstP (Functor.Pair f a
a g a
_) = f a
a
    sndP :: Product f g a -> g a
sndP (Functor.Pair f a
_ g a
b) = g a
b
instance Bind ((->)m) where
  m -> a
f >>- :: forall a b. (m -> a) -> (a -> m -> b) -> m -> b
>>- a -> m -> b
g = \m
e -> a -> m -> b
g (m -> a
f m
e) m
e
instance Bind [] where
  >>- :: forall a b. [a] -> (a -> [b]) -> [b]
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind NonEmpty where
  >>- :: forall a b. NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind IO where
  >>- :: forall a b. IO a -> (a -> IO b) -> IO b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Maybe where
  >>- :: forall a b. Maybe a -> (a -> Maybe b) -> Maybe b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
#if !(MIN_VERSION_base(4,16,0))
instance Bind Option where
  (>>-) = (>>=)
#endif
instance Bind Identity where
  >>- :: forall a b. Identity a -> (a -> Identity b) -> Identity b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Q where
  >>- :: forall a b. Q a -> (a -> Q b) -> Q b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind m => Bind (IdentityT m) where
  IdentityT m a
m >>- :: forall a b. IdentityT m a -> (a -> IdentityT m b) -> IdentityT m b
>>- a -> IdentityT m b
f = forall {k} (f :: k -> *) (a :: k). f a -> IdentityT f a
IdentityT (m a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {k} (f :: k -> *) (a :: k). IdentityT f a -> f a
runIdentityT forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> IdentityT m b
f)
instance Monad m => Bind (WrappedMonad m) where
  WrapMonad m a
m >>- :: forall a b.
WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b
>>- a -> WrappedMonad m b
f = forall (m :: * -> *) a. m a -> WrappedMonad m a
WrapMonad forall a b. (a -> b) -> a -> b
$ m a
m forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall (m :: * -> *) a. WrappedMonad m a -> m a
unwrapMonad forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> WrappedMonad m b
f
instance (Functor m, Monad m) => Bind (MaybeT m) where
  >>- :: forall a b. MaybeT m a -> (a -> MaybeT m b) -> MaybeT m b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=) 
#if !(MIN_VERSION_transformers(0,6,0))
instance (Apply m, Monad m) => Bind (ListT m) where
  >>- :: forall a b. ListT m a -> (a -> ListT m b) -> ListT m b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=) 
instance (Functor m, Monad m) => Bind (ErrorT e m) where
  ErrorT e m a
m >>- :: forall a b. ErrorT e m a -> (a -> ErrorT e m b) -> ErrorT e m b
>>- a -> ErrorT e m b
k = forall e (m :: * -> *) a. m (Either e a) -> ErrorT e m a
ErrorT forall a b. (a -> b) -> a -> b
$ do
    Either e a
a <- forall e (m :: * -> *) a. ErrorT e m a -> m (Either e a)
runErrorT ErrorT e m a
m
    case Either e a
a of
      Left e
l -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. a -> Either a b
Left e
l)
      Right a
r -> forall e (m :: * -> *) a. ErrorT e m a -> m (Either e a)
runErrorT (a -> ErrorT e m b
k a
r)
#endif
instance (Functor m, Monad m) => Bind (ExceptT e m) where
  ExceptT e m a
m >>- :: forall a b. ExceptT e m a -> (a -> ExceptT e m b) -> ExceptT e m b
>>- a -> ExceptT e m b
k = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
ExceptT forall a b. (a -> b) -> a -> b
$ do
    Either e a
a <- forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT ExceptT e m a
m
    case Either e a
a of
      Left e
l -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall a b. a -> Either a b
Left e
l)
      Right a
r -> forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT (a -> ExceptT e m b
k a
r)
instance Bind m => Bind (ReaderT e m) where
  ReaderT e -> m a
m >>- :: forall a b. ReaderT e m a -> (a -> ReaderT e m b) -> ReaderT e m b
>>- a -> ReaderT e m b
f = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT forall a b. (a -> b) -> a -> b
$ \e
e -> e -> m a
m e
e forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \a
x -> forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT (a -> ReaderT e m b
f a
x) e
e
instance (Bind m, Semigroup w) => Bind (Lazy.WriterT w m) where
  WriterT w m a
m >>- :: forall a b. WriterT w m a -> (a -> WriterT w m b) -> WriterT w m b
>>- a -> WriterT w m b
k = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Lazy.WriterT forall a b. (a -> b) -> a -> b
$
    forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Lazy.runWriterT WriterT w m a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ ~(a
a, w
w) ->
    forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Lazy.runWriterT (a -> WriterT w m b
k a
a) forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
`returning` \ ~(b
b, w
w') ->
      (b
b, w
w forall a. Semigroup a => a -> a -> a
<> w
w')
instance (Bind m, Semigroup w) => Bind (Strict.WriterT w m) where
  WriterT w m a
m >>- :: forall a b. WriterT w m a -> (a -> WriterT w m b) -> WriterT w m b
>>- a -> WriterT w m b
k = forall w (m :: * -> *) a. m (a, w) -> WriterT w m a
Strict.WriterT forall a b. (a -> b) -> a -> b
$
    forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Strict.runWriterT WriterT w m a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ (a
a, w
w) ->
    forall w (m :: * -> *) a. WriterT w m a -> m (a, w)
Strict.runWriterT (a -> WriterT w m b
k a
a) forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
`returning` \ (b
b, w
w') ->
      (b
b, w
w forall a. Semigroup a => a -> a -> a
<> w
w')
#if MIN_VERSION_transformers(0,5,6)
instance (Bind m) => Bind (CPS.WriterT w m) where
  WriterT w m a
m >>- :: forall a b. WriterT w m a -> (a -> WriterT w m b) -> WriterT w m b
>>- a -> WriterT w m b
k = forall w (m :: * -> *) a. (w -> m (a, w)) -> WriterT w m a
mkWriterT forall a b. (a -> b) -> a -> b
$ \ w
w ->
    forall w (m :: * -> *) a. WriterT w m a -> w -> m (a, w)
unWriterT WriterT w m a
m w
w forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \(a
a, w
w') -> forall w (m :: * -> *) a. WriterT w m a -> w -> m (a, w)
unWriterT (a -> WriterT w m b
k a
a) w
w'
#endif
instance Bind m => Bind (Lazy.StateT s m) where
  StateT s m a
m >>- :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b
>>- a -> StateT s m b
k = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Lazy.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
    forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Lazy.runStateT StateT s m a
m s
s forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ ~(a
a, s
s') ->
    forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Lazy.runStateT (a -> StateT s m b
k a
a) s
s'
instance Bind m => Bind (Strict.StateT s m) where
  StateT s m a
m >>- :: forall a b. StateT s m a -> (a -> StateT s m b) -> StateT s m b
>>- a -> StateT s m b
k = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT forall a b. (a -> b) -> a -> b
$ \s
s ->
    forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Strict.runStateT StateT s m a
m s
s forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ ~(a
a, s
s') ->
    forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
Strict.runStateT (a -> StateT s m b
k a
a) s
s'
instance (Bind m, Semigroup w) => Bind (Lazy.RWST r w s m) where
  RWST r w s m a
m >>- :: forall a b.
RWST r w s m a -> (a -> RWST r w s m b) -> RWST r w s m b
>>- a -> RWST r w s m b
k = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Lazy.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Lazy.runRWST RWST r w s m a
m r
r s
s forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ ~(a
a, s
s', w
w) ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Lazy.runRWST (a -> RWST r w s m b
k a
a) r
r s
s' forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
`returning` \ ~(b
b, s
s'', w
w') ->
      (b
b, s
s'', w
w forall a. Semigroup a => a -> a -> a
<> w
w')
instance (Bind m, Semigroup w) => Bind (Strict.RWST r w s m) where
  RWST r w s m a
m >>- :: forall a b.
RWST r w s m a -> (a -> RWST r w s m b) -> RWST r w s m b
>>- a -> RWST r w s m b
k = forall r w s (m :: * -> *) a.
(r -> s -> m (a, s, w)) -> RWST r w s m a
Strict.RWST forall a b. (a -> b) -> a -> b
$ \r
r s
s ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Strict.runRWST RWST r w s m a
m r
r s
s forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \ (a
a, s
s', w
w) ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> m (a, s, w)
Strict.runRWST (a -> RWST r w s m b
k a
a) r
r s
s' forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
`returning` \ (b
b, s
s'', w
w') ->
      (b
b, s
s'', w
w forall a. Semigroup a => a -> a -> a
<> w
w')
#if MIN_VERSION_transformers(0,5,6)
instance (Bind m) => Bind (CPS.RWST r w s m) where
  RWST r w s m a
m >>- :: forall a b.
