{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
#if MIN_VERSION_base(4,7,0) && !MIN_VERSION_base(4,8,0)
{-# LANGUAGE UndecidableInstances #-}
#endif
module Data.Semiring
(
Semiring(..)
, (+)
, (*)
, (^)
, foldMapP
, foldMapT
, sum
, product
, sum'
, product'
, isZero
, isOne
, Add(..)
, Mul(..)
, WrappedNum(..)
, Mod2(..)
#if defined(VERSION_containers) && MIN_VERSION_base(4,7,0)
, IntSetOf(..)
, IntMapOf(..)
#endif
, Ring(..)
, (-)
, minus
) where
import Control.Applicative (Applicative(..), Const(..), liftA2)
import Data.Bool (Bool(..), (||), (&&), otherwise)
#if MIN_VERSION_base(4,7,0)
import Data.Coerce (Coercible, coerce)
#endif
import Data.Complex (Complex(..))
import Data.Eq (Eq(..))
import Data.Fixed (Fixed, HasResolution)
import Data.Foldable (Foldable(foldMap))
import qualified Data.Foldable as Foldable
import Data.Function ((.), const, id)
#if defined(VERSION_unordered_containers) || defined(VERSION_containers)
import Data.Function (flip)
#endif
import Data.Functor (Functor(..))
#if MIN_VERSION_base(4,12,0)
import Data.Functor.Contravariant (Predicate(..), Equivalence(..), Op(..))
#endif
import Data.Functor.Identity (Identity(..))
#if defined(VERSION_unordered_containers)
import Data.Hashable (Hashable)
import Data.HashMap.Strict (HashMap)
import qualified Data.HashMap.Strict as HashMap
import Data.HashSet (HashSet)
import qualified Data.HashSet as HashSet
#endif
import Data.Int (Int, Int8, Int16, Int32, Int64)
import Data.Maybe (Maybe(..))
#if MIN_VERSION_base(4,12,0)
import Data.Monoid (Ap(..))
#endif
#if defined(VERSION_containers)
#if MIN_VERSION_base(4,7,0)
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.IntSet (IntSet)
import qualified Data.IntSet as IntSet
#endif
import Data.Map (Map)
import qualified Data.Map as Map
#endif
import Data.Monoid (Monoid(..), Dual(..))
import Data.Ord (Ord((<)))
#if MIN_VERSION_base(4,6,0)
import Data.Ord (Down(..))
#endif
import Data.Proxy (Proxy(..))
import Data.Ratio (Ratio, Rational, (%))
import Data.Semigroup (Semigroup(..))
#if defined(VERSION_containers)
import Data.Set (Set)
import qualified Data.Set as Set
#endif
import Data.Traversable (Traversable)
import Data.Typeable (Typeable)
import Data.Word (Word, Word8, Word16, Word32, Word64)
import Foreign.C.Types
(CChar, CClock, CDouble, CFloat, CInt,
CIntMax, CIntPtr, CLLong, CLong,
CPtrdiff, CSChar, CSUSeconds, CShort,
CSigAtomic, CSize, CTime, CUChar, CUInt,
CUIntMax, CUIntPtr, CULLong, CULong,
CUSeconds, CUShort, CWchar)
import Foreign.Ptr (IntPtr, WordPtr)
import Foreign.Storable (Storable)
import GHC.Enum (Enum, Bounded)
import GHC.Err (error)
import GHC.Float (Float, Double)
#if MIN_VERSION_base(4,6,1)
import GHC.Generics (Generic,Generic1)
#endif
import GHC.IO (IO)
import GHC.Integer (Integer)
import qualified GHC.Num as Num
import GHC.Read (Read)
import GHC.Real (Integral, Fractional, Real, RealFrac, fromIntegral)
import GHC.Show (Show)
import Numeric.Natural (Natural)
#ifdef mingw32_HOST_OS
