Copyright | (C) 2018 Ryan Scott |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Ryan Scott |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Defines the promoted and singled versions of the Foldable
type class.
Synopsis
- class PFoldable t where
- type Fold (arg :: t m) :: m
- type FoldMap (arg :: (~>) a m) (arg :: t a) :: m
- type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type ToList (arg :: t a) :: [a]
- type Null (arg :: t a) :: Bool
- type Length (arg :: t a) :: Nat
- type Elem (arg :: a) (arg :: t a) :: Bool
- type Maximum (arg :: t a) :: a
- type Minimum (arg :: t a) :: a
- type Sum (arg :: t a) :: a
- type Product (arg :: t a) :: a
- class SFoldable t where
- sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m)
- sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m)
- sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
- sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b)
- sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
- sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b)
- sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
- sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
- sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a])
- sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool)
- sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat)
- sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
- sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a)
- sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a)
- sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a)
- sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a)
- type family FoldrM (a :: (~>) a ((~>) b (m b))) (a :: b) (a :: t a) :: m b where ...
- sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b)
- type family FoldlM (a :: (~>) b ((~>) a (m b))) (a :: b) (a :: t a) :: m b where ...
- sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b)
- type family Traverse_ (a :: (~>) a (f b)) (a :: t a) :: f () where ...
- sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ())
- type family For_ (a :: t a) (a :: (~>) a (f b)) :: f () where ...
- sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ())
- type family SequenceA_ (a :: t (f a)) :: f () where ...
- sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ())
- type family Asum (a :: t (f a)) :: f a where ...
- sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a)
- type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
- sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
- type family ForM_ (a :: t a) (a :: (~>) a (m b)) :: m () where ...
- sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ())
- type family Sequence_ (a :: t (m a)) :: m () where ...
- sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
- type family Msum (a :: t (m a)) :: m a where ...
- sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a)
- type family Concat (a :: t [a]) :: [a] where ...
- sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
- type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
- sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
- type family And (a :: t Bool) :: Bool where ...
- sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
- type family Or (a :: t Bool) :: Bool where ...
- sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
- type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
- sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
- type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
- sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
- type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
- sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
- type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
- sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
- type family NotElem (a :: a) (a :: t a) :: Bool where ...
- sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
- type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
- sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
- data FoldSym0 :: (~>) (t m) m
- type family FoldSym1 (a6989586621680367275 :: t m) :: m where ...
- data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m)
- data FoldMapSym1 (a6989586621680367279 :: (~>) a m) :: (~>) (t a) m
- type family FoldMapSym2 (a6989586621680367279 :: (~>) a m) (a6989586621680367280 :: t a) :: m where ...
- data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
- data FoldrSym1 (a6989586621680367285 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
- data FoldrSym2 (a6989586621680367285 :: (~>) a ((~>) b b)) (a6989586621680367286 :: b) :: (~>) (t a) b
- type family FoldrSym3 (a6989586621680367285 :: (~>) a ((~>) b b)) (a6989586621680367286 :: b) (a6989586621680367287 :: t a) :: b where ...
- data Foldr'Sym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
- data Foldr'Sym1 (a6989586621680367292 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
- data Foldr'Sym2 (a6989586621680367292 :: (~>) a ((~>) b b)) (a6989586621680367293 :: b) :: (~>) (t a) b
- type family Foldr'Sym3 (a6989586621680367292 :: (~>) a ((~>) b b)) (a6989586621680367293 :: b) (a6989586621680367294 :: t a) :: b where ...
- data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
- data FoldlSym1 (a6989586621680367299 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
- data FoldlSym2 (a6989586621680367299 :: (~>) b ((~>) a b)) (a6989586621680367300 :: b) :: (~>) (t a) b
- type family FoldlSym3 (a6989586621680367299 :: (~>) b ((~>) a b)) (a6989586621680367300 :: b) (a6989586621680367301 :: t a) :: b where ...
- data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
- data Foldl'Sym1 (a6989586621680367306 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
- data Foldl'Sym2 (a6989586621680367306 :: (~>) b ((~>) a b)) (a6989586621680367307 :: b) :: (~>) (t a) b
- type family Foldl'Sym3 (a6989586621680367306 :: (~>) b ((~>) a b)) (a6989586621680367307 :: b) (a6989586621680367308 :: t a) :: b where ...
- data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
- data Foldr1Sym1 (a6989586621680367312 :: (~>) a ((~>) a a)) :: (~>) (t a) a
- type family Foldr1Sym2 (a6989586621680367312 :: (~>) a ((~>) a a)) (a6989586621680367313 :: t a) :: a where ...
- data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
- data Foldl1Sym1 (a6989586621680367317 :: (~>) a ((~>) a a)) :: (~>) (t a) a
- type family Foldl1Sym2 (a6989586621680367317 :: (~>) a ((~>) a a)) (a6989586621680367318 :: t a) :: a where ...
- data ToListSym0 :: (~>) (t a) [a]
- type family ToListSym1 (a6989586621680367321 :: t a) :: [a] where ...
- data NullSym0 :: (~>) (t a) Bool
- type family NullSym1 (a6989586621680367324 :: t a) :: Bool where ...
- data LengthSym0 :: (~>) (t a) Nat
- type family LengthSym1 (a6989586621680367327 :: t a) :: Nat where ...
- data ElemSym0 :: (~>) a ((~>) (t a) Bool)
- data ElemSym1 (a6989586621680367331 :: a) :: (~>) (t a) Bool
- type family ElemSym2 (a6989586621680367331 :: a) (a6989586621680367332 :: t a) :: Bool where ...
- data MaximumSym0 :: (~>) (t a) a
- type family MaximumSym1 (a6989586621680367335 :: t a) :: a where ...