RWST r w s m a -> (a -> RWST r w s m b) -> RWST r w s m b
>>- a -> RWST r w s m b
k = forall r s w (m :: * -> *) a.
(r -> s -> w -> m (a, s, w)) -> RWST r w s m a
mkRWST forall a b. (a -> b) -> a -> b
$ \ r
r s
s w
w ->
    forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> w -> m (a, s, w)
unRWST RWST r w s m a
m r
r s
s w
w forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \(a
a, s
s', w
w') -> forall r w s (m :: * -> *) a.
RWST r w s m a -> r -> s -> w -> m (a, s, w)
unRWST (a -> RWST r w s m b
k a
a) r
r s
s' w
w'
#endif
instance Bind (ContT r m) where
  ContT r m a
m >>- :: forall a b. ContT r m a -> (a -> ContT r m b) -> ContT r m b
>>- a -> ContT r m b
k = forall {k} (r :: k) (m :: k -> *) a.
((a -> m r) -> m r) -> ContT r m a
ContT forall a b. (a -> b) -> a -> b
$ \b -> m r
c -> forall {k} (r :: k) (m :: k -> *) a.
ContT r m a -> (a -> m r) -> m r
runContT ContT r m a
m forall a b. (a -> b) -> a -> b
$ \a
a -> forall {k} (r :: k) (m :: k -> *) a.
ContT r m a -> (a -> m r) -> m r
runContT (a -> ContT r m b
k a
a) b -> m r
c
instance Bind Complex where
  (a
a :+ a
b) >>- :: forall a b. Complex a -> (a -> Complex b) -> Complex b
>>- a -> Complex b
f = b
a' forall a. a -> a -> Complex a
:+ b
b' where
    b
a' :+ b
_  = a -> Complex b
f a
a
    b
_  :+ b
b' = a -> Complex b
f a
b
  {-# INLINE (>>-) #-}
#ifdef MIN_VERSION_containers
instance Ord k => Bind (Map k) where
  Map k a
m >>- :: forall a b. Map k a -> (a -> Map k b) -> Map k b
>>- a -> Map k b
f = forall k a b. (k -> a -> Maybe b) -> Map k a -> Map k b
Map.mapMaybeWithKey (\k
k -> forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k
k forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Map k b
f) Map k a
m
instance Bind IntMap where
  IntMap a
m >>- :: forall a b. IntMap a -> (a -> IntMap b) -> IntMap b
>>- a -> IntMap b
f = forall a b. (Key -> a -> Maybe b) -> IntMap a -> IntMap b
IntMap.mapMaybeWithKey (\Key
k -> forall a. Key -> IntMap a -> Maybe a
IntMap.lookup Key
k forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> IntMap b
f) IntMap a
m
instance Bind Seq where
  >>- :: forall a b. Seq a -> (a -> Seq b) -> Seq b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Tree where
  >>- :: forall a b. Tree a -> (a -> Tree b) -> Tree b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
#endif
#ifdef MIN_VERSION_unordered_containers
instance (Hashable k, Eq k) => Bind (HashMap k) where
  
  HashMap k a
m >>- :: forall a b. HashMap k a -> (a -> HashMap k b) -> HashMap k b
>>- a -> HashMap k b
f = forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
HashMap.fromList forall a b. (a -> b) -> a -> b
$ do
    (k
k, a
a) <- forall k v. HashMap k v -> [(k, v)]
HashMap.toList HashMap k a
m
    case forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup k
k (a -> HashMap k b
f a
a) of
      Just b
b -> [(k
k,b
b)]
      Maybe b
Nothing -> []
#endif
instance Bind Down where Down a
a >>- :: forall a b. Down a -> (a -> Down b) -> Down b
>>- a -> Down b
f = a -> Down b
f a
a
instance Bind Monoid.Sum where >>- :: forall a b. Sum a -> (a -> Sum b) -> Sum b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Monoid.Product where >>- :: forall a b. Product a -> (a -> Product b) -> Product b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Monoid.Dual where >>- :: forall a b. Dual a -> (a -> Dual b) -> Dual b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Monoid.First where >>- :: forall a b. First a -> (a -> First b) -> First b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Monoid.Last where >>- :: forall a b. Last a -> (a -> Last b) -> Last b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind f => Bind (Monoid.Alt f) where
  Monoid.Alt f a
m >>- :: forall a b. Alt f a -> (a -> Alt f b) -> Alt f b
>>- a -> Alt f b
k = forall {k} (f :: k -> *) (a :: k). f a -> Alt f a
Monoid.Alt (f a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {k} (f :: k -> *) (a :: k). Alt f a -> f a
Monoid.getAlt forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> Alt f b
k)
