singletons-base
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Control.Monad.Singletons

Description

Defines the promoted and singled versions of the Monad type class.

Synopsis

Documentation

class PFunctor (f :: Type -> Type) Source #

Associated Types

type Fmap (arg :: a ~> b) (arg1 :: f a) :: f b Source #

Instances

Instances details
PFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: First a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: First a1)
type (a2 :: a1) <$ (a3 :: First b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: First b)
PFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Last a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Last a1)
type (a2 :: a1) <$ (a3 :: Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Last b)
PFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Max a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Max a1)
type (a2 :: a1) <$ (a3 :: Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Max b)
PFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Min a1) 
Instance details

Defined in Data.Semigroup.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Min a1)
type (a2 :: a1) <$ (a3 :: Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: a1) <$ (a3 :: Min b)
PFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: NonEmpty a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Fmap (a2 :: a1 ~> b) (a3 :: NonEmpty a1)
type (a2 :: a1) <$ (a3 :: NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: NonEmpty b)
PFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Identity a1) 
Instance details

Defined in Data.Functor.Identity.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Identity a1)
type (a2 :: a1) <$ (a3 :: Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a2 :: a1) <$ (a3 :: Identity b)
PFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: First a1) 
Instance details

Defined in Data.Monoid.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: First a1)
type (a2 :: a1) <$ (a3 :: First b) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: a1) <$ (a3 :: First b)
PFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Last a1) 
Instance details

Defined in Data.Monoid.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Last a1)
type (a2 :: a1) <$ (a3 :: Last b) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: a1) <$ (a3 :: Last b)
PFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Down a1) 
Instance details

Defined in Data.Functor.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Down a1)
type (a2 :: a1) <$ (a3 :: Down b) 
Instance details

Defined in Data.Functor.Singletons

type (a2 :: a1) <$ (a3 :: Down b)
PFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Dual a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Fmap (a2 :: a1 ~> b) (a3 :: Dual a1)
type (a2 :: a1) <$ (a3 :: Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Dual b)
PFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Product a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Fmap (a2 :: a1 ~> b) (a3 :: Product a1)
type (a2 :: a1) <$ (a3 :: Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Product b)
PFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Sum a1) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Fmap (a2 :: a1 ~> b) (a3 :: Sum a1)
type (a2 :: a1) <$ (a3 :: Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: a1) <$ (a3 :: Sum b)
PFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Maybe a1) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Fmap (a2 :: a1 ~> b) (a3 :: Maybe a1)
type (a2 :: a1) <$ (a3 :: Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: Maybe b)
PFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: [a1]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Fmap (a2 :: a1 ~> b) (a3 :: [a1])
type (a2 :: a1) <$ (a3 :: [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: a1) <$ (a3 :: [b])
PFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

PFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

PFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Fmap (a2 :: a1 ~> b) (a3 :: Proxy a1) 
Instance details

Defined in Data.Proxy.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Proxy a1)
type (arg :: a) <$ (arg1 :: Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: a) <$ (arg1 :: Proxy b)
PFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

PFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

PFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

PFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

class SFunctor (f :: Type -> Type) where Source #

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: f a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

Instances

Instances details
SFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Sum f g b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

class PMonad (m :: Type -> Type) Source #

Associated Types

type (arg :: m a) >>= (arg1 :: a ~> m b) :: m b infixl 1 Source #

type (arg :: m a) >> (arg1 :: m b) :: m b infixl 1 Source #

type (arg :: m a) >> (arg1 :: m b) = TFHelper_6989586621679271347 arg arg1

type Return (arg :: a) :: m a Source #

type Return (arg :: a) = Return_6989586621679271362 arg :: m a

Instances

Instances details
PMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type (a2 :: First a1) >>= (a3 :: a1 ~> First b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: First a1) >>= (a3 :: a1 ~> First b)
type (a2 :: First a1) >> (a3 :: First b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: First a1) >> (a3 :: First b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons

type Return (arg :: a)
PMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type (a2 :: Last a1) >>= (a3 :: a1 ~> Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Last a1) >>= (a3 :: a1 ~> Last b)
type (a2 :: Last a1) >> (a3 :: Last b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Last a1) >> (a3 :: Last b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons

type Return (arg :: a)
PMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type (a2 :: Max a1) >>= (a3 :: a1 ~> Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Max a1) >>= (a3 :: a1 ~> Max b)
type (a2 :: Max a1) >> (a3 :: Max b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Max a1) >> (a3 :: Max b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons

type Return (arg :: a)
PMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type (a2 :: Min a1) >>= (a3 :: a1 ~> Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Min a1) >>= (a3 :: a1 ~> Min b)
type (a2 :: Min a1) >> (a3 :: Min b) 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: Min a1) >> (a3 :: Min b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons

type Return (arg :: a)
PMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type (a2 :: NonEmpty a1) >>= (a3 :: a1 ~> NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: NonEmpty a1) >>= (a3 :: a1 ~> NonEmpty b)
type (arg1 :: NonEmpty a) >> (arg2 :: NonEmpty b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: NonEmpty a) >> (arg2 :: NonEmpty b)
type Return (arg :: a) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Return (arg :: a)
PMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type (a2 :: Identity a1) >>= (a3 :: a1 ~> Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a2 :: Identity a1) >>= (a3 :: a1 ~> Identity b)
type (arg :: Identity a) >> (arg1 :: Identity b) 
Instance details

Defined in Data.Functor.Identity.Singletons

type (arg :: Identity a) >> (arg1 :: Identity b)
type Return (arg :: a) 
Instance details

Defined in Data.Functor.Identity.Singletons

type Return (arg :: a)
PMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type (a2 :: First a1) >>= (a3 :: a1 ~> First b) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: First a1) >>= (a3 :: a1 ~> First b)
type (arg :: First a) >> (arg1 :: First b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: First a) >> (arg1 :: First b)
type Return (arg :: a) 
Instance details

Defined in Data.Monoid.Singletons

type Return (arg :: a)
PMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type (a2 :: Last a1) >>= (a3 :: a1 ~> Last b) 
Instance details

Defined in Data.Monoid.Singletons

type (a2 :: Last a1) >>= (a3 :: a1 ~> Last b)
type (arg :: Last a) >> (arg1 :: Last b) 
Instance details

Defined in Data.Monoid.Singletons

type (arg :: Last a) >> (arg1 :: Last b)
type Return (arg :: a) 
Instance details

Defined in Data.Monoid.Singletons

type Return (arg :: a)
PMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Associated Types

type (a2 :: Down a1) >>= (a3 :: a1 ~> Down b) 
Instance details

Defined in Control.Monad.Singletons

type (a2 :: Down a1) >>= (a3 :: a1 ~> Down b)
type (arg :: Down a) >> (arg1 :: Down b) 
Instance details

Defined in Control.Monad.Singletons

type (arg :: Down a) >> (arg1 :: Down b)
type Return (arg :: a) 
Instance details

Defined in Control.Monad.Singletons

type Return (arg :: a)
PMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type (a2 :: Dual a1) >>= (a3 :: a1 ~> Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Dual a1) >>= (a3 :: a1 ~> Dual b)
type (arg :: Dual a) >> (arg1 :: Dual b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Dual a) >> (arg1 :: Dual b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Return (arg :: a)
PMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type (a2 :: Product a1) >>= (a3 :: a1 ~> Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Product a1) >>= (a3 :: a1 ~> Product b)
type (arg :: Product a) >> (arg1 :: Product b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Product a) >> (arg1 :: Product b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Return (arg :: a)
PMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type (a2 :: Sum a1) >>= (a3 :: a1 ~> Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a2 :: Sum a1) >>= (a3 :: a1 ~> Sum b)
type (arg :: Sum a) >> (arg1 :: Sum b) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Sum a) >> (arg1 :: Sum b)
type Return (arg :: a) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Return (arg :: a)
PMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type (a2 :: Maybe a1) >>= (a3 :: a1 ~> Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: Maybe a1) >>= (a3 :: a1 ~> Maybe b)
type (a2 :: Maybe a1) >> (a3 :: Maybe b) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: Maybe a1) >> (a3 :: Maybe b)
type Return (arg :: a) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Return (arg :: a)
PMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type (a2 :: [a1]) >>= (a3 :: a1 ~> [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: [a1]) >>= (a3 :: a1 ~> [b])
type (arg1 :: [a]) >> (arg2 :: [b]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type (arg1 :: [a]) >> (arg2 :: [b])
type Return (arg :: a) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Return (arg :: a)
PMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

PMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type (a2 :: Proxy a1) >>= (a3 :: a1 ~> Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type (a2 :: Proxy a1) >>= (a3 :: a1 ~> Proxy b)
type (arg :: Proxy a) >> (arg1 :: Proxy b) 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: Proxy a) >> (arg1 :: Proxy b)
type Return (arg :: a) 
Instance details

Defined in Data.Proxy.Singletons

type Return (arg :: a)
PMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

PMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

class SApplicative m => SMonad (m :: Type -> Type) where Source #

Minimal complete definition

(%>>=)

Methods

(%>>=) :: forall a b (t1 :: m a) (t2 :: a ~> m b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) infixl 1 Source #

(%>>) :: forall a b (t1 :: m a) (t2 :: m b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) infixl 1 Source #

default (%>>) :: forall a b (t1 :: m a) (t2 :: m b). (t1 >> t2) ~ TFHelper_6989586621679271347 t1 t2 => Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: m a) Source #

default sReturn :: forall a (t :: a). (Return t :: m a) ~ (Return_6989586621679271362 t :: m a) => Sing t -> Sing (Return t :: m a) Source #

Instances

Instances details
SMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: First a) Source #

SMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Last a) Source #

SMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Max a) (t2 :: a ~> Max b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Max a) Source #

SMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Min a) (t2 :: a ~> Min b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Min a) Source #

SMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: NonEmpty a) (t2 :: a ~> NonEmpty b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: NonEmpty a) Source #

SMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%>>=) :: forall a b (t1 :: Identity a) (t2 :: a ~> Identity b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Identity a) Source #

SMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: First a) Source #

SMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Last a) Source #

SMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a b (t1 :: Down a) (t2 :: a ~> Down b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Down a) Source #

SMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

(%>>=) :: forall a b (t1 :: Dual a) (t2 :: a ~> Dual b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Dual a) Source #

SMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

(%>>=) :: forall a b (t1 :: Product a) (t2 :: a ~> Product b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Product a) Source #

SMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

(%>>=) :: forall a b (t1 :: Sum a) (t2 :: a ~> Sum b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Sum a) Source #

SMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Maybe a) (t2 :: a ~> Maybe b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Maybe a) Source #

SMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: [a]) (t2 :: a ~> [b]). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: [a]) Source #

SMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Either e a) (t2 :: a ~> Either e b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Either e a) Source #

SMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%>>=) :: forall a b (t1 :: Proxy a) (t2 :: a ~> Proxy b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Proxy a) Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a0 b (t1 :: (a, a0)) (t2 :: a0 ~> (a, b)). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Return t :: (a, a)) Source #

(SMonad f, SMonad g) => SMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

(%>>=) :: forall a b (t1 :: Product f g a) (t2 :: a ~> Product f g b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Product f g a) Source #

class PMonadPlus (m :: Type -> Type) Source #

Associated Types

type Mzero :: m a Source #

type Mzero = Mzero_6989586621679271382 :: m a

type Mplus (arg :: m a) (arg1 :: m a) :: m a Source #

type Mplus (arg :: m a) (arg1 :: m a) = Mplus_6989586621679271387 arg arg1

Instances

Instances details
PMonadPlus Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Mzero 
Instance details

Defined in Control.Monad.Singletons.Internal

type Mzero
type Mplus (arg1 :: Maybe a) (arg2 :: Maybe a) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Mplus (arg1 :: Maybe a) (arg2 :: Maybe a)
PMonadPlus [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Mzero 
Instance details

Defined in Control.Monad.Singletons.Internal

type Mzero
type Mplus (arg1 :: [a]) (arg2 :: [a]) 
Instance details

Defined in Control.Monad.Singletons.Internal

type Mplus (arg1 :: [a]) (arg2 :: [a])
PMonadPlus (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Mzero 
Instance details

Defined in Data.Proxy.Singletons

type Mzero
type Mplus (arg :: Proxy a) (arg1 :: Proxy a) 
Instance details

Defined in Data.Proxy.Singletons

type Mplus (arg :: Proxy a) (arg1 :: Proxy a)
PMonadPlus (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

class (SAlternative m, SMonad m) => SMonadPlus (m :: Type -> Type) where Source #

