singletons-base
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Control.Applicative.Singletons

Description

Defines the promoted and singled versions of the Applicative type class.

Synopsis

Documentation

class PApplicative (f :: Type -> Type) Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f (a ~> b)) <*> (arg1 :: f a) :: f b infixl 4 Source #

type (arg :: f (a ~> b)) <*> (arg1 :: f a) = TFHelper_6989586621679271276 arg arg1

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: f a) (arg2 :: f b) :: f c Source #

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: f a) (arg2 :: f b) = LiftA2_6989586621679271292 arg arg1 arg2

type (arg :: f a) *> (arg1 :: f b) :: f b infixl 4 Source #

type (arg :: f a) *> (arg1 :: f b) = TFHelper_6989586621679271308 arg arg1

type (arg :: f a) <* (arg1 :: f b) :: f a infixl 4 Source #

type (arg :: f a) <* (arg1 :: f b) = TFHelper_6989586621679271319 arg arg1

Instances

Instances details
PApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Pure (a2 :: a1)
type (a2 :: First (a1 ~> b)) <*> (a3 :: First a1) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: First (a1 ~> b)) <*> (a3 :: First a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: First a1) (a4 :: First b) 
Instance details

Defined in Data.Semigroup.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: First a1) (a4 :: First b)
type (a2 :: First a1) *> (a3 :: First b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: First a1) *> (a3 :: First b)
type (a2 :: First a1) <* (a3 :: First b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: First a1) <* (a3 :: First b)
PApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Pure (a2 :: a1)
type (a2 :: Last (a1 ~> b)) <*> (a3 :: Last a1) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Last (a1 ~> b)) <*> (a3 :: Last a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Last a1) (a4 :: Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Last a1) (a4 :: Last b)
type (a2 :: Last a1) *> (a3 :: Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Last a1) *> (a3 :: Last b)
type (a2 :: Last a1) <* (a3 :: Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Last a1) <* (a3 :: Last b)
PApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Pure (a2 :: a1)
type (a2 :: Max (a1 ~> b)) <*> (a3 :: Max a1) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Max (a1 ~> b)) <*> (a3 :: Max a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Max a1) (a4 :: Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Max a1) (a4 :: Max b)
type (a2 :: Max a1) *> (a3 :: Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Max a1) *> (a3 :: Max b)
type (a2 :: Max a1) <* (a3 :: Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Max a1) <* (a3 :: Max b)
PApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Pure (a2 :: a1)
type (a2 :: Min (a1 ~> b)) <*> (a3 :: Min a1) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Min (a1 ~> b)) <*> (a3 :: Min a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Min a1) (a4 :: Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Min a1) (a4 :: Min b)
type (a2 :: Min a1) *> (a3 :: Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Min a1) *> (a3 :: Min b)
type (a2 :: Min a1) <* (a3 :: Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Min a1) <* (a3 :: Min b)
PApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Pure (a2 :: a1)
type (a2 :: NonEmpty (a1 ~> b)) <*> (a3 :: NonEmpty a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: NonEmpty (a1 ~> b)) <*> (a3 :: NonEmpty a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: NonEmpty a1) (a4 :: NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: NonEmpty a1) (a4 :: NonEmpty b)
type (arg1 :: NonEmpty a) *> (arg2 :: NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: NonEmpty a) *> (arg2 :: NonEmpty b)
type (arg1 :: NonEmpty a) <* (arg2 :: NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: NonEmpty a) <* (arg2 :: NonEmpty b)
PApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Functor.Identity.Singletons

type Pure (a2 :: a1)
type (a2 :: Identity (a1 ~> b)) <*> (a3 :: Identity a1) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a2 :: Identity (a1 ~> b)) <*> (a3 :: Identity a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Identity a1) (a4 :: Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Identity a1) (a4 :: Identity b)
type (arg :: Identity a) *> (arg1 :: Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (arg :: Identity a) *> (arg1 :: Identity b)
type (arg :: Identity a) <* (arg1 :: Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (arg :: Identity a) <* (arg1 :: Identity b)
PApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Monoid.Singletons

type Pure (a2 :: a1)
type (a2 :: First (a1 ~> b)) <*> (a3 :: First a1) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: First (a1 ~> b)) <*> (a3 :: First a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: First a) (arg2 :: First b) 
Instance details

Defined in Data.Monoid.Singletons

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: First a) (arg2 :: First b)
type (arg :: First a) *> (arg1 :: First b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: First a) *> (arg1 :: First b)
type (arg :: First a) <* (arg1 :: First b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: First a) <* (arg1 :: First b)
PApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Monoid.Singletons

type Pure (a2 :: a1)
type (a2 :: Last (a1 ~> b)) <*> (a3 :: Last a1) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: Last (a1 ~> b)) <*> (a3 :: Last a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Last a) (arg2 :: Last b) 
Instance details

Defined in Data.Monoid.Singletons

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Last a) (arg2 :: Last b)
type (arg :: Last a) *> (arg1 :: Last b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: Last a) *> (arg1 :: Last b)
type (arg :: Last a) <* (arg1 :: Last b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: Last a) <* (arg1 :: Last b)
PApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Control.Applicative.Singletons

type Pure (a2 :: a1)
type (a2 :: Down (a1 ~> b)) <*> (a3 :: Down a1) 
Instance details

Defined in Control.Applicative.Singletons

type (a2 :: Down (a1 ~> b)) <*> (a3 :: Down a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Down a) (arg2 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Down a) (arg2 :: Down b)
type (arg :: Down a) *> (arg1 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type (arg :: Down a) *> (arg1 :: Down b)
type (arg :: Down a) <* (arg1 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type (arg :: Down a) <* (arg1 :: Down b)
PApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Pure (a2 :: a1)
type (a2 :: Dual (a1 ~> b)) <*> (a3 :: Dual a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Dual (a1 ~> b)) <*> (a3 :: Dual a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Dual a) (arg2 :: Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Dual a) (arg2 :: Dual b)
type (arg :: Dual a) *> (arg1 :: Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Dual a) *> (arg1 :: Dual b)
type (arg :: Dual a) <* (arg1 :: Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Dual a) <* (arg1 :: Dual b)
PApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Pure (a2 :: a1)
type (a2 :: Product (a1 ~> b)) <*> (a3 :: Product a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Product (a1 ~> b)) <*> (a3 :: Product a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Product a) (arg2 :: Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Product a) (arg2 :: Product b)
type (arg :: Product a) *> (arg1 :: Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Product a) *> (arg1 :: Product b)
type (arg :: Product a) <* (arg1 :: Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Product a) <* (arg1 :: Product b)
PApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Pure (a2 :: a1)
type (a2 :: Sum (a1 ~> b)) <*> (a3 :: Sum a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Sum (a1 ~> b)) <*> (a3 :: Sum a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Sum a) (arg2 :: Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Sum a) (arg2 :: Sum b)
type (arg :: Sum a) *> (arg1 :: Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Sum a) *> (arg1 :: Sum b)
type (arg :: Sum a) <* (arg1 :: Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Sum a) <* (arg1 :: Sum b)
PApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Pure (a2 :: a1)
type (a2 :: Maybe (a1 ~> b)) <*> (a3 :: Maybe a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: Maybe (a1 ~> b)) <*> (a3 :: Maybe a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Maybe a1) (a4 :: Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Maybe a1) (a4 :: Maybe b)
type (a2 :: Maybe a1) *> (a3 :: Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: Maybe a1) *> (a3 :: Maybe b)
type (arg1 :: Maybe a) <* (arg2 :: Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: Maybe a) <* (arg2 :: Maybe b)
PApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Pure (a2 :: a1)
type (a2 :: [a1 ~> b]) <*> (a3 :: [a1]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: [a1 ~> b]) <*> (a3 :: [a1])
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: [a1]) (a4 :: [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: [a1]) (a4 :: [b])
type (a2 :: [a1]) *> (a3 :: [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: [a1]) *> (a3 :: [b])
type (arg1 :: [a]) <* (arg2 :: [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: [a]) <* (arg2 :: [b])
PApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

PApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Data.Proxy.Singletons

type Pure (a2 :: a1)
type (a2 :: Proxy (a1 ~> b)) <*> (a3 :: Proxy a1) 
Instance details

Defined in Data.Proxy.Singletons

type (a2 :: Proxy (a1 ~> b)) <*> (a3 :: Proxy a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Proxy a) (arg2 :: Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Proxy a) (arg2 :: Proxy b)
type (arg :: Proxy a) *> (arg1 :: Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: Proxy a) *> (arg1 :: Proxy b)
type (arg :: Proxy a) <* (arg1 :: Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: Proxy a) <* (arg1 :: Proxy b)
PApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

PApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

PApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

class SFunctor f => SApplicative (f :: Type -> Type) where Source #

Minimal complete definition

sPure

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: f a) Source #

(%<*>) :: forall a b (t1 :: f (a ~> b)) (t2 :: f a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) infixl 4 Source #

default (%<*>) :: forall a b (t1 :: f (a ~> b)) (t2 :: f a). (t1 <*> t2) ~ TFHelper_6989586621679271276 t1 t2 => Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: f a) (t3 :: f b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

default sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: f a) (t3 :: f b). LiftA2 t1 t2 t3 ~ LiftA2_6989586621679271292 t1 t2 t3 => Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: f a) (t2 :: f b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) infixl 4 Source #

default (%*>) :: forall a b (t1 :: f a) (t2 :: f b). (t1 *> t2) ~ TFHelper_6989586621679271308 t1 t2 => Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: f a) (t2 :: f b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) infixl 4 Source #

default (%<*) :: forall a b (t1 :: f a) (t2 :: f b). (t1 <* t2) ~ TFHelper_6989586621679271319 t1 t2 => Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

Instances

Instances details
SApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: First a) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Last a) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Max a) Source #

(%<*>) :: forall a b (t1 :: Max (a ~> b)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Max a) (t3 :: Max b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Min a) Source #

(%<*>) :: forall a b (t1 :: Min (a ~> b)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Min a) (t3 :: Min b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: NonEmpty a) Source #

(%<*>) :: forall a b (t1 :: NonEmpty (a ~> b)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: NonEmpty a) (t3 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Identity a) Source #

(%<*>) :: forall a b (t1 :: Identity (a ~> b)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Identity a) (t3 :: Identity b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: First a) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Last a) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Down a) Source #

(%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Dual a) Source #

(%<*>) :: forall a b (t1 :: Dual (a ~> b)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Dual a) (t3 :: Dual b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Product a) Source #

(%<*>) :: forall a b (t1 :: Product (a ~> b)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product a) (t3 :: Product b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Sum a) Source #

(%<*>) :: forall a b (t1 :: Sum (a ~> b)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Sum a) (t3 :: Sum b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Maybe a) Source #

(%<*>) :: forall a b (t1 :: Maybe (a ~> b)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Maybe a) (t3 :: Maybe b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: [a]) Source #

(%<*>) :: forall a b (t1 :: [a ~> b]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Either e a) Source #

(%<*>) :: forall a b (t1 :: Either e (a ~> b)) (t2 :: Either e a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Either e a) (t3 :: Either e b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Proxy a) Source #

(%<*>) :: forall a b (t1 :: Proxy (a ~> b)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Proxy a) (t3 :: Proxy b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Pure t :: (a, a)) Source #

(%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Const m a) Source #

(%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Product f g a) Source #

(%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Compose f g a) Source #

(%<*>) :: forall a b (t1 :: Compose f g (a ~> b)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Compose f g a) (t3 :: Compose f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

class PAlternative (f :: Type -> Type) Source #

Associated Types

type Empty :: f a Source #

type (arg :: f a) <|> (arg1 :: f a) :: f a infixl 3 Source #

Instances

Instances details
PAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty 
Instance details

Defined in Control.Monad.Singletons.Internal

type Empty
type (a2 :: Maybe a1) <|> (a3 :: Maybe a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: Maybe a1) <|> (a3 :: Maybe a1)
PAlternative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty 
Instance details

Defined in Control.Monad.Singletons.Internal

type Empty
type (a2 :: [a1]) <|> (a3 :: [a1]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: [a1]) <|> (a3 :: [a1])
PAlternative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Empty 
Instance details

Defined in Data.Proxy.Singletons

type Empty
type (a2 :: Proxy a1) <|> (a3 :: Proxy a1) 
Instance details

Defined in Data.Proxy.Singletons

type (a2 :: Proxy a1) <|> (a3 :: Proxy a1)
PAlternative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

PAlternative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

class SApplicative f => SAlternative (f :: Type -> Type) where Source #

Methods

sEmpty :: Sing (Empty :: f a) Source #

(%<|>) :: forall a (t1 :: f a) (t2 :: f a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) infixl 3 Source #

Instances

Instances details
SAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing (Empty :: Maybe a) Source #

(%<|>) :: forall a (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

SAlternative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing (Empty :: [a]) Source #

(%<|>) :: forall a (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

SAlternative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sEmpty :: Sing (Empty :: Proxy a) Source #

(%<|>) :: forall a (t1 :: Proxy a) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

(SAlternative f, SAlternative g) => SAlternative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sEmpty :: Sing (Empty :: Product f g a) Source #

(%<|>) :: forall a (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

(SAlternative f, SApplicative g) => SAlternative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sEmpty :: Sing (Empty :: Compose f g a) Source #

(%<|>) :: forall a (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing # 
Instance details

Defined in Data.Singletons

type Sing # 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SConst (a1 :: Const a b) where Source #

Constructors

SConst :: forall {k} a (b :: k) (n :: a). Sing n -> SConst ('Const n :: Const a b) 

Instances

Instances details
SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: Const a b) (b0 :: Const a b). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: Const a b) (b0 :: Const a b). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

Eq (SConst z) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(==) :: SConst z -> SConst z -> Bool #

(/=) :: SConst z -> SConst z -> Bool #

Ord (SConst z) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

compare :: SConst z -> SConst z -> Ordering #

(<) :: SConst z -> SConst z -> Bool #

(<=) :: SConst z -> SConst z -> Bool #

(>) :: SConst z -> SConst z -> Bool #

(>=) :: SConst z -> SConst z -> Bool #

max :: SConst z -> SConst z -> SConst z #

min :: SConst z -> SConst z -> SConst z #

data Const a (b :: k) #

The Const functor.