instance Bind Semigroup.First where >>- :: forall a b. First a -> (a -> First b) -> First b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Semigroup.Last where >>- :: forall a b. Last a -> (a -> Last b) -> Last b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Semigroup.Min where >>- :: forall a b. Min a -> (a -> Min b) -> Min b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Semigroup.Max where >>- :: forall a b. Max a -> (a -> Max b) -> Max b
(>>-) = forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind Generics.V1 where
  V1 a
m >>- :: forall a b. V1 a -> (a -> V1 b) -> V1 b
>>- a -> V1 b
_ = case V1 a
m of {}
instance Bind Generics.U1 where >>- :: forall a b. U1 a -> (a -> U1 b) -> U1 b
(>>-)=forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
instance Bind f => Bind (Generics.M1 i c f) where
  M1 f a
m >>- :: forall a b. M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b
>>- a -> M1 i c f b
f = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 forall a b. (a -> b) -> a -> b
$ f a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \a
a -> case a -> M1 i c f b
f a
a of
    M1 f b
m' -> f b
m'
instance Bind m => Bind (Generics.Rec1 m) where
  Rec1 m a
m >>- :: forall a b. Rec1 m a -> (a -> Rec1 m b) -> Rec1 m b
>>- a -> Rec1 m b
f = forall k (f :: k -> *) (p :: k). f p -> Rec1 f p
Rec1 forall a b. (a -> b) -> a -> b
$ m a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- \a
a -> case a -> Rec1 m b
f a
a of
    Rec1 m b
m' -> m b
m'
instance Bind Generics.Par1 where
  Par1 a
m >>- :: forall a b. Par1 a -> (a -> Par1 b) -> Par1 b
>>- a -> Par1 b
f = a -> Par1 b
f a
m
instance (Bind f, Bind g) => Bind (f :*: g) where
  f a
m :*: g a
n >>- :: forall a b. (:*:) f g a -> (a -> (:*:) f g b) -> (:*:) f g b
>>- a -> (:*:) f g b
f = (f a
m forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {f :: * -> *} {g :: * -> *} {p}. (:*:) f g p -> f p
fstP forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> (:*:) f g b
f) forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (g a
n forall (m :: * -> *) a b. Bind m => m a -> (a -> m b) -> m b
>>- forall {f :: * -> *} {g :: * -> *} {p}. (:*:) f g p -> g p
sndP forall {k} (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> (:*:) f g b
f) where
    fstP :: (:*:) f g p -> f p
fstP (f p
a :*: g p
_) = f p
a
    sndP :: (:*:) f g p -> g p
sndP (f p
_ :*: g p
b) = g p
b
infixl 4 <<.>>, <<., .>>
class Bifunctor p => Biapply p where
  (<<.>>) :: p (a -> b) (c -> d) -> p a c -> p b d
  
  
  
  
  (.>>) :: p a b -> p c d -> p c d
  p a b
a .>> p c d
b = forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap (forall a b. a -> b -> a
const forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id) (forall a b. a -> b -> a
const forall {k} (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id) forall a b. (a -> b) -> a -> b
<<$>> p a b
a forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p c d
b
  {-# INLINE (.>>) #-}
  
  
  
  
  (<<.) :: p a b -> p c d -> p a b
  p a b
a <<. p c d
b = forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap forall a b. a -> b -> a
const forall a b. a -> b -> a
const forall a b. (a -> b) -> a -> b
<<$>> p a b
a forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p c d
b
  {-# INLINE (<<.) #-}
instance Biapply (,) where
  (a -> b
f, c -> d
g) <<.>> :: forall a b c d. (a -> b, c -> d) -> (a, c) -> (b, d)
<<.>> (a
a, c
b) = (a -> b
f a
a, c -> d
g c
b)
  {-# INLINE (<<.>>) #-}
instance Biapply Arg where
  Arg a -> b
f c -> d
g <<.>> :: forall a b c d. Arg (a -> b) (c -> d) -> Arg a c -> Arg b d
<<.>> Arg a
a c
b = forall a b. a -> b -> Arg a b
Arg (a -> b
f a
a) (c -> d
g c
b)
  {-# INLINE (<<.>>) #-}
instance Semigroup x => Biapply ((,,) x) where
  (x
x, a -> b
f, c -> d
g) <<.>> :: forall a b c d. (x, a -> b, c -> d) -> (x, a, c) -> (x, b, d)
<<.>> (x
x', a
a, c
b) = (x
x forall a. Semigroup a => a -> a -> a
<> x
x', a -> b
f a
a, c -> d
g c
b)
  {-# INLINE (<<.>>) #-}
instance (Semigroup x, Semigroup y) => Biapply ((,,,) x y) where
  (x
x, y
y, a -> b
f, c -> d
g) <<.>> :: forall a b c d.