Minimal complete definition

Nothing

Methods

sMzero :: Sing (Mzero :: m a) Source #

default sMzero :: (Mzero :: m a) ~ (Mzero_6989586621679271382 :: m a) => Sing (Mzero :: m a) Source #

sMplus :: forall a (t1 :: m a) (t2 :: m a). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

default sMplus :: forall a (t1 :: m a) (t2 :: m a). Mplus t1 t2 ~ Mplus_6989586621679271387 t1 t2 => Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

Instances

Instances details
SMonadPlus Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sMzero :: Sing (Mzero :: Maybe a) Source #

sMplus :: forall a (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

SMonadPlus [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sMzero :: Sing (Mzero :: [a]) Source #

sMplus :: forall a (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

SMonadPlus (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sMzero :: Sing (Mzero :: Proxy a) Source #

sMplus :: forall a (t1 :: Proxy a) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

(SMonadPlus f, SMonadPlus g) => SMonadPlus (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sMzero :: Sing (Mzero :: Product f g a) Source #

sMplus :: forall a (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

class PMonadFail (m :: Type -> Type) Source #

Associated Types

type Fail (arg :: [Char]) :: m a Source #

Instances

Instances details
PMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail a2 
Instance details

Defined in Control.Monad.Fail.Singletons

type Fail a2
PMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail a2 
Instance details

Defined in Control.Monad.Fail.Singletons

type Fail a2

class SMonad m => SMonadFail (m :: Type -> Type) where Source #

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Fail t :: m a) Source #

Instances

Instances details
SMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Fail t :: Maybe a) Source #

SMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Fail t :: [a]) Source #

type family MapM (arg :: a ~> m b) (arg1 :: t a) :: m (t b) Source #

Instances

Instances details
type MapM (arg :: a ~> m b) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg :: a ~> m b) (arg1 :: First a)
type MapM (arg :: a ~> m b) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Last a)
type MapM (arg :: a ~> m b) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Max a)
type MapM (arg :: a ~> m b) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Min a)
type MapM (arg1 :: a ~> m b) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: NonEmpty a)
type MapM (arg1 :: a ~> m b) (arg2 :: Identity a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Identity a)
type MapM (arg1 :: a ~> m b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: First a)
type MapM (arg1 :: a ~> m b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Last a)
type MapM (arg1 :: a ~> m b) (arg2 :: Dual a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Dual a)
type MapM (arg1 :: a ~> m b) (arg2 :: Product a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Product a)
type MapM (arg1 :: a ~> m b) (arg2 :: Sum a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Sum a)
type MapM (arg1 :: a ~> m b) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: Maybe a)
type MapM (arg1 :: a ~> m b) (arg2 :: [a]) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m b) (arg2 :: [a])
type MapM (arg :: a1 ~> m b) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type MapM (arg :: a1 ~> m b) (arg1 :: Arg a2 a1)
type MapM (arg1 :: a1 ~> m b) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a1 ~> m b) (arg2 :: Either a2 a1)
type MapM (a2 :: a1 ~> m b) (a3 :: Proxy a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (a2 :: a1 ~> m b) (a3 :: Proxy a1)
type MapM (arg1 :: a1 ~> m b) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a1 ~> m b) (arg2 :: (a2, a1))
type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a)
type MapM (arg :: a ~> m b) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Product f g a)
type MapM (arg :: a ~> m b) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Sum f g a)
type MapM (arg :: a ~> m b) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type MapM (arg :: a ~> m b) (arg1 :: Compose f g a)

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: t a). (STraversable t, SMonad m) => Sing t1 -> Sing t2 -> Sing (MapM t1 t2) Source #

type family MapM_ (a1 :: a ~> m b) (a2 :: t a) :: m () where ... Source #

Equations

MapM_ (f :: a1 ~> m a2) (a_6989586621679922444 :: t a1) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a1 ~> (m () ~> m ())) (m () ~> (t a1 ~> m ())) -> Type) (Apply (Apply ((.@#@$) :: TyFun (m a2 ~> (m () ~> m ())) ((a1 ~> m a2) ~> (a1 ~> (m () ~> m ()))) -> Type) ((>>@#@$) :: TyFun (m a2) (m () ~> m ()) -> Type)) f)) (Apply (ReturnSym0 :: TyFun () (m ()) -> Type) Tuple0Sym0)) a_6989586621679922444 

sMapM_ :: forall a (m :: Type -> Type) b (t1 :: Type -> Type) (t2 :: a ~> m b) (t3 :: t1 a). (SFoldable t1, SMonad m) => Sing t2 -> Sing t3 -> Sing (MapM_ t2 t3) Source #

type family ForM (a1 :: t a) (a2 :: a ~> m b) :: m (t b) where ... Source #

Equations

ForM (a_6989586621680103088 :: t a) (a_6989586621680103090 :: a ~> m b) = Apply (Apply (Apply (FlipSym0 :: TyFun ((a ~> m b) ~> (t a ~> m (t b))) (t a ~> ((a ~> m b) ~> m (t b))) -> Type) (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type)) a_6989586621680103088) a_6989586621680103090 

sForM :: forall (t1 :: Type -> Type) a (m :: Type -> Type) b (t2 :: t1 a) (t3 :: a ~> m b). (STraversable t1, SMonad m) => Sing t2 -> Sing t3 -> Sing (ForM t2 t3) Source #

type family Sequence (arg :: t (m a)) :: m (t a) Source #

Instances

Instances details
type Sequence (arg :: First (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: First (m a))
type Sequence (arg :: Last (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Last (m a))
type Sequence (arg :: Max (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Max (m a))
type Sequence (arg :: Min (m a)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Min (m a))
type Sequence (arg :: NonEmpty (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: NonEmpty (m a))
type Sequence (arg :: Identity (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Identity (m a))
type Sequence (arg :: First (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: First (m a))
type Sequence (arg :: Last (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Last (m a))
type Sequence (arg :: Dual (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Dual (m a))
type Sequence (arg :: Product (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Product (m a))
type Sequence (arg :: Sum (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Sum (m a))
type Sequence (arg :: Maybe (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Maybe (m a))
type Sequence (arg :: [m a]) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: [m a])
type Sequence (arg :: Arg a1 (m a2)) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sequence (arg :: Arg a1 (m a2))
type Sequence (arg :: Either a1 (m a2)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Either a1 (m a2))
type Sequence (a2 :: Proxy (m a1)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (a2 :: Proxy (m a1))
type Sequence (arg :: (a1, m a2)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: (a1, m a2))
type Sequence (arg :: Const m1 (m2 a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Const m1 (m2 a))
type Sequence (arg :: Product f g (m a)) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sequence (arg :: Product f g (m a))
type Sequence (arg :: Sum f g (m a)) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sequence (arg :: Sum f g (m a))
type Sequence (arg :: Compose f g (m a)) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sequence (arg :: Compose f g (m a))

sSequence :: forall (m :: Type -> Type) a (t1 :: t (m a)). (STraversable t, SMonad m) => Sing t1 -> Sing (Sequence t1) Source #

type family Sequence_ (a1 :: t (m a)) :: m () where ... Source #

Equations

Sequence_ (a_6989586621679922421 :: t (m a)) = Apply (Apply (Apply (FoldrSym0 :: TyFun (m a ~> (m () ~> m ())) (m () ~> (t (m a) ~> m ())) -> Type) ((>>@#@$) :: TyFun (m a) (m () ~> m ()) -> Type)) (Apply (ReturnSym0 :: TyFun () (m ()) -> Type) Tuple0Sym0)) a_6989586621679922421 

sSequence_ :: forall (t1 :: Type -> Type) (m :: Type -> Type) a (t2 :: t1 (m a)). (SFoldable t1, SMonad m) => Sing t2 -> Sing (Sequence_ t2) Source #

type family (a1 :: a ~> m b) =<< (a2 :: m a) :: m b where ... infixr 1 Source #

Equations

(f :: a ~> m b) =<< (x :: m a) = Apply (Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) x) f 

(%=<<) :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: m a). SMonad m => Sing t1 -> Sing t2 -> Sing (t1 =<< t2) infixr 1 Source #

type family ((a1 :: a ~> m b) >=> (a2 :: b ~> m c)) (a3 :: a) :: m c where ... infixr 1 Source #

Equations

((f :: k1 ~> m6989586621680354543 b6989586621680354545) >=> (g :: b6989586621680354545 ~> m6989586621680354543 c6989586621680354546)) (a_6989586621680354982 :: k1) = Apply (LamCases_6989586621680354994Sym0 f g a_6989586621680354982) a_6989586621680354982 

(%>=>) :: forall a (m :: Type -> Type) b c (t1 :: a ~> m b) (t2 :: b ~> m c) (t3 :: a). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing ((t1 >=> t2) t3) infixr 1 Source #

type family ((a1 :: b ~> m c) <=< (a2 :: a ~> m b)) (a3 :: a) :: m c where ... infixr 1 Source #

Equations

((a_6989586621680354966 :: b ~> m c) <=< (a_6989586621680354968 :: k1 ~> m b)) (a_6989586621680354970 :: k1) = Apply (Apply (Apply (Apply (FlipSym0 :: TyFun ((k1 ~> m b) ~> ((b ~> m c) ~> (k1 ~> m c))) ((b ~> m c) ~> ((k1 ~> m b) ~> (k1 ~> m c))) -> Type) ((>=>@#@$) :: TyFun (k1 ~> m b) ((b ~> m c) ~> (k1 ~> m c)) -> Type)) a_6989586621680354966) a_6989586621680354968) a_6989586621680354970 

(%<=<) :: forall b (m :: Type -> Type) c a (t1 :: b ~> m c) (t2 :: a ~> m b) (t3 :: a). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing ((t1 <=< t2) t3) infixr 1 Source #

type family Void (a1 :: f a) :: f () where ... Source #

Equations

Void (x :: f b) = Apply (Apply ((<$@#@$) :: TyFun () (f b ~> f ()) -> Type) Tuple0Sym0) x 

sVoid :: forall (f :: Type -> Type) a (t :: f a). SFunctor f => Sing t -> Sing (Void t) Source #

type family Join (a1 :: m (m a)) :: m a where ... Source #

Equations

Join (x :: m (m b)) = Apply (Apply ((>>=@#@$) :: TyFun (m (m b)) ((m b ~> m b) ~> m b) -> Type) x) (IdSym0 :: TyFun (m b) (m b) -> Type) 

sJoin :: forall (m :: Type -> Type) a (t :: m (m a)). SMonad m => Sing t -> Sing (Join t) Source #

type family Msum (a1 :: t (m a)) :: m a where ... Source #

Equations

Msum (a_6989586621679922409 :: t (m a)) = Apply (AsumSym0 :: TyFun (t (m a)) (m a) -> Type) a_6989586621679922409 

sMsum :: forall (t1 :: Type -> Type) (m :: Type -> Type) a (t2 :: t1 (m a)). (SFoldable t1, SMonadPlus m) => Sing t2 -> Sing (Msum t2) Source #

type family Mfilter (a1 :: a ~> Bool) (a2 :: m a) :: m a where ... Source #

Equations

Mfilter (p :: b ~> Bool) (ma :: m6989586621680354509 b) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621680354509 b) ((b ~> m6989586621680354509 b) ~> m6989586621680354509 b) -> Type) ma) (LamCases_6989586621680354831Sym0 p ma :: TyFun b (m6989586621680354509 b) -> Type) 

sMfilter :: forall a (m :: Type -> Type) (t1 :: a ~> Bool) (t2 :: m a). SMonadPlus m => Sing t1 -> Sing t2 -> Sing (Mfilter t1 t2) Source #

type family FilterM (a1 :: a ~> m Bool) (a2 :: [a]) :: m [a] where ... Source #

Equations

FilterM (p :: a ~> m6989586621680354547 Bool) (a_6989586621680355000 :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> (m6989586621680354547 [a] ~> m6989586621680354547 [a])) (m6989586621680354547 [a] ~> ([a] ~> m6989586621680354547 [a])) -> Type) (LamCases_6989586621680355009Sym0 p a_6989586621680355000)) (Apply (PureSym0 :: TyFun [a] (m6989586621680354547 [a]) -> Type) (NilSym0 :: [a]))) a_6989586621680355000 

sFilterM :: forall a (m :: Type -> Type) (t1 :: a ~> m Bool) (t2 :: [a]). SApplicative m => Sing t1 -> Sing t2 -> Sing (FilterM t1 t2) Source #

type family MapAndUnzipM (a1 :: a ~> m (b, c)) (a2 :: [a]) :: m ([b], [c]) where ... Source #