- data MinimumSym0 :: (~>) (t a) a
- type family MinimumSym1 (a6989586621680367338 :: t a) :: a where ...
- data SumSym0 :: (~>) (t a) a
- type family SumSym1 (a6989586621680367341 :: t a) :: a where ...
- data ProductSym0 :: (~>) (t a) a
- type family ProductSym1 (a6989586621680367344 :: t a) :: a where ...
- data FoldrMSym0 :: (~>) ((~>) a ((~>) b (m b))) ((~>) b ((~>) (t a) (m b)))
- data FoldrMSym1 (a6989586621680367259 :: (~>) a ((~>) b (m b))) :: (~>) b ((~>) (t a) (m b))
- data FoldrMSym2 (a6989586621680367259 :: (~>) a ((~>) b (m b))) (a6989586621680367260 :: b) :: (~>) (t a) (m b)
- type family FoldrMSym3 (a6989586621680367259 :: (~>) a ((~>) b (m b))) (a6989586621680367260 :: b) (a6989586621680367261 :: t a) :: m b where ...
- data FoldlMSym0 :: (~>) ((~>) b ((~>) a (m b))) ((~>) b ((~>) (t a) (m b)))
- data FoldlMSym1 (a6989586621680367241 :: (~>) b ((~>) a (m b))) :: (~>) b ((~>) (t a) (m b))
- data FoldlMSym2 (a6989586621680367241 :: (~>) b ((~>) a (m b))) (a6989586621680367242 :: b) :: (~>) (t a) (m b)
- type family FoldlMSym3 (a6989586621680367241 :: (~>) b ((~>) a (m b))) (a6989586621680367242 :: b) (a6989586621680367243 :: t a) :: m b where ...
- data Traverse_Sym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f ()))
- data Traverse_Sym1 (a6989586621680367233 :: (~>) a (f b)) :: (~>) (t a) (f ())
- type family Traverse_Sym2 (a6989586621680367233 :: (~>) a (f b)) (a6989586621680367234 :: t a) :: f () where ...
- data For_Sym0 :: (~>) (t a) ((~>) ((~>) a (f b)) (f ()))
- data For_Sym1 (a6989586621680367224 :: t a) :: (~>) ((~>) a (f b)) (f ())
- type family For_Sym2 (a6989586621680367224 :: t a) (a6989586621680367225 :: (~>) a (f b)) :: f () where ...
- data SequenceA_Sym0 :: (~>) (t (f a)) (f ())
- type family SequenceA_Sym1 (a6989586621680367195 :: t (f a)) :: f () where ...
- data AsumSym0 :: (~>) (t (f a)) (f a)
- type family AsumSym1 (a6989586621680367183 :: t (f a)) :: f a where ...
- data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ()))
- data MapM_Sym1 (a6989586621680367213 :: (~>) a (m b)) :: (~>) (t a) (m ())
- type family MapM_Sym2 (a6989586621680367213 :: (~>) a (m b)) (a6989586621680367214 :: t a) :: m () where ...
- data ForM_Sym0 :: (~>) (t a) ((~>) ((~>) a (m b)) (m ()))
- data ForM_Sym1 (a6989586621680367204 :: t a) :: (~>) ((~>) a (m b)) (m ())
- type family ForM_Sym2 (a6989586621680367204 :: t a) (a6989586621680367205 :: (~>) a (m b)) :: m () where ...
- data Sequence_Sym0 :: (~>) (t (m a)) (m ())
- type family Sequence_Sym1 (a6989586621680367189 :: t (m a)) :: m () where ...
- data MsumSym0 :: (~>) (t (m a)) (m a)
- type family MsumSym1 (a6989586621680367177 :: t (m a)) :: m a where ...
- data ConcatSym0 :: (~>) (t [a]) [a]
- type family ConcatSym1 (a6989586621680367166 :: t [a]) :: [a] where ...
- data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b])
- data ConcatMapSym1 (a6989586621680367155 :: (~>) a [b]) :: (~>) (t a) [b]
- type family ConcatMapSym2 (a6989586621680367155 :: (~>) a [b]) (a6989586621680367156 :: t a) :: [b] where ...
- data AndSym0 :: (~>) (t Bool) Bool
- type family AndSym1 (a6989586621680367150 :: t Bool) :: Bool where ...
- data OrSym0 :: (~>) (t Bool) Bool
- type family OrSym1 (a6989586621680367144 :: t Bool) :: Bool where ...
- data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
- data AnySym1 (a6989586621680367136 :: (~>) a Bool) :: (~>) (t a) Bool
- type family AnySym2 (a6989586621680367136 :: (~>) a Bool) (a6989586621680367137 :: t a) :: Bool where ...
- data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
- data AllSym1 (a6989586621680367127 :: (~>) a Bool) :: (~>) (t a) Bool
- type family AllSym2 (a6989586621680367127 :: (~>) a Bool) (a6989586621680367128 :: t a) :: Bool where ...
- data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
- data MaximumBySym1 (a6989586621680367107 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
- type family MaximumBySym2 (a6989586621680367107 :: (~>) a ((~>) a Ordering)) (a6989586621680367108 :: t a) :: a where ...
- data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
- data MinimumBySym1 (a6989586621680367087 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
- type family MinimumBySym2 (a6989586621680367087 :: (~>) a ((~>) a Ordering)) (a6989586621680367088 :: t a) :: a where ...
- data NotElemSym0 :: (~>) a ((~>) (t a) Bool)
- data NotElemSym1 (a6989586621680367078 :: a) :: (~>) (t a) Bool
- type family NotElemSym2 (a6989586621680367078 :: a) (a6989586621680367079 :: t a) :: Bool where ...
