| Copyright | (C) 2017 Ryan Scott |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | Richard Eisenberg (rae@cs.brynmawr.edu) |
| Stability | experimental |
| Portability | non-portable |
| Safe Haskell | None |
| Language | Haskell2010 |
Data.Singletons.Prelude.Void
Description
Defines functions and datatypes relating to the singleton for Void,
including a singleton version of all the definitions in Data.Void.
Because many of these definitions are produced by Template Haskell,
it is not possible to create proper Haddock documentation. Please look
up the corresponding operation in Data.Void. Also, please excuse
the apparent repeated variable names. This is due to an interaction
between Template Haskell and Haddock.
The Void singleton
data family Sing (a :: k) Source #
The singleton kind-indexed data family.
Instances
| data Sing (z :: Bool) Source # | |
| data Sing (z :: Ordering) Source # | |
| data Sing (a :: Type) Source # | |
| data Sing (n :: Nat) Source # | |
| data Sing (n :: Symbol) Source # | |
| data Sing (z :: ()) Source # | |
| data Sing (z :: Void) Source # | |
| data Sing (z :: [a]) Source # | |
| data Sing (z :: Maybe a) Source # | |
| data Sing (z :: NonEmpty a) Source # | |
| data Sing (z :: Either a b) Source # | |
| data Sing (z :: (a, b)) Source # | |
| data Sing (f :: k1 ~> k2) Source # | |
| data Sing (z :: (a, b, c)) Source # | |
| data Sing (z :: (a, b, c, d)) Source # | |
| data Sing (z :: (a, b, c, d, e)) Source # | |
| data Sing (z :: (a, b, c, d, e, f)) Source # | |
| data Sing (z :: (a, b, c, d, e, f, g)) Source # | |
Singletons from Data.Void
type family Absurd (a :: Void) :: a where ... Source #
Equations
| Absurd a = Case_6989586621679285240 a a |
Defunctionalization symbols
data AbsurdSym0 (l :: TyFun Void a6989586621679285232) Source #
Instances
| SuppressUnusedWarnings (AbsurdSym0 :: TyFun Void a6989586621679285232 -> *) Source # | |
Methods suppressUnusedWarnings :: () Source # | |
| type Apply (AbsurdSym0 :: TyFun Void k2 -> *) (l :: Void) Source # | |
type AbsurdSym1 (t :: Void) = Absurd t Source #