Equations

MapAndUnzipM (f2 :: a1 ~> f1 (a2, b)) (xs :: [a1]) = Apply (Apply ((<$>@#@$) :: TyFun ([(a2, b)] ~> ([a2], [b])) (f1 [(a2, b)] ~> f1 ([a2], [b])) -> Type) (UnzipSym0 :: TyFun [(a2, b)] ([a2], [b]) -> Type)) (Apply (Apply (TraverseSym0 :: TyFun (a1 ~> f1 (a2, b)) ([a1] ~> f1 [(a2, b)]) -> Type) f2) xs) 

sMapAndUnzipM :: forall a (m :: Type -> Type) b c (t1 :: a ~> m (b, c)) (t2 :: [a]). SApplicative m => Sing t1 -> Sing t2 -> Sing (MapAndUnzipM t1 t2) Source #

type family ZipWithM (a1 :: a ~> (b ~> m c)) (a2 :: [a]) (a3 :: [b]) :: m [c] where ... Source #

Equations

ZipWithM (f2 :: a1 ~> (b ~> f1 a2)) (xs :: [a1]) (ys :: [b]) = Apply (SequenceASym0 :: TyFun [f1 a2] (f1 [a2]) -> Type) (Apply (Apply (Apply (ZipWithSym0 :: TyFun (a1 ~> (b ~> f1 a2)) ([a1] ~> ([b] ~> [f1 a2])) -> Type) f2) xs) ys) 

sZipWithM :: forall a b (m :: Type -> Type) c (t1 :: a ~> (b ~> m c)) (t2 :: [a]) (t3 :: [b]). SApplicative m => Sing t1 -> Sing t2 -> Sing t3 -> Sing (ZipWithM t1 t2 t3) Source #

type family ZipWithM_ (a1 :: a ~> (b ~> m c)) (a2 :: [a]) (a3 :: [b]) :: m () where ... Source #

Equations

ZipWithM_ (f2 :: a1 ~> (b ~> f1 a2)) (xs :: [a1]) (ys :: [b]) = Apply (SequenceA_Sym0 :: TyFun [f1 a2] (f1 ()) -> Type) (Apply (Apply (Apply (ZipWithSym0 :: TyFun (a1 ~> (b ~> f1 a2)) ([a1] ~> ([b] ~> [f1 a2])) -> Type) f2) xs) ys) 

sZipWithM_ :: forall a b (m :: Type -> Type) c (t1 :: a ~> (b ~> m c)) (t2 :: [a]) (t3 :: [b]). SApplicative m => Sing t1 -> Sing t2 -> Sing t3 -> Sing (ZipWithM_ t1 t2 t3) Source #

type family FoldlM (a1 :: b ~> (a ~> m b)) (a2 :: b) (a3 :: t a) :: m b where ... Source #

Equations

FoldlM (f :: k1 ~> (a ~> m6989586621679921925 k1)) (z0 :: k1) (xs :: t a) = Apply (Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ((k1 ~> m6989586621679921925 k1) ~> (k1 ~> m6989586621679921925 k1))) ((k1 ~> m6989586621679921925 k1) ~> (t a ~> (k1 ~> m6989586621679921925 k1))) -> Type) (Let6989586621679922483F'Sym0 f z0 xs :: TyFun a (TyFun (k1 ~> m6989586621679921925 k1) (TyFun k1 (m6989586621679921925 k1) -> Type) -> Type) -> Type)) (ReturnSym0 :: TyFun k1 (m6989586621679921925 k1) -> Type)) xs) z0 

sFoldlM :: forall b a (m :: Type -> Type) (t1 :: Type -> Type) (t2 :: b ~> (a ~> m b)) (t3 :: b) (t4 :: t1 a). (SFoldable t1, SMonad m) => Sing t2 -> Sing t3 -> Sing t4 -> Sing (FoldlM t2 t3 t4) Source #

type family ReplicateM (a1 :: Natural) (a2 :: m a) :: m [a] where ... Source #

Equations

ReplicateM cnt0 (f :: m a) = Apply (Let6989586621680354898LoopSym0 m a cnt0 f) cnt0 

sReplicateM :: forall (m :: Type -> Type) a (t1 :: Natural) (t2 :: m a). SApplicative m => Sing t1 -> Sing t2 -> Sing (ReplicateM t1 t2) Source #

type family ReplicateM_ (a1 :: Natural) (a2 :: m a) :: m () where ... Source #

Equations

ReplicateM_ cnt0 (f :: m a) = Apply (Let6989586621680354876LoopSym0 m a cnt0 f) cnt0 

sReplicateM_ :: forall (m :: Type -> Type) a (t1 :: Natural) (t2 :: m a). SApplicative m => Sing t1 -> Sing t2 -> Sing (ReplicateM_ t1 t2) Source #

type family Guard (a :: Bool) :: f () where ... Source #

Equations

Guard 'True = Apply (PureSym0 :: TyFun () (f ()) -> Type) Tuple0Sym0 
Guard 'False = EmptySym0 :: f () 

sGuard :: forall (f :: Type -> Type) (t :: Bool). SAlternative f => Sing t -> Sing (Guard t :: f ()) Source #

type family When (a :: Bool) (a1 :: f ()) :: f () where ... Source #

Equations

When p (s :: f6989586621679270849 ()) = Apply (LamCases_6989586621679271168Sym0 p s) p 

sWhen :: forall (f :: Type -> Type) (t1 :: Bool) (t2 :: f ()). SApplicative f => Sing t1 -> Sing t2 -> Sing (When t1 t2) Source #

type family Unless (a :: Bool) (a1 :: f ()) :: f () where ... Source #

Equations

Unless p (s :: f6989586621680354514 ()) = Apply (LamCases_6989586621680354864Sym0 p s) p 

sUnless :: forall (f :: Type -> Type) (t1 :: Bool) (t2 :: f ()). SApplicative f => Sing t1 -> Sing t2 -> Sing (Unless t1 t2) Source #

type family LiftM (a :: a1 ~> r) (a2 :: m a1) :: m r where ... Source #

Equations

LiftM (f :: a16989586621679270847 ~> b) (m1 :: m6989586621679270846 a16989586621679270847) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270846 a16989586621679270847) ((a16989586621679270847 ~> m6989586621679270846 b) ~> m6989586621679270846 b) -> Type) m1) (LamCases_6989586621679271155Sym0 f m1 :: TyFun a16989586621679270847 (m6989586621679270846 b) -> Type) 

sLiftM :: forall a1 r (m :: Type -> Type) (t1 :: a1 ~> r) (t2 :: m a1). SMonad m => Sing t1 -> Sing t2 -> Sing (LiftM t1 t2) Source #

type family LiftM2 (a :: a1 ~> (a2 ~> r)) (a4 :: m a1) (a5 :: m a2) :: m r where ... Source #

Equations

LiftM2 (f :: a16989586621679270843 ~> (a26989586621679270844 ~> b)) (m1 :: m6989586621679270842 a16989586621679270843) (m2 :: m6989586621679270842 a26989586621679270844) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270842 a16989586621679270843) ((a16989586621679270843 ~> m6989586621679270842 b) ~> m6989586621679270842 b) -> Type) m1) (LamCases_6989586621679271136Sym0 f m1 m2) 

sLiftM2 :: forall a1 a2 r (m :: Type -> Type) (t1 :: a1 ~> (a2 ~> r)) (t2 :: m a1) (t3 :: m a2). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftM2 t1 t2 t3) Source #

type family LiftM3 (a :: a1 ~> (a2 ~> (a3 ~> r))) (a4 :: m a1) (a5 :: m a2) (a6 :: m a3) :: m r where ... Source #

Equations

LiftM3 (f :: a16989586621679270838 ~> (a26989586621679270839 ~> (a36989586621679270840 ~> b))) (m1 :: m6989586621679270837 a16989586621679270838) (m2 :: m6989586621679270837 a26989586621679270839) (m3 :: m6989586621679270837 a36989586621679270840) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270837 a16989586621679270838) ((a16989586621679270838 ~> m6989586621679270837 b) ~> m6989586621679270837 b) -> Type) m1) (LamCases_6989586621679271108Sym0 f m1 m2 m3) 

sLiftM3 :: forall a1 a2 a3 r (m :: Type -> Type) (t1 :: a1 ~> (a2 ~> (a3 ~> r))) (t2 :: m a1) (t3 :: m a2) (t4 :: m a3). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing (LiftM3 t1 t2 t3 t4) Source #

type family LiftM4 (a :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a7 :: m a1) (a8 :: m a2) (a9 :: m a3) (a10 :: m a4) :: m r where ... Source #

Equations

LiftM4 (f :: a16989586621679270832 ~> (a26989586621679270833 ~> (a36989586621679270834 ~> (a46989586621679270835 ~> b)))) (m1 :: m6989586621679270831 a16989586621679270832) (m2 :: m6989586621679270831 a26989586621679270833) (m3 :: m6989586621679270831 a36989586621679270834) (m4 :: m6989586621679270831 a46989586621679270835) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270831 a16989586621679270832) ((a16989586621679270832 ~> m6989586621679270831 b) ~> m6989586621679270831 b) -> Type) m1) (LamCases_6989586621679271071Sym0 f m1 m2 m3 m4) 

sLiftM4 :: forall a1 a2 a3 a4 r (m :: Type -> Type) (t1 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (t2 :: m a1) (t3 :: m a2) (t4 :: m a3) (t5 :: m a4). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing (LiftM4 t1 t2 t3 t4 t5) Source #

type family LiftM5 (a :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a7 :: m a1) (a8 :: m a2) (a9 :: m a3) (a10 :: m a4) (a11 :: m a5) :: m r where ... Source #

Equations

LiftM5 (f :: a16989586621679270825 ~> (a26989586621679270826 ~> (a36989586621679270827 ~> (a46989586621679270828 ~> (a56989586621679270829 ~> b))))) (m1 :: m6989586621679270824 a16989586621679270825) (m2 :: m6989586621679270824 a26989586621679270826) (m3 :: m6989586621679270824 a36989586621679270827) (m4 :: m6989586621679270824 a46989586621679270828) (m5 :: m6989586621679270824 a56989586621679270829) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270824 a16989586621679270825) ((a16989586621679270825 ~> m6989586621679270824 b) ~> m6989586621679270824 b) -> Type) m1) (LamCases_6989586621679271025Sym0 f m1 m2 m3 m4 m5) 

sLiftM5 :: forall a1 a2 a3 a4 a5 r (m :: Type -> Type) (t1 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (t2 :: m a1) (t3 :: m a2) (t4 :: m a3) (t5 :: m a4) (t6 :: m a5). SMonad m => Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing t5 -> Sing t6 -> Sing (LiftM5 t1 t2 t3 t4 t5 t6) Source #

type family Ap (a1 :: m (a ~> b)) (a2 :: m a) :: m b where ... Source #

Equations

Ap (m1 :: m6989586621679270821 (a6989586621679270822 ~> b)) (m2 :: m6989586621679270821 a6989586621679270822) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621679270821 (a6989586621679270822 ~> b)) (((a6989586621679270822 ~> b) ~> m6989586621679270821 b) ~> m6989586621679270821 b) -> Type) m1) (LamCases_6989586621679270994Sym0 m1 m2 :: TyFun (a6989586621679270822 ~> b) (m6989586621679270821 b) -> Type) 

sAp :: forall (m :: Type -> Type) a b (t1 :: m (a ~> b)) (t2 :: m a). SMonad m => Sing t1 -> Sing t2 -> Sing (Ap t1 t2) Source #

type family (a1 :: a ~> b) <$!> (a2 :: m a) :: m b where ... infixl 4 Source #

Equations

(f :: a6989586621680354512 ~> b) <$!> (m :: m6989586621680354511 a6989586621680354512) = Apply (Apply ((>>=@#@$) :: TyFun (m6989586621680354511 a6989586621680354512) ((a6989586621680354512 ~> m6989586621680354511 b) ~> m6989586621680354511 b) -> Type) m) (LamCases_6989586621680354849Sym0 f m :: TyFun a6989586621680354512 (m6989586621680354511 b) -> Type) 

(%<$!>) :: forall a b (m :: Type -> Type) (t1 :: a ~> b) (t2 :: m a). SMonad m => Sing t1 -> Sing t2 -> Sing (t1 <$!> t2) infixl 4 Source #

Defunctionalization symbols

data FmapSym0 (a1 :: TyFun (a ~> b) (f a ~> f b)) Source #

Instances

Instances details
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) #

SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679271227 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679271227 :: a ~> b) = FmapSym1 a6989586621679271227 :: TyFun (f a) (f b) -> Type

data FmapSym1 (a6989586621679271227 :: a ~> b) (b1 :: TyFun (f a) (f b)) Source #

