| Copyright | (C) 2013-2014 Richard Eisenberg, Jan Stolarek |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | Richard Eisenberg (eir@cis.upenn.edu) |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Singletons.Prelude.Either
Description
Defines functions and datatypes relating to the singleton for Either,
including a singletons version of all the definitions in Data.Either.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Either. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
- data family Sing a
- type SEither = (Sing :: Either a b -> *)
- either_ :: forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
- type family Either_ a a a :: c
- sEither_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c)
- type family Lefts a :: [a]
- sLefts :: forall t. Sing t -> Sing (Apply LeftsSym0 t :: [a])
- type family Rights a :: [b]
- sRights :: forall t. Sing t -> Sing (Apply RightsSym0 t :: [b])
- type family PartitionEithers a :: ([a], [b])
- sPartitionEithers :: forall t. Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b]))
- type family IsLeft a :: Bool
- sIsLeft :: forall t. Sing t -> Sing (Apply IsLeftSym0 t :: Bool)
- type family IsRight a :: Bool
- sIsRight :: forall t. Sing t -> Sing (Apply IsRightSym0 t :: Bool)
- data LeftSym0 l
- type LeftSym1 t = Left t
- data RightSym0 l
- type RightSym1 t = Right t
- data Either_Sym0 l
- data Either_Sym1 l l
- data Either_Sym2 l l l
- type Either_Sym3 t t t = Either_ t t t
- data LeftsSym0 l
- type LeftsSym1 t = Lefts t
- data RightsSym0 l
- type RightsSym1 t = Rights t
- data IsLeftSym0 l
- type IsLeftSym1 t = IsLeft t
- data IsRightSym0 l
- type IsRightSym1 t = IsRight t
The Either singleton
The singleton kind-indexed data family.
Instances
| data Sing Bool where Source | |
| data Sing Ordering where Source | |
| data Sing * where Source | |
| data Sing Nat where Source | |
data Sing Symbol where
| |
| data Sing () where Source | |
| data Sing [a0] where Source | |
| data Sing (Maybe a0) where Source | |
| data Sing (TyFun k1 k2 -> *) = SLambda {} Source | |
| data Sing (Either a0 b0) where Source | |
| data Sing ((,) a0 b0) where Source | |
| data Sing ((,,) a0 b0 c0) where Source | |
| data Sing ((,,,) a0 b0 c0 d0) where Source | |
| data Sing ((,,,,) a0 b0 c0 d0 e0) where Source | |
| data Sing ((,,,,,) a0 b0 c0 d0 e0 f0) where Source | |
| data Sing ((,,,,,,) a0 b0 c0 d0 e0 f0 g0) where Source |
Though Haddock doesn't show it, the Sing instance above declares
constructors
SLeft :: Sing a -> Sing (Left a) SRight :: Sing b -> Sing (Right b)
Singletons from Data.Either
sEither_ :: forall t t t. Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source
The preceding two definitions are derived from the function either in
Data.Either. The extra underscore is to avoid name clashes with the type
Either.
type family PartitionEithers a :: ([a], [b]) Source
Equations
| PartitionEithers a_1627654348 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Either_Sym0 (Let1627654355LeftSym1 a_1627654348)) (Let1627654355RightSym1 a_1627654348))) (Apply (Apply Tuple2Sym0 `[]`) `[]`)) a_1627654348 |
sPartitionEithers :: forall t. Sing t -> Sing (Apply PartitionEithersSym0 t :: ([a], [b])) Source
Defunctionalization symbols
data Either_Sym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (TyFun k k -> *) (TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) -> *) (Either_Sym0 k k k) Source | |
| type Apply (TyFun (TyFun k2 k1 -> *) (TyFun (Either k k2) k1 -> *) -> *) (TyFun k k1 -> *) (Either_Sym0 k k1 k2) l0 = Either_Sym1 k k1 k2 l0 Source |
data Either_Sym1 l l Source
Instances
| SuppressUnusedWarnings ((TyFun k k -> *) -> TyFun (TyFun k k -> *) (TyFun (Either k k) k -> *) -> *) (Either_Sym1 k k k) Source | |
| type Apply (TyFun (Either k1 k) k2 -> *) (TyFun k k2 -> *) (Either_Sym1 k1 k2 k l1) l0 = Either_Sym2 k1 k2 k l1 l0 Source |
data Either_Sym2 l l l Source
Instances
| SuppressUnusedWarnings ((TyFun k k -> *) -> (TyFun k k -> *) -> TyFun (Either k k) k -> *) (Either_Sym2 k k k) Source | |
| type Apply k1 (Either k k2) (Either_Sym2 k k1 k2 l1 l2) l0 = Either_Sym3 k k1 k2 l1 l2 l0 Source |
type Either_Sym3 t t t = Either_ t t t Source
data RightsSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun [Either k k] [k] -> *) (RightsSym0 k k) Source | |
| type Apply [k] [Either k1 k] (RightsSym0 k1 k) l0 = RightsSym1 k1 k l0 Source |
type RightsSym1 t = Rights t Source
data IsLeftSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsLeftSym0 k k) Source | |
| type Apply Bool (Either k k1) (IsLeftSym0 k k1) l0 = IsLeftSym1 k k1 l0 Source |
type IsLeftSym1 t = IsLeft t Source
data IsRightSym0 l Source
Instances
| SuppressUnusedWarnings (TyFun (Either k k) Bool -> *) (IsRightSym0 k k) Source | |
| type Apply Bool (Either k k1) (IsRightSym0 k k1) l0 = IsRightSym1 k k1 l0 Source |
type IsRightSym1 t = IsRight t Source