License | MIT |
---|---|

Maintainer | mail@doisinkidney.com |

Stability | experimental |

Safe Haskell | None |

Language | Haskell2010 |

This module provides functions which can be quickly converted into smallcheck or QuickCheck-like properties. The functions are of the form:

a -> Either String String

where the left case is failure of the test, and the right case is success.

For smallcheck, this function can be used directly as a property:

smallCheck 10 (plusId :: UnaryLaws Integer)

(the typealias is provided as well)

For QuickCheck, you might want to provide an instance like this:

instance Testable (Either String String) where property = either (`counterexample` False) (const (property True))

And then testing is as simple as:

quickCheck (plusAssoc :: TernaryLaws Integer)

There are also functions provided to test multiple laws at once. Putting all of
this together, writing a test for all the semiring laws for, say, `Integer`

looks like this:

quickCheck (unaryLaws :: UnaryLaws Integer) quickCheck (binaryLaws :: BinaryLaws Integer) quickCheck (ternaryLaws :: TernaryLaws Integer)

- type UnaryLaws a = a -> Either String String
- type BinaryLaws a = a -> a -> Either String String
- type TernaryLaws a = a -> a -> a -> Either String String
- plusId :: (Eq a, Semiring a, Show a) => a -> Either String String
- mulId :: (Eq a, Semiring a, Show a) => a -> Either String String
- annihilateL :: (Eq a, Semiring a, Show a) => a -> Either String String
- annihilateR :: (Eq a, Semiring a, Show a) => a -> Either String String
- unaryLaws :: (Eq a, Semiring a, Show a) => a -> Either String String
- plusComm :: (Eq a, Semiring a, Show a) => a -> a -> Either String String
- binaryLaws :: (Eq a, Semiring a, Show a) => a -> a -> Either String String
- plusAssoc :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- mulAssoc :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- mulDistribL :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- mulDistribR :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- ternaryLaws :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- nearUnaryLaws :: (Eq a, Semiring a, Show a) => a -> Either String String
- nearTernaryLaws :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String
- starLaw :: (Eq a, StarSemiring a, Show a) => a -> Either String String
- plusLaw :: (Eq a, StarSemiring a, Show a) => a -> Either String String
- starLaws :: (Eq a, StarSemiring a, Show a) => a -> Either String String
- zeroLaw :: (Eq a, DetectableZero a, Show a) => a -> Either String String
- zeroIsZero :: (DetectableZero a, Show a) => f a -> Either String String
- zeroLaws :: (DetectableZero a, Show a, Eq a) => a -> Either String String
- ordMulLaw :: (Ord a, Semiring a, Show a) => a -> a -> a -> Either String String
- ordAddLaw :: (Ord a, Semiring a, Show a) => a -> a -> a -> Either String String
- ordLaws :: (Ord a, Semiring a, Show a) => a -> a -> a -> Either String String

# Type Aliases

type UnaryLaws a = a -> Either String String Source #

Typealias for unary laws. Can be used like so:

smallCheck 10 (unaryLaws :: UnaryLaws Int)

type BinaryLaws a = a -> a -> Either String String Source #

Typealias for binary laws. Can be used like so:

smallCheck 8 (binaryLaws :: BinaryLaws Int)

type TernaryLaws a = a -> a -> a -> Either String String Source #

Typealias for ternary laws. Can be used like so:

smallCheck 6 (ternaryLaws :: TernaryLaws Int)

# Semiring Laws

## Unary

unaryLaws :: (Eq a, Semiring a, Show a) => a -> Either String String Source #

A test for all three unary laws for `Semiring`

s (`plusId`

, `mulId`

,
`annihilateL`

, and `annihilateR`

).

## Binary

## Ternary

ternaryLaws :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String Source #

A test for all of the ternary laws for `Semiring`

s (`plusAssoc`

, `mulAssoc`

,
`mulDistribL`

, `mulDistribR`

).

# Near-semiring laws

## Unary

nearUnaryLaws :: (Eq a, Semiring a, Show a) => a -> Either String String Source #

A test for the unary laws for near-`Semiring`

s (`plusId`

, `mulId`

, and
`annihilateR`

).

## Ternary

nearTernaryLaws :: (Eq a, Semiring a, Show a) => a -> a -> a -> Either String String Source #

A test for all of the ternary laws for near-`Semiring`

s (`plusAssoc`

,
`mulAssoc`

, `mulDistribR`

).

# StarSemiring Laws

## Unary

plusLaw :: (Eq a, StarSemiring a, Show a) => a -> Either String String Source #

The plus law for `StarSemiring`

s.

`plus`

x = x`<.>`

`star`

x

starLaws :: (Eq a, StarSemiring a, Show a) => a -> Either String String Source #

The laws for `StarSemiring`

s (`starLaw`

, `plusLaw`

).

# DetectableZero Laws

## Unary

zeroIsZero :: (DetectableZero a, Show a) => f a -> Either String String Source #

zeroLaws :: (DetectableZero a, Show a, Eq a) => a -> Either String String Source #

The laws for `DetectableZero`

`Semiring`

s (`zeroLaw`

, `zeroIsZero`

).