Instances

Instances details
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing (FmapSym1 x :: TyFun (f a) (f b) -> Type) #

(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (FmapSym1 d :: TyFun (f a) (f b) -> Type) #

SuppressUnusedWarnings (FmapSym1 a6989586621679271227 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679271227 :: TyFun (f a) (f b) -> Type) (a6989586621679271228 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679271227 :: TyFun (f a) (f b) -> Type) (a6989586621679271228 :: f a) = Fmap a6989586621679271227 a6989586621679271228

type family FmapSym2 (a6989586621679271227 :: a ~> b) (a6989586621679271228 :: f a) :: f b where ... Source #

Equations

FmapSym2 (a6989586621679271227 :: a ~> b) (a6989586621679271228 :: f a) = Fmap a6989586621679271227 a6989586621679271228 

data (>>=@#@$) (a1 :: TyFun (m a) ((a ~> m b) ~> m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) #

SuppressUnusedWarnings ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679271335 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679271335 :: m a) = (>>=@#@$$) a6989586621679271335 :: TyFun (a ~> m b) (m b) -> Type

data (a6989586621679271335 :: m a) >>=@#@$$ (b1 :: TyFun (a ~> m b) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>=@#@$$) :: m a -> TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a). Sing x -> Sing ((>>=@#@$$) x :: TyFun (a ~> m b) (m b) -> Type) #

(SMonad m, SingI d) => SingI ((>>=@#@$$) d :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>=@#@$$) d :: TyFun (a ~> m b) (m b) -> Type) #

SuppressUnusedWarnings ((>>=@#@$$) a6989586621679271335 :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679271335 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679271336 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679271335 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679271336 :: a ~> m b) = a6989586621679271335 >>= a6989586621679271336

type family (a6989586621679271335 :: m a) >>=@#@$$$ (a6989586621679271336 :: a ~> m b) :: m b where ... infixl 1 Source #

Equations

(a6989586621679271335 :: m a) >>=@#@$$$ (a6989586621679271336 :: a ~> m b) = a6989586621679271335 >>= a6989586621679271336 

data (>>@#@$) (a1 :: TyFun (m a) (m b ~> m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) #

SuppressUnusedWarnings ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679271340 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679271340 :: m a) = (>>@#@$$) a6989586621679271340 :: TyFun (m b) (m b) -> Type

data (a6989586621679271340 :: m a) >>@#@$$ (b1 :: TyFun (m b) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>@#@$$) :: m a -> TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a). Sing x -> Sing ((>>@#@$$) x :: TyFun (m b) (m b) -> Type) #

(SMonad m, SingI d) => SingI ((>>@#@$$) d :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>@#@$$) d :: TyFun (m b) (m b) -> Type) #

SuppressUnusedWarnings ((>>@#@$$) a6989586621679271340 :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679271340 :: TyFun (m b) (m b) -> Type) (a6989586621679271341 :: m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679271340 :: TyFun (m b) (m b) -> Type) (a6989586621679271341 :: m b) = a6989586621679271340 >> a6989586621679271341

type family (a6989586621679271340 :: m a) >>@#@$$$ (a6989586621679271341 :: m b) :: m b where ... infixl 1 Source #

Equations

(a6989586621679271340 :: m a) >>@#@$$$ (a6989586621679271341 :: m b) = a6989586621679271340 >> a6989586621679271341 

data ReturnSym0 (a1 :: TyFun a (m a)) Source #

Instances

Instances details
SMonad m => SingI (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (ReturnSym0 :: TyFun a (m a) -> Type) #

SuppressUnusedWarnings (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679271344 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679271344 :: a) = Return a6989586621679271344 :: m a

type family ReturnSym1 (a6989586621679271344 :: a) :: m a where ... Source #

Equations

ReturnSym1 (a6989586621679271344 :: a) = Return a6989586621679271344 :: m a 

data FailSym0 (a1 :: TyFun [Char] (m a)) Source #

Instances

Instances details
SMonadFail m => SingI (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sing :: Sing (FailSym0 :: TyFun [Char] (m a) -> Type) #

SuppressUnusedWarnings (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679365940 :: [Char]) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679365940 :: [Char]) = Fail a6989586621679365940 :: m a

type family FailSym1 (a6989586621679365940 :: [Char]) :: m a where ... Source #

Equations

FailSym1 a6989586621679365940 = Fail a6989586621679365940 :: m a 

type family MzeroSym0 :: m a where ... Source #

Equations

MzeroSym0 = Mzero :: m a 

data MplusSym0 (a1 :: TyFun (m a) (m a ~> m a)) Source #

Instances

Instances details
SMonadPlus m => SingI (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) #

SuppressUnusedWarnings (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) (a6989586621679271380 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym0 :: TyFun (m a) (m a ~> m a) -> Type) (a6989586621679271380 :: m a) = MplusSym1 a6989586621679271380

data MplusSym1 (a6989586621679271380 :: m a) (b :: TyFun (m a) (m a)) Source #

Instances

Instances details
SMonadPlus m => SingI1 (MplusSym1 :: m a -> TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a). Sing x -> Sing (MplusSym1 x) #

(SMonadPlus m, SingI d) => SingI (MplusSym1 d :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (MplusSym1 d) #

SuppressUnusedWarnings (MplusSym1 a6989586621679271380 :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym1 a6989586621679271380 :: TyFun (m a) (m a) -> Type) (a6989586621679271381 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (MplusSym1 a6989586621679271380 :: TyFun (m a) (m a) -> Type) (a6989586621679271381 :: m a) = Mplus a6989586621679271380 a6989586621679271381

type family MplusSym2 (a6989586621679271380 :: m a) (a6989586621679271381 :: m a) :: m a where ... Source #

Equations

MplusSym2 (a6989586621679271380 :: m a) (a6989586621679271381 :: m a) = Mplus a6989586621679271380 a6989586621679271381 

data MapMSym0 (a1 :: TyFun (a ~> m b) (t a ~> m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) #

SuppressUnusedWarnings (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680096868 :: a ~> m b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680096868 :: a ~> m b) = MapMSym1 a6989586621680096868 :: TyFun (t a) (m (t b)) -> Type

data MapMSym1 (a6989586621680096868 :: a ~> m b) (b1 :: TyFun (t a) (m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI1 (MapMSym1 :: (a ~> m b) -> TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a ~> m b). Sing x -> Sing (MapMSym1 x :: TyFun (t a) (m (t b)) -> Type) #

(STraversable t, SMonad m, SingI d) => SingI (MapMSym1 d :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapMSym1 d :: TyFun (t a) (m (t b)) -> Type) #

SuppressUnusedWarnings (MapMSym1 a6989586621680096868 :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680096868 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680096869 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680096868 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680096869 :: t a) = MapM a6989586621680096868 a6989586621680096869

type family MapMSym2 (a6989586621680096868 :: a ~> m b) (a6989586621680096869 :: t a) :: m (t b) where ... Source #

Equations

MapMSym2 (a6989586621680096868 :: a ~> m b) (a6989586621680096869 :: t a) = MapM a6989586621680096868 a6989586621680096869 

data MapM_Sym0 (a1 :: TyFun (a ~> m b) (t a ~> m ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) #

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621679922449 :: a ~> m b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621679922449 :: a ~> m b) = MapM_Sym1 a6989586621679922449 :: TyFun (t a) (m ()) -> Type

data MapM_Sym1 (a6989586621679922449 :: a ~> m b) (b1 :: TyFun (t a) (m ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI1 (MapM_Sym1 :: (a ~> m b) -> TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> m b). Sing x -> Sing (MapM_Sym1 x :: TyFun (t a) (m ()) -> Type) #

(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) #

SuppressUnusedWarnings (MapM_Sym1 a6989586621679922449 :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621679922449 :: TyFun (t a) (m ()) -> Type) (a6989586621679922450 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621679922449 :: TyFun (t a) (m ()) -> Type) (a6989586621679922450 :: t a) = MapM_ a6989586621679922449 a6989586621679922450

type family MapM_Sym2 (a6989586621679922449 :: a ~> m b) (a6989586621679922450 :: t a) :: m () where ... Source #

Equations

MapM_Sym2 (a6989586621679922449 :: a ~> m b) (a6989586621679922450 :: t a) = MapM_ a6989586621679922449 a6989586621679922450 

data ForMSym0 (a1 :: TyFun (t a) ((a ~> m b) ~> m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) #

SuppressUnusedWarnings (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) (a6989586621680103095 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym0 :: TyFun (t a) ((a ~> m b) ~> m (t b)) -> Type) (a6989586621680103095 :: t a) = ForMSym1 a6989586621680103095 :: TyFun (a ~> m b) (m (t b)) -> Type

data ForMSym1 (a6989586621680103095 :: t a) (b1 :: TyFun (a ~> m b) (m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI1 (ForMSym1 :: t a -> TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: t a). Sing x -> Sing (ForMSym1 x :: TyFun (a ~> m b) (m (t b)) -> Type) #

(STraversable t, SMonad m, SingI d) => SingI (ForMSym1 d :: TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (ForMSym1 d :: TyFun (a ~> m b) (m (t b)) -> Type) #

SuppressUnusedWarnings (ForMSym1 a6989586621680103095 :: TyFun (a ~> m b) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym1 a6989586621680103095 :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680103096 :: a ~> m b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (ForMSym1 a6989586621680103095 :: TyFun (a ~> m b) (m (t b)) -> Type) (a6989586621680103096 :: a ~> m b) = ForM a6989586621680103095 a6989586621680103096

type family ForMSym2 (a6989586621680103095 :: t a) (a6989586621680103096 :: a ~> m b) :: m (t b) where ... Source #

Equations

ForMSym2 (a6989586621680103095 :: t a) (a6989586621680103096 :: a ~> m b) = ForM a6989586621680103095 a6989586621680103096 

data SequenceSym0 (a1 :: TyFun (t (m a)) (m (t a))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) #

SuppressUnusedWarnings (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680096872 :: t (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680096872 :: t (m a)) = Sequence a6989586621680096872

type family SequenceSym1 (a6989586621680096872 :: t (m a)) :: m (t a) where ... Source #

Equations

SequenceSym1 (a6989586621680096872 :: t (m a)) = Sequence a6989586621680096872 

data Sequence_Sym0 (a1 :: TyFun (t (m a)) (m ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) #

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621679922425 :: t (m a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621679922425 :: t (m a)) = Sequence_ a6989586621679922425

type family Sequence_Sym1 (a6989586621679922425 :: t (m a)) :: m () where ... Source #

Equations

Sequence_Sym1 (a6989586621679922425 :: t (m a)) = Sequence_ a6989586621679922425 

data (=<<@#@$) (a1 :: TyFun (a ~> m b) (m a ~> m b)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) #

SuppressUnusedWarnings ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679271176 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679271176 :: a ~> m b) = (=<<@#@$$) a6989586621679271176

data (a6989586621679271176 :: a ~> m b) =<<@#@$$ (b1 :: TyFun (m a) (m b)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((=<<@#@$$) :: (a ~> m b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> m b). Sing x -> Sing ((=<<@#@$$) x) #

(SMonad m, SingI d) => SingI ((=<<@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((=<<@#@$$) d) #

SuppressUnusedWarnings ((=<<@#@$$) a6989586621679271176 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679271176 :: TyFun (m a) (m b) -> Type) (a6989586621679271177 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679271176 :: TyFun (m a) (m b) -> Type) (a6989586621679271177 :: m a) = a6989586621679271176 =<< a6989586621679271177

type family (a6989586621679271176 :: a ~> m b) =<<@#@$$$ (a6989586621679271177 :: m a) :: m b where ... infixr 1 Source #

Equations

(a6989586621679271176 :: a ~> m b) =<<@#@$$$ (a6989586621679271177 :: m a) = a6989586621679271176 =<< a6989586621679271177 

data (>=>@#@$) (a1 :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) #

SuppressUnusedWarnings ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) (a6989586621680354988 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$) :: TyFun (a ~> m b) ((b ~> m c) ~> (a ~> m c)) -> Type) (a6989586621680354988 :: a ~> m b) = (>=>@#@$$) a6989586621680354988 :: TyFun (b ~> m c) (a ~> m c) -> Type

data (a6989586621680354988 :: a ~> m b) >=>@#@$$ (b1 :: TyFun (b ~> m c) (a ~> m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>=>@#@$$) :: (a ~> m b) -> TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> m b). Sing x -> Sing ((>=>@#@$$) x :: TyFun (b ~> m c) (a ~> m c) -> Type) #

(SMonad m, SingI d) => SingI ((>=>@#@$$) d :: TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((>=>@#@$$) d :: TyFun (b ~> m c) (a ~> m c) -> Type) #

