| Copyright | (C) 2014 Jan Stolarek |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | jan.stolarek@p.lodz.pl |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Promotion.Prelude.Either
Description
Defines promoted functions and datatypes relating to Either,
including a promoted version of all the definitions in Data.Either.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Either. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- either_ :: forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
- type family Either_ a a a :: c
- type family Lefts a :: [a]
- type family Rights a :: [b]
- type family PartitionEithers a :: ([a], [b])
- type family IsLeft a :: Bool
- type family IsRight a :: Bool
- data LeftSym0 l
- type LeftSym1 t = Left t
- data RightSym0 l
- type RightSym1 t = Right t
- data Either_Sym0 l
- data Either_Sym1 l l
- data Either_Sym2 l l l
- type Either_Sym3 t t t = Either_ t t t
- data LeftsSym0 l
- type LeftsSym1 t = Lefts t
- data RightsSym0 l
- type RightsSym1 t = Rights t
- data IsLeftSym0 l
- type IsLeftSym1 t = IsLeft t
- data IsRightSym0 l
- type IsRightSym1 t = IsRight t
Promoted functions from Data.Either
The preceding two definitions are derived from the function either in
Data.Either. The extra underscore is to avoid name clashes with the type
Either.
type family PartitionEithers a :: ([a], [b]) Source
Equations
| PartitionEithers a_1627654348 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let1627654355LeftSym1 a_1627654348)) (Let1627654355RightSym1 a_1627654348))) (Apply (Apply Tuple2Sym0 `[]`) `[]`)) a_1627654348 |
Defunctionalization symbols
data Either_Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) -> *) (Either_Sym0 k k k) Source | |
| type Apply (TyFun (TyFun k2 k1 -> *) (TyFun (Either k k2) k1 -> *) -> *) (TyFun k k1 -> *) (Either_Sym0 k k1 k2) l0 = Either_Sym1 k k1 k2 l0 Source |
data Either_Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) (Either_Sym1 k k k) Source | |
| type Apply (TyFun (Either k1 k) k2 -> *) (TyFun k k2 -> *) (Either_Sym1 k1 k2 k l1) l0 = Either_Sym2 k1 k2 k l1 l0 Source |
data Either_Sym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun (Either k k) k -> *) (Either_Sym2 k k k) Source | |
| type Apply k1 (Either k k2) (Either_Sym2 k k1 k2 l1 l2) l0 = Either_Sym3 k k1 k2 l1 l2 l0 Source |
type Either_Sym3 t t t = Either_ t t t Source
data RightsSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [Either k k] [k] -> *) (RightsSym0 k k) Source | |
| type Apply [k] [Either k1 k] (RightsSym0 k1 k) l0 = RightsSym1 k1 k l0 Source |
type RightsSym1 t = Rights t Source
data IsLeftSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsLeftSym0 k k) Source | |
| type Apply Bool (Either k k1) (IsLeftSym0 k k1) l0 = IsLeftSym1 k k1 l0 Source |
type IsLeftSym1 t = IsLeft t Source
data IsRightSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsRightSym0 k k) Source | |
| type Apply Bool (Either k k1) (IsRightSym0 k k1) l0 = IsRightSym1 k k1 l0 Source |
type IsRightSym1 t = IsRight t Source