#define HOST_OS_WINDOWS 1
#else
#define HOST_OS_WINDOWS 0
#endif
#if !HOST_OS_WINDOWS
import System.Posix.Types
(CCc, CDev, CGid, CIno, CMode, CNlink,
COff, CPid, CRLim, CSpeed, CSsize,
CTcflag, CUid, Fd)
#endif
infixl 7 *, `times`
infixl 6 +, `plus`, -, `minus`
infixr 8 ^
{-# SPECIALISE [1] (^) ::
Integer -> Integer -> Integer,
Integer -> Int -> Integer,
Int -> Int -> Int #-}
{-# INLINABLE [1] (^) #-}
(^) :: (Semiring a, Integral b) => a -> b -> a
x ^ y
| y < 0 = error "Data.Semiring.^: negative power"
| y == 0 = one
| otherwise = getMul (stimes y (Mul x))
{-# RULES
"^0/Int" forall x. x ^ (0 :: Int) = one
"^1/Int" forall x. x ^ (1 :: Int) = let u = x in u
"^2/Int" forall x. x ^ (2 :: Int) = let u = x in u*u
"^3/Int" forall x. x ^ (3 :: Int) = let u = x in u*u*u
"^4/Int" forall x. x ^ (4 :: Int) = let u = x in u*u*u*u
"^5/Int" forall x. x ^ (5 :: Int) = let u = x in u*u*u*u*u
"^0/Integer" forall x. x ^ (0 :: Integer) = one
"^1/Integer" forall x. x ^ (1 :: Integer) = let u = x in u
"^2/Integer" forall x. x ^ (2 :: Integer) = let u = x in u*u
"^3/Integer" forall x. x ^ (3 :: Integer) = let u = x in u*u*u
"^4/Integer" forall x. x ^ (4 :: Integer) = let u = x in u*u*u*u
"^5/Integer" forall x. x ^ (5 :: Integer) = let u = x in u*u*u*u*u
#-}
(+) :: Semiring a => a -> a -> a
(+) = plus
{-# INLINE (+) #-}
(*) :: Semiring a => a -> a -> a
(*) = times
{-# INLINE (*) #-}
(-) :: Ring a => a -> a -> a
(-) = minus
{-# INLINE (-) #-}
foldMapP :: (Foldable t, Semiring s) => (a -> s) -> t a -> s
foldMapP f = Foldable.foldr (plus . f) zero
{-# INLINE foldMapP #-}
foldMapT :: (Foldable t, Semiring s) => (a -> s) -> t a -> s
foldMapT f = Foldable.foldr (times . f) one
{-# INLINE foldMapT #-}
#if MIN_VERSION_base(4,7,0)
infixr 9 #.
(#.) :: Coercible b c => (b -> c) -> (a -> b) -> a -> c
(#.) _ = coerce
sum :: (Foldable t, Semiring a) => t a -> a
sum = getAdd #. foldMap Add
{-# INLINE sum #-}
product :: (Foldable t, Semiring a) => t a -> a
product = getMul #. foldMap Mul
{-# INLINE product #-}
#else
sum :: (Foldable t, Semiring a) => t a -> a
sum = getAdd . foldMap Add
{-# INLINE sum #-}
product :: (Foldable t, Semiring a) => t a -> a
product = getMul . foldMap Mul
{-# INLINE product #-}
#endif
sum' :: (Foldable t, Semiring a) => t a -> a
sum' = Foldable.foldl' plus zero
{-# INLINE sum' #-}
product' :: (Foldable t, Semiring a) => t a -> a
product' = Foldable.foldl' times one
{-# INLINE product' #-}
newtype Add a = Add { getAdd :: a }
deriving
( Bounded
, Enum
, Eq
, Foldable
, Fractional
, Functor
#if MIN_VERSION_base(4,6,1)
, Generic
, Generic1
#endif
, Num.Num
, Ord
, Read
, Real
, RealFrac
, Show
, Storable
, Traversable
, Typeable
)
instance Semiring a => Semigroup (Add a) where
Add a <> Add b = Add (a + b)
stimes n (Add a) = Add (fromNatural (fromIntegral n) * a)
{-# INLINE (<>) #-}
instance Semiring a => Monoid (Add a) where
mempty = Add zero
mappend = (<>)
{-# INLINE mempty #-}
{-# INLINE mappend #-}
newtype Add' a = Add' { getAdd' :: a }