SuppressUnusedWarnings ((>=>@#@$$) a6989586621680354988 :: TyFun (b ~> m c) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$$) a6989586621680354988 :: TyFun (b ~> m c) (a ~> m c) -> Type) (a6989586621680354989 :: b ~> m c) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((>=>@#@$$) a6989586621680354988 :: TyFun (b ~> m c) (a ~> m c) -> Type) (a6989586621680354989 :: b ~> m c) = a6989586621680354988 >=>@#@$$$ a6989586621680354989

data ((a6989586621680354988 :: a ~> m b) >=>@#@$$$ (a6989586621680354989 :: b ~> m c)) (c1 :: TyFun a (m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI2 ((>=>@#@$$$) :: (a ~> m b) -> (b ~> m c) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: a ~> m b) (y :: b ~> m c). Sing x -> Sing y -> Sing (x >=>@#@$$$ y) #

(SMonad m, SingI d) => SingI1 ((>=>@#@$$$) d :: (b ~> m c) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: b ~> m c). Sing x -> Sing (d >=>@#@$$$ x) #

(SMonad m, SingI d1, SingI d2) => SingI (d1 >=>@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (d1 >=>@#@$$$ d2) #

SuppressUnusedWarnings (a6989586621680354988 >=>@#@$$$ a6989586621680354989 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621680354988 >=>@#@$$$ a6989586621680354989 :: TyFun a (m c) -> Type) (a6989586621680354990 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621680354988 >=>@#@$$$ a6989586621680354989 :: TyFun a (m c) -> Type) (a6989586621680354990 :: a) = (a6989586621680354988 >=> a6989586621680354989) a6989586621680354990

data (<=<@#@$) (a1 :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c))) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) #

SuppressUnusedWarnings ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) (a6989586621680354976 :: b ~> m c) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$) :: TyFun (b ~> m c) ((a ~> m b) ~> (a ~> m c)) -> Type) (a6989586621680354976 :: b ~> m c) = (<=<@#@$$) a6989586621680354976 :: TyFun (a ~> m b) (a ~> m c) -> Type

data (a6989586621680354976 :: b ~> m c) <=<@#@$$ (b1 :: TyFun (a ~> m b) (a ~> m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((<=<@#@$$) :: (b ~> m c) -> TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: b ~> m c). Sing x -> Sing ((<=<@#@$$) x :: TyFun (a ~> m b) (a ~> m c) -> Type) #

(SMonad m, SingI d) => SingI ((<=<@#@$$) d :: TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<=<@#@$$) d :: TyFun (a ~> m b) (a ~> m c) -> Type) #

SuppressUnusedWarnings ((<=<@#@$$) a6989586621680354976 :: TyFun (a ~> m b) (a ~> m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$$) a6989586621680354976 :: TyFun (a ~> m b) (a ~> m c) -> Type) (a6989586621680354977 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<=<@#@$$) a6989586621680354976 :: TyFun (a ~> m b) (a ~> m c) -> Type) (a6989586621680354977 :: a ~> m b) = a6989586621680354976 <=<@#@$$$ a6989586621680354977

data ((a6989586621680354976 :: b ~> m c) <=<@#@$$$ (a6989586621680354977 :: a ~> m b)) (c1 :: TyFun a (m c)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI2 ((<=<@#@$$$) :: (b ~> m c) -> (a ~> m b) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: b ~> m c) (y :: a ~> m b). Sing x -> Sing y -> Sing (x <=<@#@$$$ y) #

(SMonad m, SingI d) => SingI1 ((<=<@#@$$$) d :: (a ~> m b) -> TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> m b). Sing x -> Sing (d <=<@#@$$$ x) #

(SMonad m, SingI d1, SingI d2) => SingI (d1 <=<@#@$$$ d2 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (d1 <=<@#@$$$ d2) #

SuppressUnusedWarnings (a6989586621680354976 <=<@#@$$$ a6989586621680354977 :: TyFun a (m c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621680354976 <=<@#@$$$ a6989586621680354977 :: TyFun a (m c) -> Type) (a6989586621680354978 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (a6989586621680354976 <=<@#@$$$ a6989586621680354977 :: TyFun a (m c) -> Type) (a6989586621680354978 :: a) = (a6989586621680354976 <=< a6989586621680354977) a6989586621680354978

data VoidSym0 (a1 :: TyFun (f a) (f ())) Source #

Instances

Instances details
SFunctor f => SingI (VoidSym0 :: TyFun (f a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing (VoidSym0 :: TyFun (f a) (f ()) -> Type) #

SuppressUnusedWarnings (VoidSym0 :: TyFun (f a) (f ()) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679357493 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply (VoidSym0 :: TyFun (f a) (f ()) -> Type) (a6989586621679357493 :: f a) = Void a6989586621679357493

type family VoidSym1 (a6989586621679357493 :: f a) :: f () where ... Source #

Equations

VoidSym1 (a6989586621679357493 :: f a) = Void a6989586621679357493 

data JoinSym0 (a1 :: TyFun (m (m a)) (m a)) Source #

Instances

Instances details
SMonad m => SingI (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) #

SuppressUnusedWarnings (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679271182 :: m (m a)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (JoinSym0 :: TyFun (m (m a)) (m a) -> Type) (a6989586621679271182 :: m (m a)) = Join a6989586621679271182

type family JoinSym1 (a6989586621679271182 :: m (m a)) :: m a where ... Source #

Equations

JoinSym1 (a6989586621679271182 :: m (m a)) = Join a6989586621679271182 

data MsumSym0 (a1 :: TyFun (t (m a)) (m a)) Source #

Instances

Instances details
(SFoldable t, SMonadPlus m) => SingI (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) #

SuppressUnusedWarnings (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621679922413 :: t (m a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MsumSym0 :: TyFun (t (m a)) (m a) -> Type) (a6989586621679922413 :: t (m a)) = Msum a6989586621679922413

type family MsumSym1 (a6989586621679922413 :: t (m a)) :: m a where ... Source #

Equations

MsumSym1 (a6989586621679922413 :: t (m a)) = Msum a6989586621679922413 

data MfilterSym0 (a1 :: TyFun (a ~> Bool) (m a ~> m a)) Source #

Instances

Instances details
SMonadPlus m => SingI (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) #

SuppressUnusedWarnings (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) (a6989586621680354827 :: a ~> Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym0 :: TyFun (a ~> Bool) (m a ~> m a) -> Type) (a6989586621680354827 :: a ~> Bool) = MfilterSym1 a6989586621680354827 :: TyFun (m a) (m a) -> Type

data MfilterSym1 (a6989586621680354827 :: a ~> Bool) (b :: TyFun (m a) (m a)) Source #

Instances

Instances details
SMonadPlus m => SingI1 (MfilterSym1 :: (a ~> Bool) -> TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (MfilterSym1 x :: TyFun (m a) (m a) -> Type) #

(SMonadPlus m, SingI d) => SingI (MfilterSym1 d :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MfilterSym1 d :: TyFun (m a) (m a) -> Type) #

SuppressUnusedWarnings (MfilterSym1 a6989586621680354827 :: TyFun (m a) (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym1 a6989586621680354827 :: TyFun (m a) (m a) -> Type) (a6989586621680354828 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MfilterSym1 a6989586621680354827 :: TyFun (m a) (m a) -> Type) (a6989586621680354828 :: m a) = Mfilter a6989586621680354827 a6989586621680354828

type family MfilterSym2 (a6989586621680354827 :: a ~> Bool) (a6989586621680354828 :: m a) :: m a where ... Source #

Equations

MfilterSym2 (a6989586621680354827 :: a ~> Bool) (a6989586621680354828 :: m a) = Mfilter a6989586621680354827 a6989586621680354828 

data FilterMSym0 (a1 :: TyFun (a ~> m Bool) ([a] ~> m [a])) Source #

Instances

Instances details
SApplicative m => SingI (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) #

SuppressUnusedWarnings (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) (a6989586621680355005 :: a ~> m Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym0 :: TyFun (a ~> m Bool) ([a] ~> m [a]) -> Type) (a6989586621680355005 :: a ~> m Bool) = FilterMSym1 a6989586621680355005

data FilterMSym1 (a6989586621680355005 :: a ~> m Bool) (b :: TyFun [a] (m [a])) Source #

Instances

Instances details
SApplicative m => SingI1 (FilterMSym1 :: (a ~> m Bool) -> TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> m Bool). Sing x -> Sing (FilterMSym1 x) #

(SApplicative m, SingI d) => SingI (FilterMSym1 d :: TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (FilterMSym1 d) #

SuppressUnusedWarnings (FilterMSym1 a6989586621680355005 :: TyFun [a] (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym1 a6989586621680355005 :: TyFun [a] (m [a]) -> Type) (a6989586621680355006 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (FilterMSym1 a6989586621680355005 :: TyFun [a] (m [a]) -> Type) (a6989586621680355006 :: [a]) = FilterM a6989586621680355005 a6989586621680355006

type family FilterMSym2 (a6989586621680355005 :: a ~> m Bool) (a6989586621680355006 :: [a]) :: m [a] where ... Source #

Equations

FilterMSym2 (a6989586621680355005 :: a ~> m Bool) (a6989586621680355006 :: [a]) = FilterM a6989586621680355005 a6989586621680355006 

data MapAndUnzipMSym0 (a1 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c]))) Source #

Instances

Instances details
SApplicative m => SingI (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) #

SuppressUnusedWarnings (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) (a6989586621680354962 :: a ~> m (b, c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym0 :: TyFun (a ~> m (b, c)) ([a] ~> m ([b], [c])) -> Type) (a6989586621680354962 :: a ~> m (b, c)) = MapAndUnzipMSym1 a6989586621680354962

data MapAndUnzipMSym1 (a6989586621680354962 :: a ~> m (b, c)) (b1 :: TyFun [a] (m ([b], [c]))) Source #

Instances

Instances details
SApplicative m => SingI1 (MapAndUnzipMSym1 :: (a ~> m (b, c)) -> TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> m (b, c)). Sing x -> Sing (MapAndUnzipMSym1 x) #

(SApplicative m, SingI d) => SingI (MapAndUnzipMSym1 d :: TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (MapAndUnzipMSym1 d) #

SuppressUnusedWarnings (MapAndUnzipMSym1 a6989586621680354962 :: TyFun [a] (m ([b], [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym1 a6989586621680354962 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621680354963 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (MapAndUnzipMSym1 a6989586621680354962 :: TyFun [a] (m ([b], [c])) -> Type) (a6989586621680354963 :: [a]) = MapAndUnzipM a6989586621680354962 a6989586621680354963

type family MapAndUnzipMSym2 (a6989586621680354962 :: a ~> m (b, c)) (a6989586621680354963 :: [a]) :: m ([b], [c]) where ... Source #

Equations

MapAndUnzipMSym2 (a6989586621680354962 :: a ~> m (b, c)) (a6989586621680354963 :: [a]) = MapAndUnzipM a6989586621680354962 a6989586621680354963 

data ZipWithMSym0 (a1 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c]))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) #

SuppressUnusedWarnings (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) (a6989586621680354953 :: a ~> (b ~> m c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m [c])) -> Type) (a6989586621680354953 :: a ~> (b ~> m c)) = ZipWithMSym1 a6989586621680354953

data ZipWithMSym1 (a6989586621680354953 :: a ~> (b ~> m c)) (b1 :: TyFun [a] ([b] ~> m [c])) Source #

Instances

Instances details
SApplicative m => SingI1 (ZipWithMSym1 :: (a ~> (b ~> m c)) -> TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> m c)). Sing x -> Sing (ZipWithMSym1 x) #

(SApplicative m, SingI d) => SingI (ZipWithMSym1 d :: TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithMSym1 d) #

SuppressUnusedWarnings (ZipWithMSym1 a6989586621680354953 :: TyFun [a] ([b] ~> m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym1 a6989586621680354953 :: TyFun [a] ([b] ~> m [c]) -> Type) (a6989586621680354954 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym1 a6989586621680354953 :: TyFun [a] ([b] ~> m [c]) -> Type) (a6989586621680354954 :: [a]) = ZipWithMSym2 a6989586621680354953 a6989586621680354954

data ZipWithMSym2 (a6989586621680354953 :: a ~> (b ~> m c)) (a6989586621680354954 :: [a]) (c1 :: TyFun [b] (m [c])) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI1 (ZipWithMSym2 d :: [a] -> TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWithMSym2 d x) #