- data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a))
- data FindSym1 (a6989586621680367060 :: (~>) a Bool) :: (~>) (t a) (Maybe a)
- type family FindSym2 (a6989586621680367060 :: (~>) a Bool) (a6989586621680367061 :: t a) :: Maybe a where ...
Documentation
type Fold (arg :: t m) :: m Source #
type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #
type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type ToList (arg :: t a) :: [a] Source #
type Null (arg :: t a) :: Bool Source #
type Length (arg :: t a) :: Nat Source #
type Elem (arg :: a) (arg :: t a) :: Bool Source #
type Maximum (arg :: t a) :: a Source #
type Minimum (arg :: t a) :: a Source #
Instances
PFoldable [] Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Min Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Max Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Dual Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Sum Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Product Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons type FoldMap arg arg :: m Source # type Foldr arg arg arg :: b Source # type Foldr' arg arg arg :: b Source # type Foldl arg arg arg :: b Source # type Foldl' arg arg arg :: b Source # type Foldr1 arg arg :: a Source # type Foldl1 arg arg :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Nat Source # type Elem arg arg :: Bool Source # type Maximum arg :: a Source # |
class SFoldable t where Source #
Nothing
sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680367346Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680367356Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680367370Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680367385Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680367408Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680367423Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680367445Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680367466Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680367486Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680367495Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #
default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Nat) ~ Apply Length_6989586621680367512Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Nat) Source #
sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680367531Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680367545Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680367560Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #
default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680367575Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #
sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
Instances
SFoldable [] Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: [m]). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: [a]). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: [a]). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: [a]). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: [a]). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: [a]). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Maybe m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Maybe a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Maybe a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Maybe a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Maybe a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Maybe a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Maybe a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Maybe a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Maybe a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Min Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Min m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Min a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Min a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Min a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Min a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Min a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Min a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Min a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Min a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Min a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Max Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Max m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Max a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Max a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Max a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Max a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Max a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Max a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Max a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Max a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Max a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable First Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Last Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons sFold :: forall m (t :: Identity m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Identity a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Identity a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Identity a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Identity a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Identity a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Identity a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Identity a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Identity a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Identity a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable First Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: First m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: First a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: First a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: First a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: First a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: First a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: First a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: First a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: First a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: First a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Last Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Last m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Last a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Last a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Last a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Last a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Last a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Last a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Last a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Last a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Last a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Dual Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Dual m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Dual a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Dual a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Dual a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Dual a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Dual