instance Semiring a => Semigroup (Add' a) where
Add' a <> Add' b = Add' (a + b)
newtype Mul a = Mul { getMul :: a }
deriving
( Bounded
, Enum
, Eq
, Foldable
, Fractional
, Functor
#if MIN_VERSION_base(4,6,1)
, Generic
, Generic1
#endif
, Num.Num
, Ord
, Read
, Real
, RealFrac
, Show
, Storable
, Traversable
, Typeable
)
instance Semiring a => Semigroup (Mul a) where
Mul a <> Mul b = Mul (a * b)
{-# INLINE (<>) #-}
instance Semiring a => Monoid (Mul a) where
mempty = Mul one
mappend = (<>)
{-# INLINE mempty #-}
{-# INLINE mappend #-}
newtype WrappedNum a = WrapNum { unwrapNum :: a }
deriving
( Bounded
, Enum
, Eq
, Foldable
, Fractional
, Functor
#if MIN_VERSION_base(4,6,1)
, Generic
, Generic1
#endif
, Num.Num
, Ord
, Read
, Real
, RealFrac
, Show
, Storable
, Traversable
, Typeable
)
instance Num.Num a => Semiring (WrappedNum a) where
plus = (Num.+)
zero = 0
times = (Num.*)
one = 1
fromNatural = fromIntegral
instance Num.Num a => Ring (WrappedNum a) where
negate = Num.negate
newtype Mod2 = Mod2 { getMod2 :: Bool }
deriving
( Bounded
, Enum
, Eq
, Ord
, Read
, Show
#if MIN_VERSION_base(4,6,1)
, Generic
#endif
)
instance Semiring Mod2 where
plus (Mod2 x) (Mod2 y) = Mod2 (x /= y)
times (Mod2 x) (Mod2 y) = Mod2 (x && y)
zero = Mod2 False
one = Mod2 True
instance Ring Mod2 where
negate = id
{-# INLINE negate #-}
class Semiring a where
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL plus, times, (zero, one | fromNatural) #-}
#endif
plus :: a -> a -> a
zero :: a
zero = fromNatural 0
times :: a -> a -> a
one :: a
one = fromNatural 1
fromNatural :: Natural -> a
fromNatural 0 = zero
fromNatural n = getAdd' (stimes n (Add' one))
class Semiring a => Ring a where
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL negate #-}
#endif
negate :: a -> a
minus :: Ring a => a -> a -> a
minus x y = x + negate y
{-# INLINE minus #-}
instance Semiring b => Semiring (a -> b) where
plus f g x = f x `plus` g x
zero = const zero
times f g x = f x `times` g x
one = const one
fromNatural = const . fromNatural
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring b => Ring (a -> b) where
negate f x = negate (f x)
{-# INLINE negate #-}
instance Semiring () where
plus _ _ = ()
zero = ()
times _ _ = ()
one = ()
fromNatural _ = ()
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring () where
negate _ = ()
{-# INLINE negate #-}
instance Semiring (Proxy a) where
plus _ _ = Proxy
zero = Proxy
times _ _ = Proxy
one = Proxy
fromNatural _ = Proxy
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Semiring Bool where
plus = (||)
zero = False
times = (&&)
one = True
fromNatural 0 = False
fromNatural _ = True
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Semiring a => Semiring (Maybe a) where
zero = Nothing
one = Just one
plus Nothing y = y
plus x Nothing = x
plus (Just x) (Just y) = Just (plus x y)
times Nothing _ = Nothing
times _ Nothing = Nothing
times (Just x) (Just y) = Just (times x y)
fromNatural 0 = Nothing