(x, y, a -> b, c -> d) -> (x, y, a, c) -> (x, y, b, d)
<<.>> (x
x', y
y', a
a, c
b) = (x
x forall a. Semigroup a => a -> a -> a
<> x
x', y
y forall a. Semigroup a => a -> a -> a
<> y
y', a -> b
f a
a, c -> d
g c
b)
  {-# INLINE (<<.>>) #-}
instance (Semigroup x, Semigroup y, Semigroup z) => Biapply ((,,,,) x y z) where
  (x
x, y
y, z
z, a -> b
f, c -> d
g) <<.>> :: forall a b c d.
(x, y, z, a -> b, c -> d) -> (x, y, z, a, c) -> (x, y, z, b, d)
<<.>> (x
x', y
y', z
z', a
a, c
b) = (x
x forall a. Semigroup a => a -> a -> a
<> x
x', y
y forall a. Semigroup a => a -> a -> a
<> y
y', z
z forall a. Semigroup a => a -> a -> a
<> z
z', a -> b
f a
a, c -> d
g c
b)
  {-# INLINE (<<.>>) #-}
instance Biapply Const where
  Const a -> b
f <<.>> :: forall a b c d. Const (a -> b) (c -> d) -> Const a c -> Const b d
<<.>> Const a
x = forall {k} a (b :: k). a -> Const a b
Const (a -> b
f a
x)
  {-# INLINE (<<.>>) #-}
#ifdef MIN_VERSION_tagged
instance Biapply Tagged where
  Tagged c -> d
f <<.>> :: forall a b c d.
Tagged (a -> b) (c -> d) -> Tagged a c -> Tagged b d
<<.>> Tagged c
x = forall {k} (s :: k) b. b -> Tagged s b
Tagged (c -> d
f c
x)
  {-# INLINE (<<.>>) #-}
#endif
instance (Biapply p, Apply f, Apply g) => Biapply (Biff p f g) where
  Biff p (f (a -> b)) (g (c -> d))
fg <<.>> :: forall a b c d.
Biff p f g (a -> b) (c -> d) -> Biff p f g a c -> Biff p f g b d
<<.>> Biff p (f a) (g c)
xy = forall {k} {k1} {k2} {k3} (p :: k -> k1 -> *) (f :: k2 -> k)
       (g :: k3 -> k1) (a :: k2) (b :: k3).
p (f a) (g b) -> Biff p f g a b
Biff (forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
(<.>) p (f (a -> b)) (g (c -> d))
fg forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p (f a) (g c)
xy)
  {-# INLINE (<<.>>) #-}
instance Apply f => Biapply (Clown f) where
  Clown f (a -> b)
fg <<.>> :: forall a b c d.
Clown f (a -> b) (c -> d) -> Clown f a c -> Clown f b d
<<.>> Clown f a
xy = forall {k} {k1} (f :: k -> *) (a :: k) (b :: k1).
f a -> Clown f a b
Clown (f (a -> b)
fg forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f a
xy)
  {-# INLINE (<<.>>) #-}
instance Biapply p => Biapply (Flip p) where
  Flip p (c -> d) (a -> b)
fg <<.>> :: forall a b c d.