SApplicative m => SingI2 (ZipWithMSym2 :: (a ~> (b ~> m c)) -> [a] -> TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> m c)) (y :: [a]). Sing x -> Sing y -> Sing (ZipWithMSym2 x y) #

(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithMSym2 d1 d2 :: TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithMSym2 d1 d2) #

SuppressUnusedWarnings (ZipWithMSym2 a6989586621680354953 a6989586621680354954 :: TyFun [b] (m [c]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym2 a6989586621680354953 a6989586621680354954 :: TyFun [b] (m [c]) -> Type) (a6989586621680354955 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithMSym2 a6989586621680354953 a6989586621680354954 :: TyFun [b] (m [c]) -> Type) (a6989586621680354955 :: [b]) = ZipWithM a6989586621680354953 a6989586621680354954 a6989586621680354955

type family ZipWithMSym3 (a6989586621680354953 :: a ~> (b ~> m c)) (a6989586621680354954 :: [a]) (a6989586621680354955 :: [b]) :: m [c] where ... Source #

Equations

ZipWithMSym3 (a6989586621680354953 :: a ~> (b ~> m c)) (a6989586621680354954 :: [a]) (a6989586621680354955 :: [b]) = ZipWithM a6989586621680354953 a6989586621680354954 a6989586621680354955 

data ZipWithM_Sym0 (a1 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ()))) Source #

Instances

Instances details
SApplicative m => SingI (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) #

SuppressUnusedWarnings (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) (a6989586621680354943 :: a ~> (b ~> m c)) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym0 :: TyFun (a ~> (b ~> m c)) ([a] ~> ([b] ~> m ())) -> Type) (a6989586621680354943 :: a ~> (b ~> m c)) = ZipWithM_Sym1 a6989586621680354943

data ZipWithM_Sym1 (a6989586621680354943 :: a ~> (b ~> m c)) (b1 :: TyFun [a] ([b] ~> m ())) Source #

Instances

Instances details
SApplicative m => SingI1 (ZipWithM_Sym1 :: (a ~> (b ~> m c)) -> TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> m c)). Sing x -> Sing (ZipWithM_Sym1 x) #

(SApplicative m, SingI d) => SingI (ZipWithM_Sym1 d :: TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithM_Sym1 d) #

SuppressUnusedWarnings (ZipWithM_Sym1 a6989586621680354943 :: TyFun [a] ([b] ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym1 a6989586621680354943 :: TyFun [a] ([b] ~> m ()) -> Type) (a6989586621680354944 :: [a]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym1 a6989586621680354943 :: TyFun [a] ([b] ~> m ()) -> Type) (a6989586621680354944 :: [a]) = ZipWithM_Sym2 a6989586621680354943 a6989586621680354944

data ZipWithM_Sym2 (a6989586621680354943 :: a ~> (b ~> m c)) (a6989586621680354944 :: [a]) (c1 :: TyFun [b] (m ())) Source #

Instances

Instances details
(SApplicative m, SingI d) => SingI1 (ZipWithM_Sym2 d :: [a] -> TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWithM_Sym2 d x) #

SApplicative m => SingI2 (ZipWithM_Sym2 :: (a ~> (b ~> m c)) -> [a] -> TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> m c)) (y :: [a]). Sing x -> Sing y -> Sing (ZipWithM_Sym2 x y) #

(SApplicative m, SingI d1, SingI d2) => SingI (ZipWithM_Sym2 d1 d2 :: TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ZipWithM_Sym2 d1 d2) #

SuppressUnusedWarnings (ZipWithM_Sym2 a6989586621680354943 a6989586621680354944 :: TyFun [b] (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym2 a6989586621680354943 a6989586621680354944 :: TyFun [b] (m ()) -> Type) (a6989586621680354945 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ZipWithM_Sym2 a6989586621680354943 a6989586621680354944 :: TyFun [b] (m ()) -> Type) (a6989586621680354945 :: [b]) = ZipWithM_ a6989586621680354943 a6989586621680354944 a6989586621680354945

type family ZipWithM_Sym3 (a6989586621680354943 :: a ~> (b ~> m c)) (a6989586621680354944 :: [a]) (a6989586621680354945 :: [b]) :: m () where ... Source #

Equations

ZipWithM_Sym3 (a6989586621680354943 :: a ~> (b ~> m c)) (a6989586621680354944 :: [a]) (a6989586621680354945 :: [b]) = ZipWithM_ a6989586621680354943 a6989586621680354944 a6989586621680354945 

data FoldlMSym0 (a1 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b))) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) #

SuppressUnusedWarnings (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621679922477 :: b ~> (a ~> m b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym0 :: TyFun (b ~> (a ~> m b)) (b ~> (t a ~> m b)) -> Type) (a6989586621679922477 :: b ~> (a ~> m b)) = FoldlMSym1 a6989586621679922477 :: TyFun b (t a ~> m b) -> Type

data FoldlMSym1 (a6989586621679922477 :: b ~> (a ~> m b)) (b1 :: TyFun b (t a ~> m b)) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI1 (FoldlMSym1 :: (b ~> (a ~> m b)) -> TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b ~> (a ~> m b)). Sing x -> Sing (FoldlMSym1 x :: TyFun b (t a ~> m b) -> Type) #

(SFoldable t, SMonad m, SingI d) => SingI (FoldlMSym1 d :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlMSym1 d :: TyFun b (t a ~> m b) -> Type) #

SuppressUnusedWarnings (FoldlMSym1 a6989586621679922477 :: TyFun b (t a ~> m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym1 a6989586621679922477 :: TyFun b (t a ~> m b) -> Type) (a6989586621679922478 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym1 a6989586621679922477 :: TyFun b (t a ~> m b) -> Type) (a6989586621679922478 :: b) = FoldlMSym2 a6989586621679922477 a6989586621679922478 :: TyFun (t a) (m b) -> Type

data FoldlMSym2 (a6989586621679922477 :: b ~> (a ~> m b)) (a6989586621679922478 :: b) (c :: TyFun (t a) (m b)) Source #

Instances

Instances details
(SFoldable t, SMonad m, SingI d) => SingI1 (FoldlMSym2 d :: b -> TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (FoldlMSym2 d x :: TyFun (t a) (m b) -> Type) #

(SFoldable t, SMonad m) => SingI2 (FoldlMSym2 :: (b ~> (a ~> m b)) -> b -> TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: b ~> (a ~> m b)) (y :: b). Sing x -> Sing y -> Sing (FoldlMSym2 x y :: TyFun (t a) (m b) -> Type) #

(SFoldable t, SMonad m, SingI d1, SingI d2) => SingI (FoldlMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlMSym2 d1 d2 :: TyFun (t a) (m b) -> Type) #

SuppressUnusedWarnings (FoldlMSym2 a6989586621679922477 a6989586621679922478 :: TyFun (t a) (m b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym2 a6989586621679922477 a6989586621679922478 :: TyFun (t a) (m b) -> Type) (a6989586621679922479 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlMSym2 a6989586621679922477 a6989586621679922478 :: TyFun (t a) (m b) -> Type) (a6989586621679922479 :: t a) = FoldlM a6989586621679922477 a6989586621679922478 a6989586621679922479

type family FoldlMSym3 (a6989586621679922477 :: b ~> (a ~> m b)) (a6989586621679922478 :: b) (a6989586621679922479 :: t a) :: m b where ... Source #

Equations

FoldlMSym3 (a6989586621679922477 :: b ~> (a ~> m b)) (a6989586621679922478 :: b) (a6989586621679922479 :: t a) = FoldlM a6989586621679922477 a6989586621679922478 a6989586621679922479 

data ReplicateMSym0 (a1 :: TyFun Natural (m a ~> m [a])) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) #

SuppressUnusedWarnings (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) (a6989586621680354894 :: Natural) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym0 :: TyFun Natural (m a ~> m [a]) -> Type) (a6989586621680354894 :: Natural) = ReplicateMSym1 a6989586621680354894 :: TyFun (m a) (m [a]) -> Type

data ReplicateMSym1 (a6989586621680354894 :: Natural) (b :: TyFun (m a) (m [a])) Source #

Instances

Instances details
SApplicative m => SingI1 (ReplicateMSym1 :: Natural -> TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (ReplicateMSym1 x :: TyFun (m a) (m [a]) -> Type) #

(SApplicative m, SingI d) => SingI (ReplicateMSym1 d :: TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateMSym1 d :: TyFun (m a) (m [a]) -> Type) #

SuppressUnusedWarnings (ReplicateMSym1 a6989586621680354894 :: TyFun (m a) (m [a]) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym1 a6989586621680354894 :: TyFun (m a) (m [a]) -> Type) (a6989586621680354895 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateMSym1 a6989586621680354894 :: TyFun (m a) (m [a]) -> Type) (a6989586621680354895 :: m a) = ReplicateM a6989586621680354894 a6989586621680354895

type family ReplicateMSym2 (a6989586621680354894 :: Natural) (a6989586621680354895 :: m a) :: m [a] where ... Source #

Equations

ReplicateMSym2 a6989586621680354894 (a6989586621680354895 :: m a) = ReplicateM a6989586621680354894 a6989586621680354895 

data ReplicateM_Sym0 (a1 :: TyFun Natural (m a ~> m ())) Source #

Instances

Instances details
SApplicative m => SingI (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) #

SuppressUnusedWarnings (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) (a6989586621680354872 :: Natural) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym0 :: TyFun Natural (m a ~> m ()) -> Type) (a6989586621680354872 :: Natural) = ReplicateM_Sym1 a6989586621680354872 :: TyFun (m a) (m ()) -> Type

data ReplicateM_Sym1 (a6989586621680354872 :: Natural) (b :: TyFun (m a) (m ())) Source #

Instances

Instances details
SApplicative m => SingI1 (ReplicateM_Sym1 :: Natural -> TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (ReplicateM_Sym1 x :: TyFun (m a) (m ()) -> Type) #

(SApplicative m, SingI d) => SingI (ReplicateM_Sym1 d :: TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (ReplicateM_Sym1 d :: TyFun (m a) (m ()) -> Type) #

SuppressUnusedWarnings (ReplicateM_Sym1 a6989586621680354872 :: TyFun (m a) (m ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym1 a6989586621680354872 :: TyFun (m a) (m ()) -> Type) (a6989586621680354873 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (ReplicateM_Sym1 a6989586621680354872 :: TyFun (m a) (m ()) -> Type) (a6989586621680354873 :: m a) = ReplicateM_ a6989586621680354872 a6989586621680354873

type family ReplicateM_Sym2 (a6989586621680354872 :: Natural) (a6989586621680354873 :: m a) :: m () where ... Source #

Equations

ReplicateM_Sym2 a6989586621680354872 (a6989586621680354873 :: m a) = ReplicateM_ a6989586621680354872 a6989586621680354873 

data GuardSym0 (a :: TyFun Bool (f ())) Source #

Instances

Instances details
SAlternative f => SingI (GuardSym0 :: TyFun Bool (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (GuardSym0 :: TyFun Bool (f ()) -> Type) #

SuppressUnusedWarnings (GuardSym0 :: TyFun Bool (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (GuardSym0 :: TyFun Bool (f ()) -> Type) (a6989586621679270986 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (GuardSym0 :: TyFun Bool (f ()) -> Type) (a6989586621679270986 :: Bool) = Guard a6989586621679270986 :: f ()

type family GuardSym1 (a6989586621679270986 :: Bool) :: f () where ... Source #

Equations

GuardSym1 a6989586621679270986 = Guard a6989586621679270986 :: f () 

data WhenSym0 (a :: TyFun Bool (f () ~> f ())) Source #

Instances

Instances details
SApplicative f => SingI (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) #

SuppressUnusedWarnings (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621679271164 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621679271164 :: Bool) = WhenSym1 a6989586621679271164 :: TyFun (f ()) (f ()) -> Type

data WhenSym1 (a6989586621679271164 :: Bool) (b :: TyFun (f ()) (f ())) Source #

Instances

Instances details
SApplicative f => SingI1 (WhenSym1 :: Bool -> TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: Bool). Sing x -> Sing (WhenSym1 x :: TyFun (f ()) (f ()) -> Type) #

(SApplicative f, SingI d) => SingI (WhenSym1 d :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (WhenSym1 d :: TyFun (f ()) (f ()) -> Type) #

SuppressUnusedWarnings (WhenSym1 a6989586621679271164 :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym1 a6989586621679271164 :: TyFun (f ()) (f ()) -> Type) (a6989586621679271165 :: f ()) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (WhenSym1 a6989586621679271164 :: TyFun (f ()) (f ()) -> Type) (a6989586621679271165 :: f ()) = When a6989586621679271164 a6989586621679271165

type family WhenSym2 (a6989586621679271164 :: Bool) (a6989586621679271165 :: f ()) :: f () where ... Source #