fromNatural n = Just (fromNatural n)
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Semiring a => Semiring (IO a) where
zero = pure zero
one = pure one
plus = liftA2 plus
times = liftA2 times
fromNatural = pure . fromNatural
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring a => Ring (IO a) where
negate = fmap negate
{-# INLINE negate #-}
instance Semiring a => Semiring (Dual a) where
zero = Dual zero
Dual x `plus` Dual y = Dual (y `plus` x)
one = Dual one
Dual x `times` Dual y = Dual (y `times` x)
fromNatural = Dual . fromNatural
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring a => Ring (Dual a) where
negate (Dual x) = Dual (negate x)
{-# INLINE negate #-}
instance Semiring a => Semiring (Const a b) where
zero = Const zero
one = Const one
plus (Const x) (Const y) = Const (x `plus` y)
times (Const x) (Const y) = Const (x `times` y)
fromNatural = Const . fromNatural
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring a => Ring (Const a b) where
negate (Const x) = Const (negate x)
{-# INLINE negate #-}
instance Ring a => Semiring (Complex a) where
zero = zero :+ zero
one = one :+ zero
plus (x :+ y) (x' :+ y') = plus x x' :+ plus y y'
times (x :+ y) (x' :+ y')
= (x * x' - (y * y')) :+ (x * y' + y * x')
fromNatural n = fromNatural n :+ zero
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance Ring a => Ring (Complex a) where
negate (x :+ y) = negate x :+ negate y
{-# INLINE negate #-}
#if MIN_VERSION_base(4,12,0)
instance (Semiring a, Applicative f) => Semiring (Ap f a) where
zero = pure zero
one = pure one
plus = liftA2 plus
times = liftA2 times
fromNatural = pure . fromNatural
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance (Ring a, Applicative f) => Ring (Ap f a) where
negate = fmap negate
{-# INLINE negate #-}
#endif
#if MIN_VERSION_base(4,12,0)
deriving instance Semiring (Predicate a)
deriving instance Semiring a => Semiring (Equivalence a)
deriving instance Semiring a => Semiring (Op a b)
deriving instance Ring a => Ring (Op a b)
#endif
#define deriveSemiring(ty) \
instance Semiring (ty) where { \
zero = 0 \
; one = 1 \
; plus x y = (Num.+) x y \
; times x y = (Num.*) x y \
; fromNatural = fromIntegral \
; {-# INLINE zero #-} \
; {-# INLINE one #-} \
; {-# INLINE plus #-} \
; {-# INLINE times #-} \
; {-# INLINE fromNatural #-} \
}
deriveSemiring(Int)
deriveSemiring(Int8)
deriveSemiring(Int16)
deriveSemiring(Int32)
deriveSemiring(Int64)
deriveSemiring(Integer)
deriveSemiring(Word)
deriveSemiring(Word8)
deriveSemiring(Word16)
deriveSemiring(Word32)
deriveSemiring(Word64)
deriveSemiring(Float)
deriveSemiring(Double)
deriveSemiring(CUIntMax)
deriveSemiring(CIntMax)
deriveSemiring(CUIntPtr)
deriveSemiring(CIntPtr)
deriveSemiring(CSUSeconds)
deriveSemiring(CUSeconds)
deriveSemiring(CTime)
deriveSemiring(CClock)
deriveSemiring(CSigAtomic)
deriveSemiring(CWchar)
deriveSemiring(CSize)
deriveSemiring(CPtrdiff)
deriveSemiring(CDouble)
deriveSemiring(CFloat)
deriveSemiring(CULLong)
