module Slist.Size
( Size (..)
, sizes
) where
data Size
= Size !Int
| Infinity
deriving stock (Int -> Size -> ShowS
[Size] -> ShowS
Size -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Size] -> ShowS
$cshowList :: [Size] -> ShowS
show :: Size -> String
$cshow :: Size -> String
showsPrec :: Int -> Size -> ShowS
$cshowsPrec :: Int -> Size -> ShowS
Show, ReadPrec [Size]
ReadPrec Size
Int -> ReadS Size
ReadS [Size]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [Size]
$creadListPrec :: ReadPrec [Size]
readPrec :: ReadPrec Size
$creadPrec :: ReadPrec Size
readList :: ReadS [Size]
$creadList :: ReadS [Size]
readsPrec :: Int -> ReadS Size
$creadsPrec :: Int -> ReadS Size
Read, Size -> Size -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Size -> Size -> Bool
$c/= :: Size -> Size -> Bool
== :: Size -> Size -> Bool
$c== :: Size -> Size -> Bool
Eq, Eq Size
Size -> Size -> Bool
Size -> Size -> Ordering
Size -> Size -> Size
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Size -> Size -> Size
$cmin :: Size -> Size -> Size
max :: Size -> Size -> Size
$cmax :: Size -> Size -> Size
>= :: Size -> Size -> Bool
$c>= :: Size -> Size -> Bool
> :: Size -> Size -> Bool
$c> :: Size -> Size -> Bool
<= :: Size -> Size -> Bool
$c<= :: Size -> Size -> Bool
< :: Size -> Size -> Bool
$c< :: Size -> Size -> Bool
compare :: Size -> Size -> Ordering
$ccompare :: Size -> Size -> Ordering
Ord)
instance Num Size where
(+) :: Size -> Size -> Size
Size
Infinity + :: Size -> Size -> Size
+ Size
_ = Size
Infinity
Size
_ + Size
Infinity = Size
Infinity
(Size Int
x) + (Size Int
y) =
if Int
x forall a. Num a => a -> a -> a
+ Int
y forall a. Ord a => a -> a -> Bool
< Int
x
then Size
Infinity
else Int -> Size
Size forall a b. (a -> b) -> a -> b
$ Int
x forall a. Num a => a -> a -> a
+ Int
y
{-# INLINE (+) #-}
(-) :: Size -> Size -> Size
Size
Infinity - :: Size -> Size -> Size
- Size
_ = Size
Infinity
Size
_ - Size
Infinity = Size
Infinity
(Size Int
x) - (Size Int
y) = Int -> Size
Size (Int
x forall a. Num a => a -> a -> a
- Int
y)
{-# INLINE (-) #-}
(*) :: Size -> Size -> Size
Size
Infinity * :: Size -> Size -> Size
* Size
_ = Size
Infinity
Size
_ * Size
Infinity = Size
Infinity
(Size Int
x) * (Size Int
y)
| Int
x forall a. Eq a => a -> a -> Bool
== Int
0 Bool -> Bool -> Bool
|| Int
y forall a. Eq a => a -> a -> Bool
== Int
0 = Size
0
| Bool
otherwise =
let result :: Int
result = Int
x forall a. Num a => a -> a -> a
* Int
y in
if Int
x forall a. Eq a => a -> a -> Bool
== Int
result forall a. Integral a => a -> a -> a
`div` Int
y
then Int -> Size
Size (Int
x forall a. Num a => a -> a -> a
* Int
y)
else Size
Infinity
{-# INLINE (*) #-}
abs :: Size -> Size
abs :: Size -> Size
abs Size
Infinity = Size
Infinity
abs (Size Int
x) = Int -> Size
Size forall a b. (a -> b) -> a -> b
$ forall a. Num a => a -> a
abs Int
x
{-# INLINE abs #-}
signum :: Size -> Size
signum :: Size -> Size
signum Size
Infinity = Size
Infinity
signum (Size Int
x) = Int -> Size
Size (forall a. Num a => a -> a
signum Int
x)
{-# INLINE signum #-}
fromInteger :: Integer -> Size
fromInteger :: Integer -> Size
fromInteger = Int -> Size
Size forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Num a => Integer -> a
fromInteger
{-# INLINE fromInteger #-}
instance Bounded Size where
minBound :: Size
minBound :: Size
minBound = Int -> Size
Size Int
0
maxBound :: Size
maxBound :: Size
maxBound = Size
Infinity
sizes :: Size -> [Size]
sizes :: Size -> [Size]
sizes (Size Int
n) = forall a b. (a -> b) -> [a] -> [b]
map Int -> Size
Size [Int
0..Int
n]
sizes Size
Infinity = forall a b. (a -> b) -> [a] -> [b]
map Int -> Size
Size [Int
0..forall a. Bounded a => a
maxBound] forall a. [a] -> [a] -> [a]
++ [Size
Infinity]