Equations

WhenSym2 a6989586621679271164 (a6989586621679271165 :: f ()) = When a6989586621679271164 a6989586621679271165 

data UnlessSym0 (a :: TyFun Bool (f () ~> f ())) Source #

Instances

Instances details
SApplicative f => SingI (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) #

SuppressUnusedWarnings (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621680354860 :: Bool) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym0 :: TyFun Bool (f () ~> f ()) -> Type) (a6989586621680354860 :: Bool) = UnlessSym1 a6989586621680354860 :: TyFun (f ()) (f ()) -> Type

data UnlessSym1 (a6989586621680354860 :: Bool) (b :: TyFun (f ()) (f ())) Source #

Instances

Instances details
SApplicative f => SingI1 (UnlessSym1 :: Bool -> TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: Bool). Sing x -> Sing (UnlessSym1 x :: TyFun (f ()) (f ()) -> Type) #

(SApplicative f, SingI d) => SingI (UnlessSym1 d :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing (UnlessSym1 d :: TyFun (f ()) (f ()) -> Type) #

SuppressUnusedWarnings (UnlessSym1 a6989586621680354860 :: TyFun (f ()) (f ()) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym1 a6989586621680354860 :: TyFun (f ()) (f ()) -> Type) (a6989586621680354861 :: f ()) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply (UnlessSym1 a6989586621680354860 :: TyFun (f ()) (f ()) -> Type) (a6989586621680354861 :: f ()) = Unless a6989586621680354860 a6989586621680354861

type family UnlessSym2 (a6989586621680354860 :: Bool) (a6989586621680354861 :: f ()) :: f () where ... Source #

Equations

UnlessSym2 a6989586621680354860 (a6989586621680354861 :: f ()) = Unless a6989586621680354860 a6989586621680354861 

data LiftMSym0 (a :: TyFun (a1 ~> r) (m a1 ~> m r)) Source #

Instances

Instances details
SMonad m => SingI (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) #

SuppressUnusedWarnings (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) (a6989586621679271151 :: a1 ~> r) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym0 :: TyFun (a1 ~> r) (m a1 ~> m r) -> Type) (a6989586621679271151 :: a1 ~> r) = LiftMSym1 a6989586621679271151 :: TyFun (m a1) (m r) -> Type

data LiftMSym1 (a6989586621679271151 :: a1 ~> r) (b :: TyFun (m a1) (m r)) Source #

Instances

Instances details
SMonad m => SingI1 (LiftMSym1 :: (a1 ~> r) -> TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a1 ~> r). Sing x -> Sing (LiftMSym1 x :: TyFun (m a1) (m r) -> Type) #

(SMonad m, SingI d) => SingI (LiftMSym1 d :: TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftMSym1 d :: TyFun (m a1) (m r) -> Type) #

SuppressUnusedWarnings (LiftMSym1 a6989586621679271151 :: TyFun (m a1) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym1 a6989586621679271151 :: TyFun (m a1) (m r) -> Type) (a6989586621679271152 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftMSym1 a6989586621679271151 :: TyFun (m a1) (m r) -> Type) (a6989586621679271152 :: m a1) = LiftM a6989586621679271151 a6989586621679271152

type family LiftMSym2 (a6989586621679271151 :: a1 ~> r) (a6989586621679271152 :: m a1) :: m r where ... Source #

Equations

LiftMSym2 (a6989586621679271151 :: a1 ~> r) (a6989586621679271152 :: m a1) = LiftM a6989586621679271151 a6989586621679271152 

data LiftM2Sym0 (a :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r))) Source #

Instances

Instances details
SMonad m => SingI (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) #

SuppressUnusedWarnings (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) (a6989586621679271130 :: a1 ~> (a2 ~> r)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym0 :: TyFun (a1 ~> (a2 ~> r)) (m a1 ~> (m a2 ~> m r)) -> Type) (a6989586621679271130 :: a1 ~> (a2 ~> r)) = LiftM2Sym1 a6989586621679271130 :: TyFun (m a1) (m a2 ~> m r) -> Type

data LiftM2Sym1 (a6989586621679271130 :: a1 ~> (a2 ~> r)) (b :: TyFun (m a1) (m a2 ~> m r)) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM2Sym1 :: (a1 ~> (a2 ~> r)) -> TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a1 ~> (a2 ~> r)). Sing x -> Sing (LiftM2Sym1 x :: TyFun (m a1) (m a2 ~> m r) -> Type) #

(SMonad m, SingI d) => SingI (LiftM2Sym1 d :: TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM2Sym1 d :: TyFun (m a1) (m a2 ~> m r) -> Type) #

SuppressUnusedWarnings (LiftM2Sym1 a6989586621679271130 :: TyFun (m a1) (m a2 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym1 a6989586621679271130 :: TyFun (m a1) (m a2 ~> m r) -> Type) (a6989586621679271131 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym1 a6989586621679271130 :: TyFun (m a1) (m a2 ~> m r) -> Type) (a6989586621679271131 :: m a1) = LiftM2Sym2 a6989586621679271130 a6989586621679271131

data LiftM2Sym2 (a6989586621679271130 :: a1 ~> (a2 ~> r)) (a6989586621679271131 :: m a1) (c :: TyFun (m a2) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM2Sym2 d :: m a1 -> TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a1). Sing x -> Sing (LiftM2Sym2 d x) #

SMonad m => SingI2 (LiftM2Sym2 :: (a1 ~> (a2 ~> r)) -> m a1 -> TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a1 ~> (a2 ~> r)) (y :: m a1). Sing x -> Sing y -> Sing (LiftM2Sym2 x y) #

(SMonad m, SingI d1, SingI d2) => SingI (LiftM2Sym2 d1 d2 :: TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM2Sym2 d1 d2) #

SuppressUnusedWarnings (LiftM2Sym2 a6989586621679271130 a6989586621679271131 :: TyFun (m a2) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym2 a6989586621679271130 a6989586621679271131 :: TyFun (m a2) (m r) -> Type) (a6989586621679271132 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM2Sym2 a6989586621679271130 a6989586621679271131 :: TyFun (m a2) (m r) -> Type) (a6989586621679271132 :: m a2) = LiftM2 a6989586621679271130 a6989586621679271131 a6989586621679271132

type family LiftM2Sym3 (a6989586621679271130 :: a1 ~> (a2 ~> r)) (a6989586621679271131 :: m a1) (a6989586621679271132 :: m a2) :: m r where ... Source #

Equations

LiftM2Sym3 (a6989586621679271130 :: a1 ~> (a2 ~> r)) (a6989586621679271131 :: m a1) (a6989586621679271132 :: m a2) = LiftM2 a6989586621679271130 a6989586621679271131 a6989586621679271132 

data LiftM3Sym0 (a :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r)))) Source #

Instances

Instances details
SMonad m => SingI (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) #

SuppressUnusedWarnings (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> r))) (m a1 ~> (m a2 ~> (m a3 ~> m r))) -> Type) (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) = LiftM3Sym1 a6989586621679271100 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type

data LiftM3Sym1 (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) (b :: TyFun (m a1) (m a2 ~> (m a3 ~> m r))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM3Sym1 :: (a1 ~> (a2 ~> (a3 ~> r))) -> TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a1 ~> (a2 ~> (a3 ~> r))). Sing x -> Sing (LiftM3Sym1 x :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) #

(SMonad m, SingI d) => SingI (LiftM3Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) #

SuppressUnusedWarnings (LiftM3Sym1 a6989586621679271100 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym1 a6989586621679271100 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) (a6989586621679271101 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym1 a6989586621679271100 :: TyFun (m a1) (m a2 ~> (m a3 ~> m r)) -> Type) (a6989586621679271101 :: m a1) = LiftM3Sym2 a6989586621679271100 a6989586621679271101

data LiftM3Sym2 (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) (a6989586621679271101 :: m a1) (c :: TyFun (m a2) (m a3 ~> m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM3Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a1). Sing x -> Sing (LiftM3Sym2 d x) #

SMonad m => SingI2 (LiftM3Sym2 :: (a1 ~> (a2 ~> (a3 ~> r))) -> m a1 -> TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a1 ~> (a2 ~> (a3 ~> r))) (y :: m a1). Sing x -> Sing y -> Sing (LiftM3Sym2 x y) #

(SMonad m, SingI d1, SingI d2) => SingI (LiftM3Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym2 d1 d2) #

SuppressUnusedWarnings (LiftM3Sym2 a6989586621679271100 a6989586621679271101 :: TyFun (m a2) (m a3 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym2 a6989586621679271100 a6989586621679271101 :: TyFun (m a2) (m a3 ~> m r) -> Type) (a6989586621679271102 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym2 a6989586621679271100 a6989586621679271101 :: TyFun (m a2) (m a3 ~> m r) -> Type) (a6989586621679271102 :: m a2) = LiftM3Sym3 a6989586621679271100 a6989586621679271101 a6989586621679271102

data LiftM3Sym3 (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) (a6989586621679271101 :: m a1) (a6989586621679271102 :: m a2) (d :: TyFun (m a3) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM3Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a1) (y :: m a2). Sing x -> Sing y -> Sing (LiftM3Sym3 d x y) #

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM3Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a2). Sing x -> Sing (LiftM3Sym3 d1 d2 x) #

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM3Sym3 d1 d2 d3 :: TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM3Sym3 d1 d2 d3) #

SuppressUnusedWarnings (LiftM3Sym3 a6989586621679271100 a6989586621679271101 a6989586621679271102 :: TyFun (m a3) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym3 a6989586621679271100 a6989586621679271101 a6989586621679271102 :: TyFun (m a3) (m r) -> Type) (a6989586621679271103 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM3Sym3 a6989586621679271100 a6989586621679271101 a6989586621679271102 :: TyFun (m a3) (m r) -> Type) (a6989586621679271103 :: m a3) = LiftM3 a6989586621679271100 a6989586621679271101 a6989586621679271102 a6989586621679271103

type family LiftM3Sym4 (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) (a6989586621679271101 :: m a1) (a6989586621679271102 :: m a2) (a6989586621679271103 :: m a3) :: m r where ... Source #

Equations

LiftM3Sym4 (a6989586621679271100 :: a1 ~> (a2 ~> (a3 ~> r))) (a6989586621679271101 :: m a1) (a6989586621679271102 :: m a2) (a6989586621679271103 :: m a3) = LiftM3 a6989586621679271100 a6989586621679271101 a6989586621679271102 a6989586621679271103 

data LiftM4Sym0 (a :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) #

SuppressUnusedWarnings (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> m r)))) -> Type) (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) = LiftM4Sym1 a6989586621679271061 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type

data LiftM4Sym1 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (b :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r)))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM4Sym1 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) -> TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))). Sing x -> Sing (LiftM4Sym1 x :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) #

(SMonad m, SingI d) => SingI (LiftM4Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) #

SuppressUnusedWarnings (LiftM4Sym1 a6989586621679271061 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym1 a6989586621679271061 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) (a6989586621679271062 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym1 a6989586621679271061 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> m r))) -> Type) (a6989586621679271062 :: m a1) = LiftM4Sym2 a6989586621679271061 a6989586621679271062

data LiftM4Sym2 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a6989586621679271062 :: m a1) (c :: TyFun (m a2) (m a3 ~> (m a4 ~> m r))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM4Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a1). Sing x -> Sing (LiftM4Sym2 d x) #

SMonad m => SingI2 (LiftM4Sym2 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) -> m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (y :: m a1). Sing x -> Sing y -> Sing (LiftM4Sym2 x y) #

(SMonad m, SingI d1, SingI d2) => SingI (LiftM4Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym2 d1 d2) #

SuppressUnusedWarnings (LiftM4Sym2 a6989586621679271061 a6989586621679271062 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym2 a6989586621679271061 a6989586621679271062 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) (a6989586621679271063 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym2 a6989586621679271061 a6989586621679271062 :: TyFun (m a2) (m a3 ~> (m a4 ~> m r)) -> Type) (a6989586621679271063 :: m a2) = LiftM4Sym3 a6989586621679271061 a6989586621679271062 a6989586621679271063

data LiftM4Sym3 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a6989586621679271062 :: m a1) (a6989586621679271063 :: m a2) (d :: TyFun (m a3) (m a4 ~> m r)) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM4Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a1) (y :: m a2). Sing x -> Sing y -> Sing (LiftM4Sym3 d x y) #

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM4Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a2). Sing x -> Sing (LiftM4Sym3 d1 d2 x) #