deriveSemiring(CLLong)
deriveSemiring(CULong)
deriveSemiring(CLong)
deriveSemiring(CUInt)
deriveSemiring(CInt)
deriveSemiring(CUShort)
deriveSemiring(CShort)
deriveSemiring(CUChar)
deriveSemiring(CSChar)
deriveSemiring(CChar)
deriveSemiring(IntPtr)
deriveSemiring(WordPtr)
#if !HOST_OS_WINDOWS
deriveSemiring(CCc)
deriveSemiring(CDev)
deriveSemiring(CGid)
deriveSemiring(CIno)
deriveSemiring(CMode)
deriveSemiring(CNlink)
deriveSemiring(COff)
deriveSemiring(CPid)
deriveSemiring(CRLim)
deriveSemiring(CSpeed)
deriveSemiring(CSsize)
deriveSemiring(CTcflag)
deriveSemiring(CUid)
deriveSemiring(Fd)
#endif
deriveSemiring(Natural)
instance Integral a => Semiring (Ratio a) where
{-# SPECIALIZE instance Semiring Rational #-}
zero = 0 % 1
one = 1 % 1
plus = (Num.+)
times = (Num.*)
fromNatural n = fromIntegral n % 1
{-# INLINE zero #-}
{-# INLINE one #-}
{-# INLINE plus #-}
{-# INLINE times #-}
{-# INLINE fromNatural #-}
deriving instance Semiring a => Semiring (Identity a)
#if MIN_VERSION_base(4,6,0)
deriving instance Semiring a => Semiring (Down a)
#endif
instance HasResolution a => Semiring (Fixed a) where
zero = 0
one = 1
plus = (Num.+)
times = (Num.*)
fromNatural = fromIntegral
{-# INLINE zero #-}
{-# INLINE one #-}
{-# INLINE plus #-}
{-# INLINE times #-}
{-# INLINE fromNatural #-}
#define deriveRing(ty) \
instance Ring (ty) where { \
negate = Num.negate \
; {-# INLINE negate #-} \
}
deriveRing(Int)
deriveRing(Int8)
deriveRing(Int16)
deriveRing(Int32)
deriveRing(Int64)
deriveRing(Integer)
deriveRing(Word)
deriveRing(Word8)
deriveRing(Word16)
deriveRing(Word32)
deriveRing(Word64)
deriveRing(Float)
deriveRing(Double)
deriveRing(CUIntMax)
deriveRing(CIntMax)
deriveRing(CUIntPtr)
deriveRing(CIntPtr)
deriveRing(CSUSeconds)
deriveRing(CUSeconds)
deriveRing(CTime)
deriveRing(CClock)
deriveRing(CSigAtomic)
deriveRing(CWchar)
deriveRing(CSize)
deriveRing(CPtrdiff)
deriveRing(CDouble)
deriveRing(CFloat)
deriveRing(CULLong)
deriveRing(CLLong)
deriveRing(CULong)
deriveRing(CLong)
deriveRing(CUInt)
deriveRing(CInt)
deriveRing(CUShort)
deriveRing(CShort)
deriveRing(CUChar)
deriveRing(CSChar)
deriveRing(CChar)
deriveRing(IntPtr)
deriveRing(WordPtr)
#if !HOST_OS_WINDOWS
deriveRing(CCc)
deriveRing(CDev)
deriveRing(CGid)
deriveRing(CIno)
deriveRing(CMode)
deriveRing(CNlink)
deriveRing(COff)
deriveRing(CPid)
deriveRing(CRLim)
deriveRing(CSpeed)
deriveRing(CSsize)
deriveRing(CTcflag)
deriveRing(CUid)
deriveRing(Fd)
#endif
instance Integral a => Ring (Ratio a) where
negate = Num.negate
{-# INLINE negate #-}
#if MIN_VERSION_base(4,6,0)
deriving instance Ring a => Ring (Down a)
#endif
deriving instance Ring a => Ring (Identity a)
instance HasResolution a => Ring (Fixed a) where
negate = Num.negate
{-# INLINE negate #-}
#if defined(VERSION_containers)
instance (Ord a, Monoid a) => Semiring (Set a) where
zero = Set.empty
one = Set.singleton mempty
plus = Set.union
times xs ys = Foldable.foldMap (flip Set.map ys . mappend) xs
fromNatural 0 = zero