a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Dual a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Dual a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Dual a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Dual a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Sum Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Sum m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Sum a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Sum a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Sum a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Sum a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Sum a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Sum a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Sum a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Sum a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Sum a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable Product Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Product m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Product a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Product a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Product a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Product a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Product a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Product a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Product a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Product a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Product a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: NonEmpty m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: NonEmpty a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: NonEmpty a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: NonEmpty a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: NonEmpty a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: NonEmpty a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: NonEmpty a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: NonEmpty a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Either a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Either a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Either a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Either a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: Either a a0). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: Either a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: Either a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: Either a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: (a, m)). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: (a, a0)). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: (a, a0)). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: (a, a0)). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: (a, a0)). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: (a, a0)). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: (a, a0)). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: (a, a0)). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t :: Arg a m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a0 m (t :: a0 ~> m) (t :: Arg a a0). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a0 b (t :: a0 ~> (b ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a0 (t :: b ~> (a0 ~> b)) (t :: b) (t :: Arg a a0). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a0 (t :: a0 ~> (a0 ~> a0)) (t :: Arg a a0). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a0 (t :: Arg a a0). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a0 (t :: a0) (t :: Arg a a0). SEq a0 => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a0 (t :: Arg a a0). SOrd a0 => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a0 (t :: Arg a a0). SNum a0 => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t :: Proxy m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m (t :: a ~> m) (t :: Proxy a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Proxy a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Proxy a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Proxy a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Proxy a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Proxy a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Proxy a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Proxy a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Proxy a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # | |
SFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sFold :: forall m0 (t :: Const m m0). SMonoid m0 => Sing t -> Sing (Apply FoldSym0 t) Source # sFoldMap :: forall a m0 (t :: a ~> m0) (t :: Const m a). SMonoid m0 => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t) Source # sFoldr :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t) Source # sFoldr' :: forall a b (t :: a ~> (b ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t) Source # sFoldl :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t) Source # sFoldl' :: forall b a (t :: b ~> (a ~> b)) (t :: b) (t :: Const m a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t) Source # sFoldr1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t) Source # sFoldl1 :: forall a (t :: a ~> (a ~> a)) (t :: Const m a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t) Source # sToList :: forall a (t :: Const m a). Sing t -> Sing (Apply ToListSym0 t) Source # sNull :: forall a (t :: Const m a). Sing t -> Sing (Apply NullSym0 t) Source # sLength :: forall a (t :: Const m a). Sing t -> Sing (Apply LengthSym0 t) Source # sElem :: forall a (t :: a) (t :: Const m a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t) Source # sMaximum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t) Source # sMinimum :: forall a (t :: Const m a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t) Source # sSum :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply SumSym0 t) Source # sProduct :: forall a (t :: Const m a). SNum a => Sing t -> Sing (Apply ProductSym0 t) Source # |
sFoldrM :: forall a b m t (t :: (~>) a ((~>) b (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrMSym0 t) t) t :: m b) Source #
sFoldlM :: forall b a m t (t :: (~>) b ((~>) a (m b))) (t :: b) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlMSym0 t) t) t :: m b) Source #
sTraverse_ :: forall a f b t (t :: (~>) a (f b)) (t :: t a). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply Traverse_Sym0 t) t :: f ()) Source #
sFor_ :: forall t a f b (t :: t a) (t :: (~>) a (f b)). (SFoldable t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply For_Sym0 t) t :: f ()) Source #
type family SequenceA_ (a :: t (f a)) :: f () where ... Source #
SequenceA_ a_6989586621680367191 = Apply (Apply (Apply FoldrSym0 (*>@#@$)) (Apply PureSym0 Tuple0Sym0)) a_6989586621680367191 |
sSequenceA_ :: forall t f a (t :: t (f a)). (SFoldable t, SApplicative f) => Sing t -> Sing (Apply SequenceA_Sym0 t :: f ()) Source #
sAsum :: forall t f a (t :: t (f a)). (SFoldable t, SAlternative f) => Sing t -> Sing (Apply AsumSym0 t :: f a) Source #
sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #
sForM_ :: forall t a m b (t :: t a) (t :: (~>) a (m b)). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply ForM_Sym0 t) t :: m ()) Source #
type family Sequence_ (a :: t (m a)) :: m () where ... Source #