Flip p (a -> b) (c -> d) -> Flip p a c -> Flip p b d
<<.>> Flip p c a
xy = forall {k} {k1} (p :: k -> k1 -> *) (a :: k1) (b :: k).
p b a -> Flip p a b
Flip (p (c -> d) (a -> b)
fg forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p c a
xy)
  {-# INLINE (<<.>>) #-}
instance Apply g => Biapply (Joker g) where
  Joker g (c -> d)
fg <<.>> :: forall a b c d.
Joker g (a -> b) (c -> d) -> Joker g a c -> Joker g b d
<<.>> Joker g c
xy = forall {k} {k1} (g :: k -> *) (a :: k1) (b :: k).
g b -> Joker g a b
Joker (g (c -> d)
fg forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> g c
xy)
  {-# INLINE (<<.>>) #-}
instance Biapply p => Apply (Join p) where
  Join p (a -> b) (a -> b)
f <.> :: forall a b. Join p (a -> b) -> Join p a -> Join p b
<.> Join p a a
a = forall {k} (p :: k -> k -> *) (a :: k). p a a -> Join p a
Join (p (a -> b) (a -> b)
f forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p a a
a)
  {-# INLINE (<.>) #-}
  Join p a a
a .> :: forall a b. Join p a -> Join p b -> Join p b
.> Join p b b
b = forall {k} (p :: k -> k -> *) (a :: k). p a a -> Join p a
Join (p a a
a forall (p :: * -> * -> *) a b c d.
Biapply p =>
p a b -> p c d -> p c d
.>> p b b
b)
  {-# INLINE (.>) #-}
  Join p a a
a <. :: forall a b. Join p a -> Join p b -> Join p a
<. Join p b b
b = forall {k} (p :: k -> k -> *) (a :: k). p a a -> Join p a
Join (p a a
a forall (p :: * -> * -> *) a b c d.
Biapply p =>
p a b -> p c d -> p a b
<<. p b b
b)
  {-# INLINE (<.) #-}
instance (Biapply p, Biapply q) => Biapply (Bifunctor.Product p q) where
  Bifunctor.Pair p (a -> b) (c -> d)
w q (a -> b) (c -> d)
x <<.>> :: forall a b c d.
Product p q (a -> b) (c -> d) -> Product p q a c -> Product p q b d
<<.>> Bifunctor.Pair p a c
y q a c
z = forall {k} {k1} (f :: k -> k1 -> *) (g :: k -> k1 -> *) (a :: k)
       (b :: k1).
f a b -> g a b -> Product f g a b
Bifunctor.Pair (p (a -> b) (c -> d)
w forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p a c
y) (q (a -> b) (c -> d)
x forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> q a c
z)
  {-# INLINE (<<.>>) #-}
instance (Apply f, Biapply p) => Biapply (Tannen f p) where
  Tannen f (p (a -> b) (c -> d))
fg <<.>> :: forall a b c d.
Tannen f p (a -> b) (c -> d) -> Tannen f p a c -> Tannen f p b d
<<.>> Tannen f (p a c)
xy = forall {k} {k1} {k2} (f :: k -> *) (p :: k1 -> k2 -> k) (a :: k1)
       (b :: k2).
f (p a b) -> Tannen f p a b
Tannen (forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
(<<.>>) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (p (a -> b) (c -> d))
fg forall (f :: * -> *) a b. Apply f => f (a -> b) -> f a -> f b
<.> f (p a c)
xy)
  {-# INLINE (<<.>>) #-}
instance Biapply p => Biapply (WrappedBifunctor p) where
  WrapBifunctor p (a -> b) (c -> d)
fg <<.>> :: forall a b c d.
WrappedBifunctor p (a -> b) (c -> d)
-> WrappedBifunctor p a c -> WrappedBifunctor p b d
<<.>> WrapBifunctor p a c
xy = forall {k} {k1} (p :: k -> k1 -> *) (a :: k) (b :: k1).
p a b -> WrappedBifunctor p a b
WrapBifunctor (p (a -> b) (c -> d)
fg forall (p :: * -> * -> *) a b c d.
Biapply p =>
p (a -> b) (c -> d) -> p a c -> p b d
<<.>> p a c
xy)
  {-# INLINE (<<.>>) #-}