fromNatural _ = one
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
#if MIN_VERSION_base(4,7,0)
newtype IntSetOf a = IntSetOf { getIntSet :: IntSet }
deriving
( Eq
#if MIN_VERSION_base(4,6,1)
, Generic
, Generic1
#endif
, Ord
, Read
, Show
, Typeable
, Semigroup
, Monoid
)
instance (Coercible Int a, Monoid a) => Semiring (IntSetOf a) where
zero = coerce IntSet.empty
one = coerce IntSet.singleton (mempty :: a)
plus = coerce IntSet.union
xs `times` ys
= coerce IntSet.fromList
[ mappend k l
| k :: a <- coerce IntSet.toList xs
, l :: a <- coerce IntSet.toList ys
]
fromNatural 0 = zero
fromNatural _ = one
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
#endif
instance (Ord k, Monoid k, Semiring v) => Semiring (Map k v) where
zero = Map.empty
one = Map.singleton mempty one
plus = Map.unionWith (+)
xs `times` ys
= Map.fromListWith (+)
[ (mappend k l, v * u)
| (k,v) <- Map.toList xs
, (l,u) <- Map.toList ys
]
fromNatural 0 = zero
fromNatural n = Map.singleton mempty (fromNatural n)
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
#if MIN_VERSION_base(4,7,0)
newtype IntMapOf k v = IntMapOf { getIntMap :: IntMap v }
deriving
( Eq
#if MIN_VERSION_base(4,6,1)
, Generic
, Generic1
#endif
, Ord
, Read
, Show
, Typeable
, Semigroup
, Monoid
)
instance (Coercible Int k, Monoid k, Semiring v) => Semiring (IntMapOf k v) where
zero = coerce (IntMap.empty :: IntMap v)
one = coerce (IntMap.singleton :: Int -> v -> IntMap v) (mempty :: k) (one :: v)
plus = coerce (IntMap.unionWith (+) :: IntMap v -> IntMap v -> IntMap v)
xs `times` ys
= coerce (IntMap.fromListWith (+) :: [(Int, v)] -> IntMap v)
[ (mappend k l, v * u)
| (k :: k, v :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) xs
, (l :: k, u :: v) <- coerce (IntMap.toList :: IntMap v -> [(Int, v)]) ys
]
fromNatural 0 = zero
fromNatural n = coerce (IntMap.singleton :: Int -> v -> IntMap v) (mempty :: k) (fromNatural n :: v)
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
#endif
#endif
#if defined(VERSION_unordered_containers)
instance (Eq a, Hashable a, Monoid a) => Semiring (HashSet a) where
zero = HashSet.empty
one = HashSet.singleton mempty
plus = HashSet.union
times xs ys = Foldable.foldMap (flip HashSet.map ys . mappend) xs
fromNatural 0 = zero
fromNatural _ = one
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
instance (Eq k, Hashable k, Monoid k, Semiring v) => Semiring (HashMap k v) where
zero = HashMap.empty
one = HashMap.singleton mempty one
plus = HashMap.unionWith (+)
xs `times` ys
= HashMap.fromListWith (+)
[ (mappend k l, v * u)
| (k,v) <- HashMap.toList xs
, (l,u) <- HashMap.toList ys
]
fromNatural 0 = zero
fromNatural n = HashMap.singleton mempty (fromNatural n)
{-# INLINE plus #-}
{-# INLINE zero #-}
{-# INLINE times #-}
{-# INLINE one #-}
{-# INLINE fromNatural #-}
#endif
isZero :: (Eq a, Semiring a) => a -> Bool
isZero x = x == zero
{-# INLINEABLE isZero #-}
isOne :: (Eq a, Semiring a) => a -> Bool
isOne x = x == one
{-# INLINEABLE isOne #-}