Examples

Expand
>>> fmap (++ "World") (Const "Hello")
Const "Hello"

Because we ignore the second type parameter to Const, the Applicative instance, which has (<*>) :: Monoid m => Const m (a -> b) -> Const m a -> Const m b essentially turns into Monoid m => m -> m -> m, which is (<>)

>>> Const [1, 2, 3] <*> Const [4, 5, 6]
Const [1,2,3,4,5,6]

Instances

Instances details
Generic1 (Const a :: k -> Type) # 
Instance details

Defined in GHC.Internal.Data.Functor.Const

Associated Types

type Rep1 (Const a :: k -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from1 :: forall (a0 :: k). Const a a0 -> Rep1 (Const a :: k -> Type) a0 #

to1 :: forall (a0 :: k). Rep1 (Const a :: k -> Type) a0 -> Const a a0 #

SingI1 ('Const :: k1 -> Const k1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ('Const x :: Const k1 b) #

Bifoldable (Const :: Type -> Type -> Type) #

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c #

Bifoldable1 (Const :: Type -> Type -> Type) # 
Instance details

Defined in Data.Bifoldable1

Methods

bifold1 :: Semigroup m => Const m m -> m #

bifoldMap1 :: Semigroup m => (a -> m) -> (b -> m) -> Const a b -> m #

Bifunctor (Const :: Type -> Type -> Type) #

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d #

first :: (a -> b) -> Const a c -> Const b c #

second :: (b -> c) -> Const a b -> Const a c #

Bitraversable (Const :: Type -> Type -> Type) #

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) #

Eq2 (Const :: Type -> Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool #

Ord2 (Const :: Type -> Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering #

Read2 (Const :: Type -> Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] #

Show2 (Const :: Type -> Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS #

NFData2 (Const :: Type -> Type -> Type) #

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Const a b -> () #

Hashable2 (Const :: Type -> Type -> Type) # 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt2 :: (Int -> a -> Int) -> (Int -> b -> Int) -> Int -> Const a b -> Int #

Eq a => Eq1 (Const a :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool #

Ord a => Ord1 (Const a :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering #

Read a => Read1 (Const a :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] #

Show a => Show1 (Const a :: Type -> Type) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS #

Contravariant (Const a :: Type -> Type) # 
Instance details

Defined in Data.Functor.Contravariant

Methods

contramap :: (a' -> a0) -> Const a a0 -> Const a a' #

(>$) :: b -> Const a b -> Const a a0 #

NFData a => NFData1 (Const a :: Type -> Type) #

Since: deepseq-1.4.3.0

Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> Const a a0 -> () #

Monoid m => Applicative (Const m :: Type -> Type) #

Since: base-2.0.1

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pure :: a -> Const m a #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c #

(*>) :: Const m a -> Const m b -> Const m b #

(<*) :: Const m a -> Const m b -> Const m a #

Functor (Const m :: Type -> Type) #

Since: base-2.1

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Foldable (Const m :: Type -> Type) #

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 #

foldr :: (a -> b -> b) -> b -> Const m a -> b #

foldr' :: (a -> b -> b) -> b -> Const m a -> b #

foldl :: (b -> a -> b) -> b -> Const m a -> b #

foldl' :: (b -> a -> b) -> b -> Const m a -> b #

foldr1 :: (a -> a -> a) -> Const m a -> a #

foldl1 :: (a -> a -> a) -> Const m a -> a #

toList :: Const m a -> [a] #

null :: Const m a -> Bool #

length :: Const m a -> Int #

elem :: Eq a => a -> Const m a -> Bool #

maximum :: Ord a => Const m a -> a #

minimum :: Ord a => Const m a -> a #

sum :: Num a => Const m a -> a #

product :: Num a => Const m a -> a #

Traversable (Const m :: Type -> Type) #

Since: base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) #

Hashable a => Hashable1 (Const a :: Type -> Type) # 
Instance details

Defined in Data.Hashable.Class

Methods

liftHashWithSalt :: (Int -> a0 -> Int) -> Int -> Const a a0 -> Int #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Const m a) Source #

(%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFold :: forall m0 (t1 :: Const m m0). SMonoid m0 => Sing t1 -> Sing (Fold t1) Source #

sFoldMap :: forall a m0 (t1 :: a ~> m0) (t2 :: Const m a). SMonoid m0 => Sing t1 -> Sing t2 -> Sing (FoldMap t1 t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldr t1 t2 t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldr' t1 t2 t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl t1 t2 t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl' t1 t2 t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Foldr1 t1 t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Foldl1 t1 t2) Source #

sToList :: forall a (t1 :: Const m a). Sing t1 -> Sing (ToList t1) Source #

sNull :: forall a (t1 :: Const m a). Sing t1 -> Sing (Null t1) Source #

sLength :: forall a (t1 :: Const m a). Sing t1 -> Sing (Length t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Const m a). SEq a => Sing t1 -> Sing t2 -> Sing (Elem t1 t2) Source #

sMaximum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Maximum t1) Source #

sMinimum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Minimum t1) Source #

sSum :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Sum t1) Source #

sProduct :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Product t1) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Const m a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Traverse t1 t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Const m (f a)). SApplicative f => Sing t1 -> Sing (SequenceA t1) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t1 :: a ~> m0 b) (t2 :: Const m a). SMonad m0 => Sing t1 -> Sing t2 -> Sing (MapM t1 t2) Source #

sSequence :: forall (m0 :: Type -> Type) a (t1 :: Const m (m0 a)). SMonad m0 => Sing t1 -> Sing (Sequence t1) Source #

SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing (GetConstSym0 :: TyFun (Const a b) a -> Type) #

SingI (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing (ConstSym0 :: TyFun a (Const a b) -> Type) #

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SuppressUnusedWarnings (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

