{-# LANGUAGE DataKinds #-}
{-# LANGUAGE NoNamedWildCards #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-orphans #-}

-----------------------------------------------------------------------------

-- |

-- Module      :  Data.Functor.Const.Singletons

-- Copyright   :  (C) 2018 Ryan Scott

-- License     :  BSD-style (see LICENSE)

-- Maintainer  :  Richard Eisenberg (rae@cs.brynmawr.edu)

-- Stability   :  experimental

-- Portability :  non-portable

--

-- Exports the promoted and singled versions of the 'Const' data type.

--

-----------------------------------------------------------------------------


module Data.Functor.Const.Singletons (
  -- * The 'Const' singleton

  Sing, SConst(..), GetConst, sGetConst,

  -- * Defunctionalization symbols

  ConstSym0, ConstSym1,
  GetConstSym0, GetConstSym1
  ) where

import Control.Applicative
import Control.Monad.Singletons.Internal
import Data.Eq.Singletons
import Data.Foldable.Singletons
import Data.Kind (Type)
import Data.Monoid.Singletons
import Data.Ord.Singletons
import Data.Semigroup.Singletons.Internal.Classes
import Data.Singletons
import Data.Singletons.Base.Instances hiding (FoldlSym0, sFoldl)
import Data.Singletons.Base.Enum
import Data.Singletons.TH
import GHC.Base.Singletons
  hiding ( Const, ConstSym0, ConstSym1
         , Foldr, FoldrSym0, sFoldr )
import GHC.Num.Singletons
import Text.Show.Singletons

{-
Const's argument `b` is poly-kinded, and as a result, we have a choice as to
what singleton type to give it. We could use either

1. type SConst :: forall {k :: Type} (a :: Type) (b :: k).    Const a b -> Type
2. type SConst :: forall             (a :: Type) (b :: Type). Const a b -> Type

Option (1) is the more permissive one, so we opt for that. However, singletons-th's
TH machinery does not jive with this option, since the SingKind instance it
tries to generate:

  instance (SingKind a, SingKind b) => SingKind (Const a b) where
    type Demote (Const a b) = Const (Demote a) (Demote b)

Assumes that `b` is of kind Type. Until we get a more reliable story for
poly-kinded Sing instances (see #150), we simply write the singleton type by
hand.

Note that we cannot use genSingletons to generate this code because we
would end up with the wrong specificity for the kind of `a` when singling the
Const constructor. See Note [Preserve the order of type variables during
singling] in D.S.TH.Single.Type, wrinkle 2. Similarly, we must define the
defunctionalization symbols for the Const data constructor by hand to get the
specificities right.
-}
type SConst :: Const a b -> Type
data SConst :: Const a b -> Type where
  SConst :: forall {k} a (b :: k) (x :: a).
            Sing x -> SConst ('Const @a @b x)
type instance Sing = SConst
instance SingKind a => SingKind (Const a b) where
  type Demote (Const a b) = Const (Demote a) b
  fromSing :: forall (a :: Const a b). Sing a -> Demote (Const a b)
fromSing (SConst Sing x
sa) = Demote a -> Const (Demote a) b
forall {k} a (b :: k). a -> Const a b
Const (Sing x -> Demote a
forall (a :: a). Sing a -> Demote a
forall k (a :: k). SingKind k => Sing a -> Demote k
fromSing Sing x
sa)
  toSing :: Demote (Const a b) -> SomeSing (Const a b)
toSing (Const Demote a
a) = Demote a
-> (forall {a :: a}. Sing a -> SomeSing (Const a b))
-> SomeSing (Const a b)
forall k r.
SingKind k =>
Demote k -> (forall (a :: k). Sing a -> r) -> r
withSomeSing Demote a
a ((forall {a :: a}. Sing a -> SomeSing (Const a b))
 -> SomeSing (Const a b))
-> (forall {a :: a}. Sing a -> SomeSing (Const a b))
-> SomeSing (Const a b)
forall a b. (a -> b) -> a -> b
$ Sing ('Const a) -> SomeSing (Const a b)
SConst ('Const a) -> SomeSing (Const a b)
forall k (a :: k). Sing a -> SomeSing k
SomeSing (SConst ('Const a) -> SomeSing (Const a b))
-> (Sing a -> SConst ('Const a)) -> Sing a -> SomeSing (Const a b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Sing a -> SConst ('Const a)
forall {k} a (b :: k) (arg :: a). Sing arg -> SConst ('Const arg)
SConst
instance SingI a => SingI ('Const a) where
  sing :: Sing ('Const a)
sing = Sing a -> SConst ('Const a)
forall {k} a (b :: k) (arg :: a). Sing arg -> SConst ('Const arg)
SConst Sing a
forall {k} (a :: k). SingI a => Sing a
sing
instance SingI1 'Const where
  liftSing :: forall (x :: k1). Sing x -> Sing ('Const x)
liftSing = Sing x -> Sing ('Const x)
Sing x -> SConst ('Const x)
forall {k} a (b :: k) (arg :: a). Sing arg -> SConst ('Const arg)
SConst