Sequence_ a_6989586621680367185 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680367185 |
sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #
sMsum :: forall t m a (t :: t (m a)). (SFoldable t, SMonadPlus m) => Sing t -> Sing (Apply MsumSym0 t :: m a) Source #
sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #
sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #
type family And (a :: t Bool) :: Bool where ... Source #
And a_6989586621680367146 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680367146 |
type family Or (a :: t Bool) :: Bool where ... Source #
Or a_6989586621680367140 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680367140 |
sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #
sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #
type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #
MaximumBy cmp a_6989586621680367102 = Apply (Apply Foldl1Sym0 (Let6989586621680367111Max'Sym2 cmp a_6989586621680367102)) a_6989586621680367102 |
sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #
type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #
MinimumBy cmp a_6989586621680367082 = Apply (Apply Foldl1Sym0 (Let6989586621680367091Min'Sym2 cmp a_6989586621680367082)) a_6989586621680367082 |
sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #
sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #
type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #
Find p a_6989586621680367055 = Apply (Apply (Apply (.@#@$) GetFirstSym0) (Apply FoldMapSym0 (Apply (Apply Lambda_6989586621680367064Sym0 p) a_6989586621680367055))) a_6989586621680367055 |
sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #
Defunctionalization symbols
data FoldSym0 :: (~>) (t m) m Source #
Instances
(SFoldable t, SMonoid m) => SingI (FoldSym0 :: TyFun (t m) m -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldSym0 :: TyFun (t m) m -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldSym0 :: TyFun (t m) m -> Type) (a6989586621680367275 :: t m) Source # | |
data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m) Source #
Instances
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldMapSym0 # | |
SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680367279 :: a ~> m) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680367279 :: a ~> m) = FoldMapSym1 a6989586621680367279 :: TyFun (t a) m -> Type |
data FoldMapSym1 (a6989586621680367279 :: (~>) a m) :: (~>) (t a) m Source #
Instances
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldMapSym1 d) # | |
SuppressUnusedWarnings (FoldMapSym1 a6989586621680367279 :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym1 a6989586621680367279 :: TyFun (t a) m -> Type) (a6989586621680367280 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym1 a6989586621680367279 :: TyFun (t a) m -> Type) (a6989586621680367280 :: t a) = FoldMap a6989586621680367279 a6989586621680367280 |
type family FoldMapSym2 (a6989586621680367279 :: (~>) a m) (a6989586621680367280 :: t a) :: m where ... Source #
FoldMapSym2 a6989586621680367279 a6989586621680367280 = FoldMap a6989586621680367279 a6989586621680367280 |
data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680367285 :: a ~> (b ~> b)) Source # | |
data FoldrSym1 (a6989586621680367285 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #
Instances
(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym1 a6989586621680367285 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym1 a6989586621680367285 :: TyFun b (t a ~> b) -> Type) (a6989586621680367286 :: b) Source # | |
data FoldrSym2 (a6989586621680367285 :: (~>) a ((~>) b b)) (a6989586621680367286 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym2 a6989586621680367285 a6989586621680367286 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym2 a6989586621680367285 a6989586621680367286 :: TyFun (t a) b -> Type) (a6989586621680367287 :: t a) Source # | |
type family FoldrSym3 (a6989586621680367285 :: (~>) a ((~>) b b)) (a6989586621680367286 :: b) (a6989586621680367287 :: t a) :: b where ... Source #
data Foldr'Sym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldr'Sym0 # | |
SuppressUnusedWarnings (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr'Sym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680367292 :: a ~> (b ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data Foldr'Sym1 (a6989586621680367292 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #
Instances
(SFoldable t, SingI d) => SingI (Foldr'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldr'Sym1 d) # | |
SuppressUnusedWarnings (Foldr'Sym1 a6989586621680367292 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr'Sym1 a6989586621680367292 :: TyFun b (t a ~> b) -> Type) (a6989586621680367293 :: b) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldr'Sym1 a6989586621680367292 :: TyFun b (t a ~> b) -> Type) (a6989586621680367293 :: b) = Foldr'Sym2 a6989586621680367292 a6989586621680367293 :: TyFun (t a) b -> Type |
data Foldr'Sym2 (a6989586621680367292 :: (~>) a ((~>) b b)) (a6989586621680367293 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d1, SingI d2) => SingI (Foldr'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldr'Sym2 d1 d2) # | |
SuppressUnusedWarnings (Foldr'Sym2 a6989586621680367292 a6989586621680367293 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr'Sym2 a6989586621680367292 a6989586621680367293 :: TyFun (t a) b -> Type) (a6989586621680367294 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldr'Sym2 a6989586621680367292 a6989586621680367293 :: TyFun (t a) b -> Type) (a6989586621680367294 :: t a) = Foldr' a6989586621680367292 a6989586621680367293 a6989586621680367294 |
type family Foldr'Sym3 (a6989586621680367292 :: (~>) a ((~>) b b)) (a6989586621680367293 :: b) (a6989586621680367294 :: t a) :: b where ... Source #
Foldr'Sym3 a6989586621680367292 a6989586621680367293 a6989586621680367294 = Foldr' a6989586621680367292 a6989586621680367293 a6989586621680367294 |
data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680367299 :: b ~> (a ~> b)) Source # | |
data FoldlSym1 (a6989586621680367299 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #
Instances
(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym1 a6989586621680367299 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym1 a6989586621680367299 :: TyFun b (t a ~> b) -> Type) (a6989586621680367300 :: b) Source # | |
data FoldlSym2 (a6989586621680367299 :: (~>) b ((~>) a b)) (a6989586621680367300 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym2 a6989586621680367299 a6989586621680367300 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym2 a6989586621680367299 a6989586621680367300 :: TyFun (t a) b -> Type) (a6989586621680367301 :: t a) Source # | |
type family FoldlSym3 (a6989586621680367299 :: (~>) b ((~>) a b)) (a6989586621680367300 :: b) (a6989586621680367301 :: t a) :: b where ... Source #
data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldl'Sym0 # | |
SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680367306 :: b ~> (a ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data Foldl'Sym1 (a6989586621680367306 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #
Instances
(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldl'Sym1 d) # | |