NFData a => NFData (Const a b) #

Since: deepseq-1.4.0.0

Instance details

Defined in Control.DeepSeq

Methods

rnf :: Const a b -> () #

Monoid a => Monoid (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

mempty :: Const a b #

mappend :: Const a b -> Const a b -> Const a b #

mconcat :: [Const a b] -> Const a b #

Semigroup a => Semigroup (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b #

sconcat :: NonEmpty (Const a b) -> Const a b #

stimes :: Integral b0 => b0 -> Const a b -> Const a b #

Bits a => Bits (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b #

(.|.) :: Const a b -> Const a b -> Const a b #

xor :: Const a b -> Const a b -> Const a b #

complement :: Const a b -> Const a b #

shift :: Const a b -> Int -> Const a b #

rotate :: Const a b -> Int -> Const a b #

zeroBits :: Const a b #

bit :: Int -> Const a b #

setBit :: Const a b -> Int -> Const a b #

clearBit :: Const a b -> Int -> Const a b #

complementBit :: Const a b -> Int -> Const a b #

testBit :: Const a b -> Int -> Bool #

bitSizeMaybe :: Const a b -> Maybe Int #

bitSize :: Const a b -> Int #

isSigned :: Const a b -> Bool #

shiftL :: Const a b -> Int -> Const a b #

unsafeShiftL :: Const a b -> Int -> Const a b #

shiftR :: Const a b -> Int -> Const a b #

unsafeShiftR :: Const a b -> Int -> Const a b #

rotateL :: Const a b -> Int -> Const a b #

rotateR :: Const a b -> Int -> Const a b #

popCount :: Const a b -> Int #

FiniteBits a => FiniteBits (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

IsString a => IsString (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.String

Methods

fromString :: String -> Const a b #

Bounded a => Bounded (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

Enum a => Enum (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Floating a => Floating (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

pi :: Const a b #

exp :: Const a b -> Const a b #

log :: Const a b -> Const a b #

sqrt :: Const a b -> Const a b #

(**) :: Const a b -> Const a b -> Const a b #

logBase :: Const a b -> Const a b -> Const a b #

sin :: Const a b -> Const a b #

cos :: Const a b -> Const a b #

tan :: Const a b -> Const a b #

asin :: Const a b -> Const a b #

acos :: Const a b -> Const a b #

atan :: Const a b -> Const a b #

sinh :: Const a b -> Const a b #

cosh :: Const a b -> Const a b #

tanh :: Const a b -> Const a b #

asinh :: Const a b -> Const a b #

acosh :: Const a b -> Const a b #

atanh :: Const a b -> Const a b #

log1p :: Const a b -> Const a b #

expm1 :: Const a b -> Const a b #

log1pexp :: Const a b -> Const a b #

log1mexp :: Const a b -> Const a b #

RealFloat a => RealFloat (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer #

floatDigits :: Const a b -> Int #

floatRange :: Const a b -> (Int, Int) #

decodeFloat :: Const a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const a b #

exponent :: Const a b -> Int #

significand :: Const a b -> Const a b #

scaleFloat :: Int -> Const a b -> Const a b #

isNaN :: Const a b -> Bool #

isInfinite :: Const a b -> Bool #

isDenormalized :: Const a b -> Bool #

isNegativeZero :: Const a b -> Bool #

isIEEE :: Const a b -> Bool #

atan2 :: Const a b -> Const a b -> Const a b #

Storable a => Storable (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Generic (Const a b) # 
Instance details

Defined in GHC.Internal.Data.Functor.Const

Associated Types

type Rep (Const a b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))

Methods

from :: Const a b -> Rep (Const a b) x #

to :: Rep (Const a b) x -> Const a b #

Ix a => Ix (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b] #

index :: (Const a b, Const a b) -> Const a b -> Int #

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int #

inRange :: (Const a b, Const a b) -> Const a b -> Bool #

rangeSize :: (Const a b, Const a b) -> Int #

unsafeRangeSize :: (Const a b, Const a b) -> Int #

Num a => Num (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b #

(-) :: Const a b -> Const a b -> Const a b #

(*) :: Const a b -> Const a b -> Const a b #

negate :: Const a b -> Const a b #

abs :: Const a b -> Const a b #

signum :: Const a b -> Const a b #

fromInteger :: Integer -> Const a b #

Read a => Read (Const a b) #

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Fractional a => Fractional (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b #

recip :: Const a b -> Const a b #

fromRational :: Rational -> Const a b #

Integral a => Integral (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b #

rem :: Const a b -> Const a b -> Const a b #

div :: Const a b -> Const a b -> Const a b #

mod :: Const a b -> Const a b -> Const a b #

quotRem :: Const a b -> Const a b -> (Const a b, Const a b) #

divMod :: Const a b -> Const a b -> (Const a b, Const a b) #

toInteger :: Const a b -> Integer #

Real a => Real (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

toRational :: Const a b -> Rational #

RealFrac a => RealFrac (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b) #

truncate :: Integral b0 => Const a b -> b0 #

round :: Integral b0 => Const a b -> b0 #

ceiling :: Integral b0 => Const a b -> b0 #

floor :: Integral b0 => Const a b -> b0 #

Show a => Show (Const a b) #

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS #

show :: Const a b -> String #

showList :: [Const a b] -> ShowS #

Eq a => Eq (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool #

(/=) :: Const a b -> Const a b -> Bool #

Ord a => Ord (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering #

(<) :: Const a b -> Const a b -> Bool #

(<=) :: Const a b -> Const a b -> Bool #

(>) :: Const a b -> Const a b -> Bool #

(>=) :: Const a b -> Const a b -> Bool #

max :: Const a b -> Const a b -> Const a b #

min :: Const a b -> Const a b -> Const a b #

Hashable a => Hashable (Const a b) # 
Instance details

Defined in Data.Hashable.Class

Methods

hashWithSalt :: Int -> Const a b -> Int #

hash :: Const a b -> Int #

SingKind a => SingKind (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Demote (Const a b) 
Instance details

Defined in Data.Functor.Const.Singletons

type Demote (Const a b) = Const (Demote a) b

Methods

fromSing :: forall (a0 :: Const a b). Sing a0 -> Demote (Const a b) #

toSing :: Demote (Const a b) -> SomeSing (Const a b) #

SDecide a => SDecide (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%~) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Decision (a0 :~: b0) #

PEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%==) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 == t2) Source #

(%/=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 /= t2) Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Mempty 
Instance details

Defined in Data.Functor.Const.Singletons

type Mempty
SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sMempty :: Sing (Mempty :: Const a b) Source #

sMappend :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Mappend t1 t2) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Mconcat t) Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Compare t1 t2) Source #

(%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 < t2) Source #

(%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 <= t2) Source #

(%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 > t2) Source #

(%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 >= t2) Source #

sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Max t1 t2) Source #

sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Min t1 t2) Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%<>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 <> t2) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Sconcat t) Source #

PBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type MinBound 
Instance details

Defined in Data.Functor.Const.Singletons

type MaxBound 
Instance details

Defined in Data.Functor.Const.Singletons

PEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Succ t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Pred t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (ToEnum t :: Const a b) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (FromEnum t) Source #

sEnumFromTo :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (EnumFromTo t1 t2) Source #

sEnumFromThenTo :: forall (t1 :: Const a b) (t2 :: Const a b) (t3 :: Const a b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (EnumFromThenTo t1 t2 t3) Source #

PIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

SIsString a => SIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (FromString t :: Const a b) Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%+) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 + t2) Source #

(%-) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 - t2) Source #

(%*) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (t1 * t2) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Negate t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Abs t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Signum t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (FromInteger t :: Const a b) Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Const a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (ShowsPrec t1 t2 t3) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Show_ t) Source #

sShowList :: forall (t1 :: [Const a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (ShowList t1 t2) Source #

SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: Const a b) (b0 :: Const a b). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0) #

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: Const a b) (b0 :: Const a b). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0) #

SingI n => SingI ('Const n :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ('Const n :: Const a b) #

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a)
type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b)
type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1)
type FoldMap (a2 :: a1 ~> m1) (a3 :: Const m2 a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FoldMap (a2 :: a1 ~> m1) (a3 :: Const m2 a1)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Const m a1)
type Foldr' (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr' (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Rep1 (Const a :: k -> Type) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Pure (a2 :: a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pure (a2 :: a1)
type Elem (arg :: a) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg :: a) (arg1 :: Const m a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type (a2 :: a1) <$ (a3 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: a1) <$ (a3 :: Const m b)
type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (a6989586621680067841 :: a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (a6989586621680067841 :: a) = 'Const a6989586621680067841 :: Const a b
type Fold (arg :: Const m1 m2) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fold (arg :: Const m1 m2)
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type ToList (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToList (arg :: Const m a)
type Sequence (arg :: Const m1 (m2 a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Const m1 (m2 a))
type SequenceA (arg :: Const m (f a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type SequenceA (arg :: Const m (f a))
type (arg :: Const m a) *> (arg1 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const m a) *> (arg1 :: Const m b)
type (arg :: Const m a) <* (arg1 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const m a) <* (arg1 :: Const m b)
type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1)
type Rep (Const a b) #

Since: base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "GHC.Internal.Data.Functor.Const" "ghc-internal" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Demote (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Demote (Const a b) = Const (Demote a) b
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Mempty Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mempty
type MaxBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type MinBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mconcat (arg :: [Const a b]) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mconcat (arg :: [Const a b])
type Sconcat (arg :: NonEmpty (Const a b)) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sconcat (arg :: NonEmpty (Const a b))
type FromEnum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromEnum (a2 :: Const a1 b)
type Pred (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pred (a2 :: Const a1 b)
type Succ (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Succ (a2 :: Const a1 b)
type ToEnum a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToEnum a2
type FromString a2 Source # 
Instance details

Defined in Data.String.Singletons

type FromString a2
type Abs (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Abs (a2 :: Const a1 b)
type FromInteger a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromInteger a2
type Negate (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Negate (a2 :: Const a1 b)
type Signum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Signum (a2 :: Const a1 b)
type Show_ (arg :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Show_ (arg :: Const a b)
type (arg :: Const a b) /= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) /= (arg1 :: Const a b)
type (a2 :: Const a1 b) == (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) == (a3 :: Const a1 b)
type Mappend (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mappend (arg :: Const a b) (arg1 :: Const a b)
type (arg :: Const a b) < (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) < (arg1 :: Const a b)
type (arg :: Const a b) <= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) <= (arg1 :: Const a b)
type (arg :: Const a b) > (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) > (arg1 :: Const a b)
type (arg :: Const a b) >= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) >= (arg1 :: Const a b)
type Compare (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Compare (a2 :: Const a1 b) (a3 :: Const a1 b)
type Max (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Max (arg :: Const a b) (arg1 :: Const a b)
type Min (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Min (arg :: Const a b) (arg1 :: Const a b)
type (a2 :: Const a1 b) <> (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) <> (a3 :: Const a1 b)
type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b)
type (a2 :: Const a1 b) * (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) * (a3 :: Const a1 b)
type (a2 :: Const a1 b) + (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) + (a3 :: Const a1 b)
type (a2 :: Const a1 b) - (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) - (a3 :: Const a1 b)
type ShowList (arg :: [Const a b]) arg1 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowList (arg :: [Const a b]) arg1
type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b)
type ShowsPrec a2 (a3 :: Const a1 b) a4 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowsPrec a2 (a3 :: Const a1 b) a4
type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680067844 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680067844 :: Const a b) = GetConst a6989586621680067844

type family GetConst (a1 :: Const a b) :: a where ... Source #

Equations

GetConst ('Const field :: Const a b) = field 

sGetConst :: forall {k} a (b :: k) (t :: Const a b). Sing t -> Sing (GetConst t) Source #

type family (a1 :: a ~> b) <$> (a2 :: f a) :: f b where ... infixl 4 Source #

Equations

(a_6989586621679357513 :: a ~> b) <$> (a_6989586621679357515 :: f a) = Apply (Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) a_6989586621679357513) a_6989586621679357515 

(%<$>) :: forall a b (f :: Type -> Type) (t1 :: a ~> b) (t2 :: f a). SFunctor f => Sing t1 -> Sing t2 -> Sing (t1 <$> t2) infixl 4 Source #

type family (arg :: a) <$ (arg1 :: f b) :: f a infixl 4 Source #

Instances

Instances details
type (a2 :: a1) <$ (a3 :: First b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: First b)
type (a2 :: a1) <$ (a3 :: Last b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Last b)
type (a2 :: a1) <$ (a3 :: Max b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Max b)
type (a2 :: a1) <$ (a3 :: Min b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Min b)
type (a2 :: a1) <$ (a3 :: NonEmpty b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: NonEmpty b)
type (a2 :: a1) <$ (a3 :: Identity b) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a2 :: a1) <$ (a3 :: Identity b)
type (a2 :: a1) <$ (a3 :: First b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: a1) <$ (a3 :: First b)
type (a2 :: a1) <$ (a3 :: Last b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: a1) <$ (a3 :: Last b)
type (a2 :: a1) <$ (a3 :: Down b) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a2 :: a1) <$ (a3 :: Down b)
type (a2 :: a1) <$ (a3 :: Dual b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Dual b)
type (a2 :: a1) <$ (a3 :: Product b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Product b)
type (a2 :: a1) <$ (a3 :: Sum b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Sum b)
type (a2 :: a1) <$ (a3 :: Maybe b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: Maybe b)
type (a2 :: a1) <$ (a3 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: [b])
type (arg :: a) <$ (arg1 :: Proxy b) Source # 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: a) <$ (arg1 :: Proxy b)
type (a3 :: a1) <$ (a4 :: Arg a2 b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a3 :: a1) <$ (a4 :: Arg a2 b)
type (a3 :: a1) <$ (a4 :: Either a2 b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a3 :: a1) <$ (a4 :: Either a2 b)
type (a3 :: a1) <$ (a4 :: (a2, b)) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a3 :: a1) <$ (a4 :: (a2, b))
type (a2 :: a1) <$ (a3 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: a1) <$ (a3 :: Const m b)
type (a2 :: a1) <$ (a3 :: Product f g b) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type (a2 :: a1) <$ (a3 :: Product f g b)
type (a2 :: a1) <$ (a3 :: Sum f g b) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type (a2 :: a1) <$ (a3 :: Sum f g b)
type (a2 :: a1) <$ (a3 :: Compose f g b) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type (a2 :: a1) <$ (a3 :: Compose f g b)