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM4Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym3 d1 d2 d3) #

SuppressUnusedWarnings (LiftM4Sym3 a6989586621679271061 a6989586621679271062 a6989586621679271063 :: TyFun (m a3) (m a4 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym3 a6989586621679271061 a6989586621679271062 a6989586621679271063 :: TyFun (m a3) (m a4 ~> m r) -> Type) (a6989586621679271064 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym3 a6989586621679271061 a6989586621679271062 a6989586621679271063 :: TyFun (m a3) (m a4 ~> m r) -> Type) (a6989586621679271064 :: m a3) = LiftM4Sym4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064

data LiftM4Sym4 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a6989586621679271062 :: m a1) (a6989586621679271063 :: m a2) (a6989586621679271064 :: m a3) (e :: TyFun (m a4) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI2 (LiftM4Sym4 d1 d2 :: m a2 -> m a3 -> TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a2) (y :: m a3). Sing x -> Sing y -> Sing (LiftM4Sym4 d1 d2 x y) #

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI1 (LiftM4Sym4 d1 d2 d3 :: m a3 -> TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a3). Sing x -> Sing (LiftM4Sym4 d1 d2 d3 x) #

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM4Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM4Sym4 d1 d2 d3 d4) #

SuppressUnusedWarnings (LiftM4Sym4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064 :: TyFun (m a4) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064 :: TyFun (m a4) (m r) -> Type) (a6989586621679271065 :: m a4) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM4Sym4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064 :: TyFun (m a4) (m r) -> Type) (a6989586621679271065 :: m a4) = LiftM4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064 a6989586621679271065

type family LiftM4Sym5 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a6989586621679271062 :: m a1) (a6989586621679271063 :: m a2) (a6989586621679271064 :: m a3) (a6989586621679271065 :: m a4) :: m r where ... Source #

Equations

LiftM4Sym5 (a6989586621679271061 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> r)))) (a6989586621679271062 :: m a1) (a6989586621679271063 :: m a2) (a6989586621679271064 :: m a3) (a6989586621679271065 :: m a4) = LiftM4 a6989586621679271061 a6989586621679271062 a6989586621679271063 a6989586621679271064 a6989586621679271065 

data LiftM5Sym0 (a :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))))) Source #

Instances

Instances details
SMonad m => SingI (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) #

SuppressUnusedWarnings (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym0 :: TyFun (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (m a1 ~> (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) -> Type) (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) = LiftM5Sym1 a6989586621679271013 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type

data LiftM5Sym1 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (b :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r))))) Source #

Instances

Instances details
SMonad m => SingI1 (LiftM5Sym1 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) -> TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))). Sing x -> Sing (LiftM5Sym1 x :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) #

(SMonad m, SingI d) => SingI (LiftM5Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym1 d :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) #

SuppressUnusedWarnings (LiftM5Sym1 a6989586621679271013 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym1 a6989586621679271013 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) (a6989586621679271014 :: m a1) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym1 a6989586621679271013 :: TyFun (m a1) (m a2 ~> (m a3 ~> (m a4 ~> (m a5 ~> m r)))) -> Type) (a6989586621679271014 :: m a1) = LiftM5Sym2 a6989586621679271013 a6989586621679271014

data LiftM5Sym2 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (c :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r)))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI1 (LiftM5Sym2 d :: m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a1). Sing x -> Sing (LiftM5Sym2 d x) #

SMonad m => SingI2 (LiftM5Sym2 :: (a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) -> m a1 -> TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (y :: m a1). Sing x -> Sing y -> Sing (LiftM5Sym2 x y) #

(SMonad m, SingI d1, SingI d2) => SingI (LiftM5Sym2 d1 d2 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym2 d1 d2) #

SuppressUnusedWarnings (LiftM5Sym2 a6989586621679271013 a6989586621679271014 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym2 a6989586621679271013 a6989586621679271014 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) (a6989586621679271015 :: m a2) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym2 a6989586621679271013 a6989586621679271014 :: TyFun (m a2) (m a3 ~> (m a4 ~> (m a5 ~> m r))) -> Type) (a6989586621679271015 :: m a2) = LiftM5Sym3 a6989586621679271013 a6989586621679271014 a6989586621679271015

data LiftM5Sym3 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (a6989586621679271015 :: m a2) (d :: TyFun (m a3) (m a4 ~> (m a5 ~> m r))) Source #

Instances

Instances details
(SMonad m, SingI d) => SingI2 (LiftM5Sym3 d :: m a1 -> m a2 -> TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a1) (y :: m a2). Sing x -> Sing y -> Sing (LiftM5Sym3 d x y) #

(SMonad m, SingI d1, SingI d2) => SingI1 (LiftM5Sym3 d1 d2 :: m a2 -> TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a2). Sing x -> Sing (LiftM5Sym3 d1 d2 x) #

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI (LiftM5Sym3 d1 d2 d3 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym3 d1 d2 d3) #

SuppressUnusedWarnings (LiftM5Sym3 a6989586621679271013 a6989586621679271014 a6989586621679271015 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym3 a6989586621679271013 a6989586621679271014 a6989586621679271015 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) (a6989586621679271016 :: m a3) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym3 a6989586621679271013 a6989586621679271014 a6989586621679271015 :: TyFun (m a3) (m a4 ~> (m a5 ~> m r)) -> Type) (a6989586621679271016 :: m a3) = LiftM5Sym4 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016

data LiftM5Sym4 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (a6989586621679271015 :: m a2) (a6989586621679271016 :: m a3) (e :: TyFun (m a4) (m a5 ~> m r)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2) => SingI2 (LiftM5Sym4 d1 d2 :: m a2 -> m a3 -> TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a2) (y :: m a3). Sing x -> Sing y -> Sing (LiftM5Sym4 d1 d2 x y) #

(SMonad m, SingI d1, SingI d2, SingI d3) => SingI1 (LiftM5Sym4 d1 d2 d3 :: m a3 -> TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a3). Sing x -> Sing (LiftM5Sym4 d1 d2 d3 x) #

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI (LiftM5Sym4 d1 d2 d3 d4 :: TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym4 d1 d2 d3 d4) #

SuppressUnusedWarnings (LiftM5Sym4 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 :: TyFun (m a4) (m a5 ~> m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym4 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 :: TyFun (m a4) (m a5 ~> m r) -> Type) (a6989586621679271017 :: m a4) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym4 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 :: TyFun (m a4) (m a5 ~> m r) -> Type) (a6989586621679271017 :: m a4) = LiftM5Sym5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017

data LiftM5Sym5 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (a6989586621679271015 :: m a2) (a6989586621679271016 :: m a3) (a6989586621679271017 :: m a4) (f :: TyFun (m a5) (m r)) Source #

Instances

Instances details
(SMonad m, SingI d1, SingI d2, SingI d3) => SingI2 (LiftM5Sym5 d1 d2 d3 :: m a3 -> m a4 -> TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: m a3) (y :: m a4). Sing x -> Sing y -> Sing (LiftM5Sym5 d1 d2 d3 x y) #

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4) => SingI1 (LiftM5Sym5 d1 d2 d3 d4 :: m a4 -> TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m a4). Sing x -> Sing (LiftM5Sym5 d1 d2 d3 d4 x) #

(SMonad m, SingI d1, SingI d2, SingI d3, SingI d4, SingI d5) => SingI (LiftM5Sym5 d1 d2 d3 d4 d5 :: TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftM5Sym5 d1 d2 d3 d4 d5) #

SuppressUnusedWarnings (LiftM5Sym5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017 :: TyFun (m a5) (m r) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017 :: TyFun (m a5) (m r) -> Type) (a6989586621679271018 :: m a5) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftM5Sym5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017 :: TyFun (m a5) (m r) -> Type) (a6989586621679271018 :: m a5) = LiftM5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017 a6989586621679271018

type family LiftM5Sym6 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (a6989586621679271015 :: m a2) (a6989586621679271016 :: m a3) (a6989586621679271017 :: m a4) (a6989586621679271018 :: m a5) :: m r where ... Source #

Equations

LiftM5Sym6 (a6989586621679271013 :: a1 ~> (a2 ~> (a3 ~> (a4 ~> (a5 ~> r))))) (a6989586621679271014 :: m a1) (a6989586621679271015 :: m a2) (a6989586621679271016 :: m a3) (a6989586621679271017 :: m a4) (a6989586621679271018 :: m a5) = LiftM5 a6989586621679271013 a6989586621679271014 a6989586621679271015 a6989586621679271016 a6989586621679271017 a6989586621679271018 

data ApSym0 (a1 :: TyFun (m (a ~> b)) (m a ~> m b)) Source #

Instances

Instances details
SMonad m => SingI (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) #

SuppressUnusedWarnings (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) (a6989586621679270990 :: m (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym0 :: TyFun (m (a ~> b)) (m a ~> m b) -> Type) (a6989586621679270990 :: m (a ~> b)) = ApSym1 a6989586621679270990

data ApSym1 (a6989586621679270990 :: m (a ~> b)) (b1 :: TyFun (m a) (m b)) Source #

Instances

Instances details
SMonad m => SingI1 (ApSym1 :: m (a ~> b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: m (a ~> b)). Sing x -> Sing (ApSym1 x) #

(SMonad m, SingI d) => SingI (ApSym1 d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (ApSym1 d) #

SuppressUnusedWarnings (ApSym1 a6989586621679270990 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym1 a6989586621679270990 :: TyFun (m a) (m b) -> Type) (a6989586621679270991 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ApSym1 a6989586621679270990 :: TyFun (m a) (m b) -> Type) (a6989586621679270991 :: m a) = Ap a6989586621679270990 a6989586621679270991

type family ApSym2 (a6989586621679270990 :: m (a ~> b)) (a6989586621679270991 :: m a) :: m b where ... Source #

Equations

ApSym2 (a6989586621679270990 :: m (a ~> b)) (a6989586621679270991 :: m a) = Ap a6989586621679270990 a6989586621679270991 

data (<$!>@#@$) (a1 :: TyFun (a ~> b) (m a ~> m b)) infixl 4 Source #

Instances

Instances details
SMonad m => SingI ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) #

SuppressUnusedWarnings ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) (a6989586621680354845 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$) :: TyFun (a ~> b) (m a ~> m b) -> Type) (a6989586621680354845 :: a ~> b) = (<$!>@#@$$) a6989586621680354845 :: TyFun (m a) (m b) -> Type

data (a6989586621680354845 :: a ~> b) <$!>@#@$$ (b1 :: TyFun (m a) (m b)) infixl 4 Source #

Instances

Instances details
SMonad m => SingI1 ((<$!>@#@$$) :: (a ~> b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing ((<$!>@#@$$) x :: TyFun (m a) (m b) -> Type) #

(SMonad m, SingI d) => SingI ((<$!>@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

sing :: Sing ((<$!>@#@$$) d :: TyFun (m a) (m b) -> Type) #

SuppressUnusedWarnings ((<$!>@#@$$) a6989586621680354845 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$$) a6989586621680354845 :: TyFun (m a) (m b) -> Type) (a6989586621680354846 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons

type Apply ((<$!>@#@$$) a6989586621680354845 :: TyFun (m a) (m b) -> Type) (a6989586621680354846 :: m a) = a6989586621680354845 <$!> a6989586621680354846

type family (a6989586621680354845 :: a ~> b) <$!>@#@$$$ (a6989586621680354846 :: m a) :: m b where ... infixl 4 Source #

Equations

(a6989586621680354845 :: a ~> b) <$!>@#@$$$ (a6989586621680354846 :: m a) = a6989586621680354845 <$!> a6989586621680354846 

Orphan instances

PMonad Down Source # 
Instance details

Associated Types

type (a2 :: Down a1) >>= (a3 :: a1 ~> Down b) 
Instance details

Defined in Control.Monad.Singletons

type (a2 :: Down a1) >>= (a3 :: a1 ~> Down b)
type (arg :: Down a) >> (arg1 :: Down b) 
Instance details

Defined in Control.Monad.Singletons

type (arg :: Down a) >> (arg1 :: Down b)
type Return (arg :: a) 
Instance details

Defined in Control.Monad.Singletons

type Return (arg :: a)
SMonad Down Source # 
Instance details

Methods

(%>>=) :: forall a b (t1 :: Down a) (t2 :: a ~> Down b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Down a) Source #

PMonad ((,) a) Source # 
Instance details

SMonoid a => SMonad ((,) a) Source # 
Instance details

Methods

(%>>=) :: forall a0 b (t1 :: (a, a0)) (t2 :: a0 ~> (a, b)). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Return t :: (a, a)) Source #