type ConstSym0 :: a ~> Const a b
data ConstSym0 z
type instance Apply ConstSym0 x = 'Const x
instance SingI ConstSym0 where
  sing :: Sing ConstSym0
sing = SingFunction1 ConstSym0 -> Sing ConstSym0
forall {a1} {b} (f :: a1 ~> b). SingFunction1 f -> Sing f
singFun1 Sing t -> Sing (Apply ConstSym0 t)
Sing t -> SConst ('Const t)
SingFunction1 ConstSym0
forall {k} a (b :: k) (arg :: a). Sing arg -> SConst ('Const arg)
SConst

type ConstSym1 :: a -> Const a b
type family ConstSym1 x where
  ConstSym1 x = 'Const x

$(singletonsOnly [d|
  getConst :: Const a b -> a
  getConst (Const x) = x

  deriving instance Bounded a => Bounded (Const a b)
  deriving instance Eq      a => Eq      (Const a b)
  deriving instance Ord     a => Ord     (Const a b)

  -- deriving instance Enum a => Enum (Const a b)

  instance Enum a => Enum (Const a b) where
    succ (Const x)     = Const (succ x)
    pred (Const x)     = Const (pred x)
    toEnum i           = Const (toEnum i)
    fromEnum (Const x) = fromEnum x
    enumFromTo (Const x) (Const y) = map Const (enumFromTo x y)
    enumFromThenTo (Const x) (Const y) (Const z) =
        map Const (enumFromThenTo x y z)

  -- deriving instance Monoid a => Monoid (Const a b)

  instance Monoid a => Monoid (Const a b) where
    mempty = Const mempty

  -- deriving instance Num a => Num (Const a b)

  instance Num a => Num (Const a b) where
    Const x + Const y = Const (x + y)
    Const x - Const y = Const (x - y)
    Const x * Const y = Const (x * y)
    negate (Const x)  = Const (negate x)
    abs    (Const x)  = Const (abs    x)
    signum (Const x)  = Const (signum x)
    fromInteger n     = Const (fromInteger n)

  -- deriving instance Semigroup a => Semigroup (Const a b)

  instance Semigroup a => Semigroup (Const a b) where
    Const x <> Const y = Const (x <> y)

  -- -| This instance would be equivalent to the derived instances of the

  -- 'Const' newtype if the 'runConst' field were removed

  instance Show a => Show (Const a b) where
      showsPrec d (Const x) = showParen (d > 10) $
                              showString "Const " . showsPrec 11 x

  deriving instance Functor (Const m)
  deriving instance Foldable (Const m)

  instance Monoid m => Applicative (Const m) where
      pure _ = Const mempty
      liftA2 _ (Const x) (Const y) = Const (x `mappend` y)
      Const x <*> Const y = Const (x `mappend` y)
  |])