(%<$) :: forall a b (t1 :: a) (t2 :: f b). SFunctor f => Sing t1 -> Sing t2 -> Sing (t1 <$ t2) infixl 4 Source #

type family (a1 :: f a) <**> (a2 :: f (a ~> b)) :: f b where ... infixl 4 Source #

Equations

(a_6989586621679271204 :: f a) <**> (a_6989586621679271206 :: f (a ~> c)) = Apply (Apply (Apply (LiftA2Sym0 :: TyFun (a ~> ((a ~> c) ~> c)) (f a ~> (f (a ~> c) ~> f c)) -> Type) (LamCases_6989586621679271215Sym0 a_6989586621679271204 a_6989586621679271206 :: TyFun a (TyFun (a ~> c) c -> Type) -> Type)) a_6989586621679271204) a_6989586621679271206 

(%<**>) :: forall (f :: Type -> Type) a b (t1 :: f a) (t2 :: f (a ~> b)). SApplicative f => Sing t1 -> Sing t2 -> Sing (t1 <**> t2) infixl 4 Source #

type family LiftA (a1 :: a ~> b) (a2 :: f a) :: f b where ... Source #

Equations

LiftA (f2 :: a1 ~> b) (a2 :: f1 a1) = Apply (Apply ((<*>@#@$) :: TyFun (f1 (a1 ~> b)) (f1 a1 ~> f1 b) -> Type) (Apply (PureSym0 :: TyFun (a1 ~> b) (f1 (a1 ~> b)) -> Type) f2)) a2 

sLiftA :: forall a b (f :: Type -> Type) (t1 :: a ~> b) (t2 :: f a). SApplicative f => Sing t1 -> Sing t2 -> Sing (LiftA t1 t2) Source #

type family LiftA3 (a1 :: a ~> (b ~> (c ~> d))) (a2 :: f a) (a3 :: f b) (a4 :: f c) :: f d where ... Source #

Equations

LiftA3 (f2 :: a1 ~> (b1 ~> (a2 ~> b2))) (a3 :: f1 a1) (b3 :: f1 b1) (c :: f1 a2) = Apply (Apply ((<*>@#@$) :: TyFun (f1 (a2 ~> b2)) (f1 a2 ~> f1 b2) -> Type) (Apply (Apply (Apply (LiftA2Sym0 :: TyFun (a1 ~> (b1 ~> (a2 ~> b2))) (f1 a1 ~> (f1 b1 ~> f1 (a2 ~> b2))) -> Type) f2) a3) b3)) c 

sLiftA3 :: forall a b c d (f :: Type -> Type) (t1 :: a ~> (b ~> (c ~> d))) (t2 :: f a) (t3 :: f b) (t4 :: f c). SApplicative f => Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing (LiftA3 t1 t2 t3 t4) Source #

type family Optional (a1 :: f a) :: f (Maybe a) where ... Source #

Equations

Optional (v :: f a) = Apply (Apply ((<|>@#@$) :: TyFun (f (Maybe a)) (f (Maybe a) ~> f (Maybe a)) -> Type) (Apply (Apply ((<$>@#@$) :: TyFun (a ~> Maybe a) (f a ~> f (Maybe a)) -> Type) (JustSym0 :: TyFun a (Maybe a) -> Type)) v)) (Apply (PureSym0 :: TyFun (Maybe a) (f (Maybe a)) -> Type) (NothingSym0 :: Maybe a)) 

sOptional :: forall (f :: Type -> Type) a (t :: f a). SAlternative f => Sing t -> Sing (Optional t) Source #

Defunctionalization symbols

data PureSym0 (a1 :: TyFun a (f a)) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (PureSym0 :: TyFun a (f a) -> Type) #

SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679271251 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679271251 :: a) = Pure a6989586621679271251 :: f a

type family PureSym1 (a6989586621679271251 :: a) :: f a where ... Source #

Equations

PureSym1 (a6989586621679271251 :: a) = Pure a6989586621679271251 :: f a 

data (<*>@#@$) (a1 :: TyFun (f (a ~> b)) (f a ~> f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) #

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679271255 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679271255 :: f (a ~> b)) = (<*>@#@$$) a6989586621679271255

data (a6989586621679271255 :: f (a ~> b)) <*>@#@$$ (b1 :: TyFun (f a) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f (a ~> b)). Sing x -> Sing ((<*>@#@$$) x) #

(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*>@#@$$) d) #

SuppressUnusedWarnings ((<*>@#@$$) a6989586621679271255 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679271255 :: TyFun (f a) (f b) -> Type) (a6989586621679271256 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679271255 :: TyFun (f a) (f b) -> Type) (a6989586621679271256 :: f a) = a6989586621679271255 <*> a6989586621679271256

type family (a6989586621679271255 :: f (a ~> b)) <*>@#@$$$ (a6989586621679271256 :: f a) :: f b where ... infixl 4 Source #

Equations

(a6989586621679271255 :: f (a ~> b)) <*>@#@$$$ (a6989586621679271256 :: f a) = a6989586621679271255 <*> a6989586621679271256 

data (*>@#@$) (a1 :: TyFun (f a) (f b ~> f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) #

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679271267 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679271267 :: f a) = (*>@#@$$) a6989586621679271267 :: TyFun (f b) (f b) -> Type

data (a6989586621679271267 :: f a) *>@#@$$ (b1 :: TyFun (f b) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((*>@#@$$) :: f a -> TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing ((*>@#@$$) x :: TyFun (f b) (f b) -> Type) #

(SApplicative f, SingI d) => SingI ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) #

SuppressUnusedWarnings ((*>@#@$$) a6989586621679271267 :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679271267 :: TyFun (f b) (f b) -> Type) (a6989586621679271268 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679271267 :: TyFun (f b) (f b) -> Type) (a6989586621679271268 :: f b) = a6989586621679271267 *> a6989586621679271268

type family (a6989586621679271267 :: f a) *>@#@$$$ (a6989586621679271268 :: f b) :: f b where ... infixl 4 Source #

Equations

(a6989586621679271267 :: f a) *>@#@$$$ (a6989586621679271268 :: f b) = a6989586621679271267 *> a6989586621679271268 

data (<*@#@$) (a1 :: TyFun (f a) (f b ~> f a)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) #

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679271272 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679271272 :: f a) = (<*@#@$$) a6989586621679271272 :: TyFun (f b) (f a) -> Type

data (a6989586621679271272 :: f a) <*@#@$$ (b1 :: TyFun (f b) (f a)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*@#@$$) :: f a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing ((<*@#@$$) x :: TyFun (f b) (f a) -> Type) #

(SApplicative f, SingI d) => SingI ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) #

SuppressUnusedWarnings ((<*@#@$$) a6989586621679271272 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679271272 :: TyFun (f b) (f a) -> Type) (a6989586621679271273 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679271272 :: TyFun (f b) (f a) -> Type) (a6989586621679271273 :: f b) = a6989586621679271272 <* a6989586621679271273

type family (a6989586621679271272 :: f a) <*@#@$$$ (a6989586621679271273 :: f b) :: f a where ... infixl 4 Source #