SuppressUnusedWarnings (Foldl'Sym1 a6989586621680367306 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl'Sym1 a6989586621680367306 :: TyFun b (t a ~> b) -> Type) (a6989586621680367307 :: b) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldl'Sym1 a6989586621680367306 :: TyFun b (t a ~> b) -> Type) (a6989586621680367307 :: b) = Foldl'Sym2 a6989586621680367306 a6989586621680367307 :: TyFun (t a) b -> Type |
data Foldl'Sym2 (a6989586621680367306 :: (~>) b ((~>) a b)) (a6989586621680367307 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldl'Sym2 d1 d2) # | |
SuppressUnusedWarnings (Foldl'Sym2 a6989586621680367306 a6989586621680367307 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl'Sym2 a6989586621680367306 a6989586621680367307 :: TyFun (t a) b -> Type) (a6989586621680367308 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldl'Sym2 a6989586621680367306 a6989586621680367307 :: TyFun (t a) b -> Type) (a6989586621680367308 :: t a) = Foldl' a6989586621680367306 a6989586621680367307 a6989586621680367308 |
type family Foldl'Sym3 (a6989586621680367306 :: (~>) b ((~>) a b)) (a6989586621680367307 :: b) (a6989586621680367308 :: t a) :: b where ... Source #
Foldl'Sym3 a6989586621680367306 a6989586621680367307 a6989586621680367308 = Foldl' a6989586621680367306 a6989586621680367307 a6989586621680367308 |
data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldr1Sym0 # | |
SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680367312 :: a ~> (a ~> a)) Source # | |
Defined in Data.Foldable.Singletons |
data Foldr1Sym1 (a6989586621680367312 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #
Instances
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldr1Sym1 d) # | |
SuppressUnusedWarnings (Foldr1Sym1 a6989586621680367312 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr1Sym1 a6989586621680367312 :: TyFun (t a) a -> Type) (a6989586621680367313 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldr1Sym1 a6989586621680367312 :: TyFun (t a) a -> Type) (a6989586621680367313 :: t a) = Foldr1 a6989586621680367312 a6989586621680367313 |
type family Foldr1Sym2 (a6989586621680367312 :: (~>) a ((~>) a a)) (a6989586621680367313 :: t a) :: a where ... Source #
Foldr1Sym2 a6989586621680367312 a6989586621680367313 = Foldr1 a6989586621680367312 a6989586621680367313 |
data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldl1Sym0 # | |
SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680367317 :: a ~> (a ~> a)) Source # | |
Defined in Data.Foldable.Singletons |
data Foldl1Sym1 (a6989586621680367317 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #
Instances
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldl1Sym1 d) # | |
SuppressUnusedWarnings (Foldl1Sym1 a6989586621680367317 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl1Sym1 a6989586621680367317 :: TyFun (t a) a -> Type) (a6989586621680367318 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldl1Sym1 a6989586621680367317 :: TyFun (t a) a -> Type) (a6989586621680367318 :: t a) = Foldl1 a6989586621680367317 a6989586621680367318 |
type family Foldl1Sym2 (a6989586621680367317 :: (~>) a ((~>) a a)) (a6989586621680367318 :: t a) :: a where ... Source #
Foldl1Sym2 a6989586621680367317 a6989586621680367318 = Foldl1 a6989586621680367317 a6989586621680367318 |
data ToListSym0 :: (~>) (t a) [a] Source #
Instances
SFoldable t => SingI (ToListSym0 :: TyFun (t a) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ToListSym0 # | |
SuppressUnusedWarnings (ToListSym0 :: TyFun (t a) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (a6989586621680367321 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (ToListSym0 :: TyFun (t a) [a] -> Type) (a6989586621680367321 :: t a) = ToList a6989586621680367321 |
type family ToListSym1 (a6989586621680367321 :: t a) :: [a] where ... Source #
ToListSym1 a6989586621680367321 = ToList a6989586621680367321 |
data NullSym0 :: (~>) (t a) Bool Source #
Instances
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680367324 :: t a) Source # | |
data LengthSym0 :: (~>) (t a) Nat Source #
Instances
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Nat -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing LengthSym0 # | |
SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Nat -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (LengthSym0 :: TyFun (t a) Nat -> Type) (a6989586621680367327 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family LengthSym1 (a6989586621680367327 :: t a) :: Nat where ... Source #
LengthSym1 a6989586621680367327 = Length a6989586621680367327 |
data ElemSym0 :: (~>) a ((~>) (t a) Bool) Source #
Instances
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680367331 :: a) Source # | |
data ElemSym1 (a6989586621680367331 :: a) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ElemSym1 a6989586621680367331 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ElemSym1 a6989586621680367331 :: TyFun (t a) Bool -> Type) (a6989586621680367332 :: t a) Source # | |
type family ElemSym2 (a6989586621680367331 :: a) (a6989586621680367332 :: t a) :: Bool where ... Source #
data MaximumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MaximumSym0 # | |
SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680367335 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680367335 :: t a) = Maximum a6989586621680367335 |
type family MaximumSym1 (a6989586621680367335 :: t a) :: a where ... Source #
MaximumSym1 a6989586621680367335 = Maximum a6989586621680367335 |
data MinimumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MinimumSym0 # | |
SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680367338 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680367338 :: t a) = Minimum a6989586621680367338 |
type family MinimumSym1 (a6989586621680367338 :: t a) :: a where ... Source #
MinimumSym1 a6989586621680367338 = Minimum a6989586621680367338 |
data SumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680367341 :: t a) Source # | |
data ProductSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ProductSym0 # | |
SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680367344 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680367344 :: t a) = Product a6989586621680367344 |
type family ProductSym1 (a6989586621680367344 :: t a) :: a where ... Source #
ProductSym1 a6989586621680367344 = Product a6989586621680367344 |
data FoldrMSym0 :: (~>) ((~>) a ((~>) b (m b))) ((~>) b ((~>) (t a) (m b))) Source #
Instances
(SFoldable t, SMonad m) => SingI (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldrMSym0 # | |
SuppressUnusedWarnings (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrMSym0 :: TyFun (a ~> (b ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680367259 :: a ~> (b ~> m b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrMSym1 (a6989586621680367259 :: (~>) a ((~>) b (m b))) :: (~>) b ((~>) (t a) (m b)) Source #
Instances
(SFoldable t, SMonad m, SingI d) => SingI (FoldrMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldrMSym1 d) # | |
SuppressUnusedWarnings (FoldrMSym1 a6989586621680367259 :: TyFun b (t a ~> m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrMSym1 a6989586621680367259 :: TyFun b (t a ~> m b) -> Type) (a6989586621680367260 :: b) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldrMSym1 a6989586621680367259 :: TyFun b (t a ~> m b) -> Type) (a6989586621680367260 :: b) = FoldrMSym2 a6989586621680367259 a6989586621680367260 :: TyFun (t a) (m b) -> Type |
data FoldrMSym2 (a6989586621680367259 :: (~>) a ((~>) b (m b))) (a6989586621680367260 :: b) :: (~>) (t a) (m b) Source #
Instances
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldrMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldrMSym2 d1 d2) # | |
SuppressUnusedWarnings (FoldrMSym2 a6989586621680367259 a6989586621680367260 :: TyFun (t a) (m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrMSym2 a6989586621680367259 a6989586621680367260 :: TyFun (t a) (m b) -> Type) (a6989586621680367261 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldrMSym2 a6989586621680367259 a6989586621680367260 :: TyFun (t a) (m b) -> Type) (a6989586621680367261 :: t a) = FoldrM a6989586621680367259 a6989586621680367260 a6989586621680367261 |
type family FoldrMSym3 (a6989586621680367259 :: (~>) a ((~>) b (m b))) (a6989586621680367260 :: b) (a6989586621680367261 :: t a) :: m b where ... Source #
FoldrMSym3 a6989586621680367259 a6989586621680367260 a6989586621680367261 = FoldrM a6989586621680367259 a6989586621680367260 a6989586621680367261 |
data FoldlMSym0 :: (~>) ((~>) b ((~>) a (m b))) ((~>) b ((~>) (t a) (m b))) Source #
Instances
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldlMSym0 # | |
SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621680367241 :: b ~> (a ~> m b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlMSym1 (a6989586621680367241 :: (~>) b ((~>) a (m b))) :: (~>) b ((~>) (t a) (m b)) Source #
Instances
(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldlMSym1 d) # | |
SuppressUnusedWarnings (FoldlMSym1 a6989586621680367241 :: TyFun b (t a ~> m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlMSym1 a6989586621680367241 :: TyFun b (t a ~> m b) -> Type) (a6989586621680367242 :: b) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldlMSym1 a6989586621680367241 :: TyFun b (t a ~> m b) -> Type) (a6989586621680367242 :: b) = FoldlMSym2 a6989586621680367241 a6989586621680367242 :: TyFun (t a) (m b) -> Type |
data FoldlMSym2 (a6989586621680367241 :: (~>) b ((~>) a (m b))) (a6989586621680367242 :: b) :: (~>) (t a) (m b) Source #
Instances
(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldlMSym2 d1 d2) # | |
SuppressUnusedWarnings (FoldlMSym2 a6989586621680367241 a6989586621680367242 :: TyFun (t a) (m b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlMSym2 a6989586621680367241 a6989586621680367242 :: TyFun (t a) (m b) -> Type) (a6989586621680367243 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldlMSym2 a6989586621680367241 a6989586621680367242 :: TyFun (t a) (m b) -> Type) (a6989586621680367243 :: t a) = FoldlM a6989586621680367241 a6989586621680367242 a6989586621680367243 |
type family FoldlMSym3 (a6989586621680367241 :: (~>) b ((~>) a (m b))) (a6989586621680367242 :: b) (a6989586621680367243 :: t a) :: m b where ... Source #
FoldlMSym3 a6989586621680367241 a6989586621680367242 a6989586621680367243 = FoldlM a6989586621680367241 a6989586621680367242 a6989586621680367243 |
data Traverse_Sym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f ())) Source #
Instances
(SFoldable t, SApplicative f) => SingI (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Traverse_Sym0 # | |
SuppressUnusedWarnings (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) (a6989586621680367233 :: a ~> f b) Source # | |
Defined in Data.Foldable.Singletons type Apply (Traverse_Sym0 :: TyFun (a ~> f b) (t a ~> f ()) -> Type) (a6989586621680367233 :: a ~> f b) = Traverse_Sym1 a6989586621680367233 :: TyFun (t a) (f ()) -> Type |
data Traverse_Sym1 (a6989586621680367233 :: (~>) a (f b)) :: (~>) (t a) (f ()) Source #
Instances
(SFoldable t, SApplicative f, SingI d) => SingI (Traverse_Sym1 d :: TyFun (t a) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Traverse_Sym1 d) # | |
SuppressUnusedWarnings (Traverse_Sym1 a6989586621680367233 :: TyFun (t a) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Traverse_Sym1 a6989586621680367233 :: TyFun (t a) (f ()) -> Type) (a6989586621680367234 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Traverse_Sym1 a6989586621680367233 :: TyFun (t a) (f ()) -> Type) (a6989586621680367234 :: t a) = Traverse_ a6989586621680367233 a6989586621680367234 |
type family Traverse_Sym2 (a6989586621680367233 :: (~>) a (f b)) (a6989586621680367234 :: t a) :: f () where ... Source #
Traverse_Sym2 a6989586621680367233 a6989586621680367234 = Traverse_ a6989586621680367233 a6989586621680367234 |
data For_Sym0 :: (~>) (t a) ((~>) ((~>) a (f b)) (f ())) Source #
Instances
(SFoldable t, SApplicative f) => SingI (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (For_Sym0 :: TyFun (t a) ((a ~> f b) ~> f ()) -> Type) (a6989586621680367224 :: t a) Source # | |
data For_Sym1 (a6989586621680367224 :: t a) :: (~>) ((~>) a (f b)) (f ()) Source #
Instances
(SFoldable t, SApplicative f, SingI d) => SingI (For_Sym1 d :: TyFun (a ~> f b) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (For_Sym1 a6989586621680367224 :: TyFun (a ~> f b) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (For_Sym1 a6989586621680367224 :: TyFun (a ~> f b) (f ()) -> Type) (a6989586621680367225 :: a ~> f b) Source # | |
type family For_Sym2 (a6989586621680367224 :: t a) (a6989586621680367225 :: (~>) a (f b)) :: f () where ... Source #
data SequenceA_Sym0 :: (~>) (t (f a)) (f ()) Source #
Instances
(SFoldable t, SApplicative f) => SingI (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing SequenceA_Sym0 # | |
SuppressUnusedWarnings (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680367195 :: t (f a)) Source # | |
Defined in Data.Foldable.Singletons type Apply (SequenceA_Sym0 :: TyFun (t (f a)) (f ()) -> Type) (a6989586621680367195 :: t (f a)) = SequenceA_ a6989586621680367195 |
type family SequenceA_Sym1 (a6989586621680367195 :: t (f a)) :: f () where ... Source #
SequenceA_Sym1 a6989586621680367195 = SequenceA_ a6989586621680367195 |
data AsumSym0 :: (~>) (t (f a)) (f a) Source #
Instances
(SFoldable t, SAlternative f) => SingI (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AsumSym0 :: TyFun (t (f a)) (f a) -> Type) (a6989586621680367183 :: t (f a)) Source # | |
data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ())) Source #
Instances
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680367213 :: a ~> m b) Source # | |
data MapM_Sym1 (a6989586621680367213 :: (~>) a (m b)) :: (~>) (t a) (m ()) Source #
Instances
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (MapM_Sym1 a6989586621680367213 :: TyFun (t a) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapM_Sym1 a6989586621680367213 :: TyFun (t a) (m ()) -> Type) (a6989586621680367214 :: t a) Source # | |
type family MapM_Sym2 (a6989586621680367213 :: (~>) a (m b)) (a6989586621680367214 :: t a) :: m () where ... Source #
data ForM_Sym0 :: (~>) (t a) ((~>) ((~>) a (m b)) (m ())) Source #
Instances
(SFoldable t, SMonad m) => SingI (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ForM_Sym0 :: TyFun (t a) ((a ~> m b) ~> m ()) -> Type) (a6989586621680367204 :: t a) Source # | |
data ForM_Sym1 (a6989586621680367204 :: t a) :: (~>) ((~>) a (m b)) (m ()) Source #
Instances
(SFoldable t, SMonad m, SingI d) => SingI (ForM_Sym1 d :: TyFun (a ~> m b) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ForM_Sym1 a6989586621680367204 :: TyFun (a ~> m b) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ForM_Sym1 a6989586621680367204 :: TyFun (a ~> m b) (m ()) -> Type) (a6989586621680367205 :: a ~> m b) Source # | |
type family ForM_Sym2 (a6989586621680367204 :: t a) (a6989586621680367205 :: (~>) a (m b)) :: m () where ... Source #
data Sequence_Sym0 :: (~>) (t (m a)) (m ()) Source #
Instances
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Sequence_Sym0 # | |
SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680367189 :: t (m a)) Source # | |
Defined in Data.Foldable.Singletons type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680367189 :: t (m a)) = Sequence_ a6989586621680367189 |
type family Sequence_Sym1 (a6989586621680367189 :: t (m a)) :: m () where ... Source #
Sequence_Sym1 a6989586621680367189 = Sequence_ a6989586621680367189 |
data MsumSym0 :: (~>) (t (m a)) (m a) Source #
Instances
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621680367177 :: t (m a)) Source # | |
data ConcatSym0 :: (~>) (t [a]) [a] Source #
Instances
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ConcatSym0 # | |
SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680367166 :: t [a]) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680367166 :: t [a]) = Concat a6989586621680367166 |
type family ConcatSym1 (a6989586621680367166 :: t [a]) :: [a] where ... Source #
ConcatSym1 a6989586621680367166 = Concat a6989586621680367166 |
data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b]) Source #
Instances
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ConcatMapSym0 # | |
SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680367155 :: a ~> [b]) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680367155 :: a ~> [b]) = ConcatMapSym1 a6989586621680367155 :: TyFun (t a) [b] -> Type |
data ConcatMapSym1 (a6989586621680367155 :: (~>) a [b]) :: (~>) (t a) [b] Source #
Instances
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (ConcatMapSym1 d) # | |
SuppressUnusedWarnings (ConcatMapSym1 a6989586621680367155 :: TyFun (t a) [b] -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatMapSym1 a6989586621680367155 :: TyFun (t a) [b] -> Type) (a6989586621680367156 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatMapSym1 a6989586621680367155 :: TyFun (t a) [b] -> Type) (a6989586621680367156 :: t a) = ConcatMap a6989586621680367155 a6989586621680367156 |
type family ConcatMapSym2 (a6989586621680367155 :: (~>) a [b]) (a6989586621680367156 :: t a) :: [b] where ... Source #
ConcatMapSym2 a6989586621680367155 a6989586621680367156 = ConcatMap a6989586621680367155 a6989586621680367156 |
data AndSym0 :: (~>) (t Bool) Bool Source #
Instances
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680367150 :: t Bool) Source # | |
data OrSym0 :: (~>) (t Bool) Bool Source #
Instances
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680367144 :: t Bool) Source # | |
data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #
Instances
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680367136 :: a ~> Bool) Source # | |
data AnySym1 (a6989586621680367136 :: (~>) a Bool) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AnySym1 a6989586621680367136 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AnySym1 a6989586621680367136 :: TyFun (t a) Bool -> Type) (a6989586621680367137 :: t a) Source # | |
type family AnySym2 (a6989586621680367136 :: (~>) a Bool) (a6989586621680367137 :: t a) :: Bool where ... Source #
data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #
Instances
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680367127 :: a ~> Bool) Source # | |
data AllSym1 (a6989586621680367127 :: (~>) a Bool) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AllSym1 a6989586621680367127 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AllSym1 a6989586621680367127 :: TyFun (t a) Bool -> Type) (a6989586621680367128 :: t a) Source # | |
type family AllSym2 (a6989586621680367127 :: (~>) a Bool) (a6989586621680367128 :: t a) :: Bool where ... Source #
data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MaximumBySym0 # | |
SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680367107 :: a ~> (a ~> Ordering)) Source # | |
Defined in Data.Foldable.Singletons |
data MaximumBySym1 (a6989586621680367107 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #
Instances
(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (MaximumBySym1 d) # | |
SuppressUnusedWarnings (MaximumBySym1 a6989586621680367107 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaximumBySym1 a6989586621680367107 :: TyFun (t a) a -> Type) (a6989586621680367108 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MaximumBySym1 a6989586621680367107 :: TyFun (t a) a -> Type) (a6989586621680367108 :: t a) = MaximumBy a6989586621680367107 a6989586621680367108 |
type family MaximumBySym2 (a6989586621680367107 :: (~>) a ((~>) a Ordering)) (a6989586621680367108 :: t a) :: a where ... Source #
MaximumBySym2 a6989586621680367107 a6989586621680367108 = MaximumBy a6989586621680367107 a6989586621680367108 |
data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MinimumBySym0 # | |
SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680367087 :: a ~> (a ~> Ordering)) Source # | |
Defined in Data.Foldable.Singletons |
data MinimumBySym1 (a6989586621680367087 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #
Instances
(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (MinimumBySym1 d) # | |
SuppressUnusedWarnings (MinimumBySym1 a6989586621680367087 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinimumBySym1 a6989586621680367087 :: TyFun (t a) a -> Type) (a6989586621680367088 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MinimumBySym1 a6989586621680367087 :: TyFun (t a) a -> Type) (a6989586621680367088 :: t a) = MinimumBy a6989586621680367087 a6989586621680367088 |
type family MinimumBySym2 (a6989586621680367087 :: (~>) a ((~>) a Ordering)) (a6989586621680367088 :: t a) :: a where ... Source #
MinimumBySym2 a6989586621680367087 a6989586621680367088 = MinimumBy a6989586621680367087 a6989586621680367088 |
data NotElemSym0 :: (~>) a ((~>) (t a) Bool) Source #
Instances
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing NotElemSym0 # | |
SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680367078 :: a) Source # | |
Defined in Data.Foldable.Singletons type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680367078 :: a) = NotElemSym1 a6989586621680367078 :: TyFun (t a) Bool -> Type |
data NotElemSym1 (a6989586621680367078 :: a) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (NotElemSym1 d) # | |
SuppressUnusedWarnings (NotElemSym1 a6989586621680367078 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NotElemSym1 a6989586621680367078 :: TyFun (t a) Bool -> Type) (a6989586621680367079 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family NotElemSym2 (a6989586621680367078 :: a) (a6989586621680367079 :: t a) :: Bool where ... Source #
NotElemSym2 a6989586621680367078 a6989586621680367079 = NotElem a6989586621680367078 a6989586621680367079 |
data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a)) Source #
Instances
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680367060 :: a ~> Bool) Source # | |
data FindSym1 (a6989586621680367060 :: (~>) a Bool) :: (~>) (t a) (Maybe a) Source #
Instances
(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FindSym1 a6989586621680367060 :: TyFun (t a) (Maybe a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FindSym1 a6989586621680367060 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680367061 :: t a) Source # | |