Equations

(a6989586621679271272 :: f a) <*@#@$$$ (a6989586621679271273 :: f b) = a6989586621679271272 <* a6989586621679271273 

type family EmptySym0 :: f a where ... Source #

Equations

EmptySym0 = Empty :: f a 

data (<|>@#@$) (a1 :: TyFun (f a) (f a ~> f a)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) #

SuppressUnusedWarnings ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679271374 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679271374 :: f a) = (<|>@#@$$) a6989586621679271374

data (a6989586621679271374 :: f a) <|>@#@$$ (b :: TyFun (f a) (f a)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI1 ((<|>@#@$$) :: f a -> TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing ((<|>@#@$$) x) #

(SAlternative f, SingI d) => SingI ((<|>@#@$$) d :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<|>@#@$$) d) #

SuppressUnusedWarnings ((<|>@#@$$) a6989586621679271374 :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679271374 :: TyFun (f a) (f a) -> Type) (a6989586621679271375 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679271374 :: TyFun (f a) (f a) -> Type) (a6989586621679271375 :: f a) = a6989586621679271374 <|> a6989586621679271375

type family (a6989586621679271374 :: f a) <|>@#@$$$ (a6989586621679271375 :: f a) :: f a where ... infixl 3 Source #

Equations

(a6989586621679271374 :: f a) <|>@#@$$$ (a6989586621679271375 :: f a) = a6989586621679271374 <|> a6989586621679271375 

data ConstSym0 (a1 :: TyFun a (Const a b)) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing (ConstSym0 :: TyFun a (Const a b) -> Type) #

SuppressUnusedWarnings (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (a6989586621680067841 :: a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (a6989586621680067841 :: a) = 'Const a6989586621680067841 :: Const a b

type family ConstSym1 (a6989586621680067841 :: a) :: Const a b where ... Source #

Equations

ConstSym1 (a6989586621680067841 :: a) = 'Const a6989586621680067841 :: Const a b 

data GetConstSym0 (a1 :: TyFun (Const a b) a) Source #

Instances

Instances details
SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing (GetConstSym0 :: TyFun (Const a b) a -> Type) #

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680067844 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680067844 :: Const a b) = GetConst a6989586621680067844

type family GetConstSym1 (a6989586621680067844 :: Const a b) :: a where ... Source #

Equations

GetConstSym1 (a6989586621680067844 :: Const a b) = GetConst a6989586621680067844 

data (<$>@#@$) (a1 :: TyFun (a ~> b) (f a ~> f b)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) #

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679357520 :: a ~> b) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679357520 :: a ~> b) = (<$>@#@$$) a6989586621679357520 :: TyFun (f a) (f b) -> Type

data (a6989586621679357520 :: a ~> b) <$>@#@$$ (b1 :: TyFun (f a) (f b)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$>@#@$$) :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing ((<$>@#@$$) x :: TyFun (f a) (f b) -> Type) #

(SFunctor f, SingI d) => SingI ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) #

SuppressUnusedWarnings ((<$>@#@$$) a6989586621679357520 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679357520 :: TyFun (f a) (f b) -> Type) (a6989586621679357521 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679357520 :: TyFun (f a) (f b) -> Type) (a6989586621679357521 :: f a) = a6989586621679357520 <$> a6989586621679357521

type family (a6989586621679357520 :: a ~> b) <$>@#@$$$ (a6989586621679357521 :: f a) :: f b where ... infixl 4 Source #

Equations

(a6989586621679357520 :: a ~> b) <$>@#@$$$ (a6989586621679357521 :: f a) = a6989586621679357520 <$> a6989586621679357521 

data (<$@#@$) (a1 :: TyFun a (f b ~> f a)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) #

SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679271232 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679271232 :: a) = (<$@#@$$) a6989586621679271232 :: TyFun (f b) (f a) -> Type

data (a6989586621679271232 :: a) <$@#@$$ (b1 :: TyFun (f b) (f a)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((<$@#@$$) x :: TyFun (f b) (f a) -> Type) #

(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) #

SuppressUnusedWarnings ((<$@#@$$) a6989586621679271232 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679271232 :: TyFun (f b) (f a) -> Type) (a6989586621679271233 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679271232 :: TyFun (f b) (f a) -> Type) (a6989586621679271233 :: f b) = a6989586621679271232 <$ a6989586621679271233

type family (a6989586621679271232 :: a) <$@#@$$$ (a6989586621679271233 :: f b) :: f a where ... infixl 4 Source #

Equations

(a6989586621679271232 :: a) <$@#@$$$ (a6989586621679271233 :: f b) = a6989586621679271232 <$ a6989586621679271233 

data (<**>@#@$) (a1 :: TyFun (f a) (f (a ~> b) ~> f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) #

SuppressUnusedWarnings ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679271211 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679271211 :: f a) = (<**>@#@$$) a6989586621679271211 :: TyFun (f (a ~> b)) (f b) -> Type

data (a6989586621679271211 :: f a) <**>@#@$$ (b1 :: TyFun (f (a ~> b)) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<**>@#@$$) :: f a -> TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing ((<**>@#@$$) x :: TyFun (f (a ~> b)) (f b) -> Type) #

(SApplicative f, SingI d) => SingI ((<**>@#@$$) d :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<**>@#@$$) d :: TyFun (f (a ~> b)) (f b) -> Type) #

SuppressUnusedWarnings ((<**>@#@$$) a6989586621679271211 :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679271211 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679271212 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679271211 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679271212 :: f (a ~> b)) = a6989586621679271211 <**> a6989586621679271212

type family (a6989586621679271211 :: f a) <**>@#@$$$ (a6989586621679271212 :: f (a ~> b)) :: f b where ... infixl 4 Source #

Equations

(a6989586621679271211 :: f a) <**>@#@$$$ (a6989586621679271212 :: f (a ~> b)) = a6989586621679271211 <**> a6989586621679271212 

data LiftASym0 (a1 :: TyFun (a ~> b) (f a ~> f b)) Source #

Instances

Instances details
SApplicative f => SingI (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) #

SuppressUnusedWarnings (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679271200 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679271200 :: a ~> b) = LiftASym1 a6989586621679271200 :: TyFun (f a) (f b) -> Type

data LiftASym1 (a6989586621679271200 :: a ~> b) (b1 :: TyFun (f a) (f b)) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftASym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing (LiftASym1 x :: TyFun (f a) (f b) -> Type) #

(SApplicative f, SingI d) => SingI (LiftASym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftASym1 d :: TyFun (f a) (f b) -> Type) #

SuppressUnusedWarnings (LiftASym1 a6989586621679271200 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679271200 :: TyFun (f a) (f b) -> Type) (a6989586621679271201 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679271200 :: TyFun (f a) (f b) -> Type) (a6989586621679271201 :: f a) = LiftA a6989586621679271200 a6989586621679271201

type family LiftASym2 (a6989586621679271200 :: a ~> b) (a6989586621679271201 :: f a) :: f b where ... Source #

Equations

LiftASym2 (a6989586621679271200 :: a ~> b) (a6989586621679271201 :: f a) = LiftA a6989586621679271200 a6989586621679271201 

data LiftA2Sym0 (a1 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) #

SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679271261 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679271261 :: a ~> (b ~> c)) = LiftA2Sym1 a6989586621679271261 :: TyFun (f a) (f b ~> f c) -> Type

data LiftA2Sym1 (a6989586621679271261 :: a ~> (b ~> c)) (b1 :: TyFun (f a) (f b ~> f c)) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA2Sym1 :: (a ~> (b ~> c)) -> TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> c)). Sing x -> Sing (LiftA2Sym1 x :: TyFun (f a) (f b ~> f c) -> Type) #

(SApplicative f, SingI d) => SingI (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) #

SuppressUnusedWarnings (LiftA2Sym1 a6989586621679271261 :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679271261 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679271262 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679271261 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679271262 :: f a) = LiftA2Sym2 a6989586621679271261 a6989586621679271262

data LiftA2Sym2 (a6989586621679271261 :: a ~> (b ~> c)) (a6989586621679271262 :: f a) (c1 :: TyFun (f b) (f c)) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI1 (LiftA2Sym2 d :: f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing (LiftA2Sym2 d x) #

SApplicative f => SingI2 (LiftA2Sym2 :: (a ~> (b ~> c)) -> f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> c)) (y :: f a). Sing x -> Sing y -> Sing (LiftA2Sym2 x y) #

(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym2 d1 d2) #

SuppressUnusedWarnings (LiftA2Sym2 a6989586621679271261 a6989586621679271262 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679271261 a6989586621679271262 :: TyFun (f b) (f c) -> Type) (a6989586621679271263 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679271261 a6989586621679271262 :: TyFun (f b) (f c) -> Type) (a6989586621679271263 :: f b) = LiftA2 a6989586621679271261 a6989586621679271262 a6989586621679271263

type family LiftA2Sym3 (a6989586621679271261 :: a ~> (b ~> c)) (a6989586621679271262 :: f a) (a6989586621679271263 :: f b) :: f c where ... Source #

Equations

LiftA2Sym3 (a6989586621679271261 :: a ~> (b ~> c)) (a6989586621679271262 :: f a) (a6989586621679271263 :: f b) = LiftA2 a6989586621679271261 a6989586621679271262 a6989586621679271263 

data LiftA3Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d)))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) #

SuppressUnusedWarnings (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679271189 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679271189 :: a ~> (b ~> (c ~> d))) = LiftA3Sym1 a6989586621679271189 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type

data LiftA3Sym1 (a6989586621679271189 :: a ~> (b ~> (c ~> d))) (b1 :: TyFun (f a) (f b ~> (f c ~> f d))) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> (c ~> d))). Sing x -> Sing (LiftA3Sym1 x :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) #

(SApplicative f, SingI d2) => SingI (LiftA3Sym1 d2 :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym1 d2 :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) #

SuppressUnusedWarnings (LiftA3Sym1 a6989586621679271189 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679271189 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679271190 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679271189 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679271190 :: f a) = LiftA3Sym2 a6989586621679271189 a6989586621679271190

data LiftA3Sym2 (a6989586621679271189 :: a ~> (b ~> (c ~> d))) (a6989586621679271190 :: f a) (c1 :: TyFun (f b) (f c ~> f d)) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI1 (LiftA3Sym2 d2 :: f a -> TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f a). Sing x -> Sing (LiftA3Sym2 d2 x) #

SApplicative f => SingI2 (LiftA3Sym2 :: (a ~> (b ~> (c ~> d))) -> f a -> TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> (c ~> d))) (y :: f a). Sing x -> Sing y -> Sing (LiftA3Sym2 x y) #

(SApplicative f, SingI d2, SingI d3) => SingI (LiftA3Sym2 d2 d3 :: TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym2 d2 d3) #

SuppressUnusedWarnings (LiftA3Sym2 a6989586621679271189 a6989586621679271190 :: TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679271189 a6989586621679271190 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679271191 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679271189 a6989586621679271190 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679271191 :: f b) = LiftA3Sym3 a6989586621679271189 a6989586621679271190 a6989586621679271191

data LiftA3Sym3 (a6989586621679271189 :: a ~> (b ~> (c ~> d))) (a6989586621679271190 :: f a) (a6989586621679271191 :: f b) (d1 :: TyFun (f c) (f d)) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI2 (LiftA3Sym3 d2 :: f a -> f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: f a) (y :: f b). Sing x -> Sing y -> Sing (LiftA3Sym3 d2 x y) #

(SApplicative f, SingI d2, SingI d3) => SingI1 (LiftA3Sym3 d2 d3 :: f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: f b). Sing x -> Sing (LiftA3Sym3 d2 d3 x) #

(SApplicative f, SingI d2, SingI d3, SingI d4) => SingI (LiftA3Sym3 d2 d3 d4 :: TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym3 d2 d3 d4) #

SuppressUnusedWarnings (LiftA3Sym3 a6989586621679271189 a6989586621679271190 a6989586621679271191 :: TyFun (f c) (f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679271189 a6989586621679271190 a6989586621679271191 :: TyFun (f c) (f d) -> Type) (a6989586621679271192 :: f c) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679271189 a6989586621679271190 a6989586621679271191 :: TyFun (f c) (f d) -> Type) (a6989586621679271192 :: f c) = LiftA3 a6989586621679271189 a6989586621679271190 a6989586621679271191 a6989586621679271192

data OptionalSym0 (a1 :: TyFun (f a) (f (Maybe a))) Source #

Instances

Instances details
SAlternative f => SingI (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sing :: Sing (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) #

SuppressUnusedWarnings (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621680340908 :: f a) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621680340908 :: f a) = Optional a6989586621680340908

type family OptionalSym1 (a6989586621680340908 :: f a) :: f (Maybe a) where ... Source #

Equations

OptionalSym1 (a6989586621680340908 :: f a) = Optional a6989586621680340908 

Orphan instances

PApplicative Down Source # 
Instance details

Associated Types

type Pure (a2 :: a1) 
Instance details

Defined in Control.Applicative.Singletons

type Pure (a2 :: a1)
type (a2 :: Down (a1 ~> b)) <*> (a3 :: Down a1) 
Instance details

Defined in Control.Applicative.Singletons

type (a2 :: Down (a1 ~> b)) <*> (a3 :: Down a1)
type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Down a) (arg2 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type LiftA2 (arg :: a ~> (b ~> c)) (arg1 :: Down a) (arg2 :: Down b)
type (arg :: Down a) *> (arg1 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type (arg :: Down a) *> (arg1 :: Down b)
type (arg :: Down a) <* (arg1 :: Down b) 
Instance details

Defined in Control.Applicative.Singletons

type (arg :: Down a) <* (arg1 :: Down b)
SApplicative Down Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Down a) Source #

(%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

PApplicative ((,) a) Source # 
Instance details

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Pure t :: (a, a)) Source #

(%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #