{-# LANGUAGE PolyKinds #-} -- | Classes for generalized combinators on SOP types. -- -- In the SOP approach to generic programming, we're predominantly -- concerned with four structured datatypes: -- -- @ -- 'Data.SOP.NP.NP' :: (k -> 'Type') -> ( [k] -> 'Type') -- n-ary product -- 'Data.SOP.NS.NS' :: (k -> 'Type') -> ( [k] -> 'Type') -- n-ary sum -- 'Data.SOP.NP.POP' :: (k -> 'Type') -> ([[k]] -> 'Type') -- product of products -- 'Data.SOP.NS.SOP' :: (k -> 'Type') -> ([[k]] -> 'Type') -- sum of products -- @ -- -- All of these have a kind that fits the following pattern: -- -- @ -- (k -> 'Type') -> (l -> 'Type') -- @ -- -- These four types support similar interfaces. In order to allow -- reusing the same combinator names for all of these types, we define -- various classes in this module that allow the necessary -- generalization. -- -- The classes typically lift concepts that exist for kinds @'Type'@ or -- @'Type' -> 'Type'@ to datatypes of kind @(k -> 'Type') -> (l -> 'Type')@. This module -- also derives a number of derived combinators. -- -- The actual instances are defined in "Data.SOP.NP" and -- "Data.SOP.NS". -- module Data.SOP.Classes ( -- * Generalized applicative functor structure -- ** Generalized 'Control.Applicative.pure' HPure(..) -- ** Generalized 'Control.Applicative.<*>' , type (-.->)(..) , fn , fn_2 , fn_3 , fn_4 , Same , Prod , HAp(..) -- ** Derived functions , hliftA , hliftA2 , hliftA3 , hmap , hzipWith , hzipWith3 , hcliftA , hcliftA2 , hcliftA3 , hcmap , hczipWith , hczipWith3 -- * Collapsing homogeneous structures , CollapseTo , HCollapse(..) -- * Folding and sequencing , HTraverse_(..) , HSequence(..) -- ** Derived functions , hcfoldMap , hcfor_ , hsequence , hsequenceK , hctraverse , hcfor -- * Indexing into sums , HIndex(..) -- * Applying all injections , UnProd , HApInjs(..) -- * Expanding sums to products , HExpand(..) -- * Transformation of index lists and coercions , HTrans(..) , hfromI , htoI ) where import Data.Kind (Type) import Data.SOP.BasicFunctors import Data.SOP.Constraint -- * Generalized applicative functor structure -- ** Generalized 'Control.Applicative.pure' -- | A generalization of 'Control.Applicative.pure' or -- 'Control.Monad.return' to higher kinds. class HPure (h :: (k -> Type) -> (l -> Type)) where -- | Corresponds to 'Control.Applicative.pure' directly. -- -- /Instances:/ -- -- @ -- 'hpure', 'Data.SOP.NP.pure_NP' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a) -> 'Data.SOP.NP.NP' f xs -- 'hpure', 'Data.SOP.NP.pure_POP' :: 'SListI2' xss => (forall a. f a) -> 'Data.SOP.NP.POP' f xss -- @ -- hpure :: SListIN h xs => (forall a. f a) -> h f xs -- | A variant of 'hpure' that allows passing in a constrained -- argument. -- -- Calling @'hcpure' f s@ where @s :: h f xs@ causes @f@ to be -- applied at all the types that are contained in @xs@. Therefore, -- the constraint @c@ has to be satisfied for all elements of @xs@, -- which is what @'AllN' h c xs@ states. -- -- /Instances:/ -- -- @ -- 'hcpure', 'Data.SOP.NP.cpure_NP' :: ('All' c xs ) => proxy c -> (forall a. c a => f a) -> 'Data.SOP.NP.NP' f xs -- 'hcpure', 'Data.SOP.NP.cpure_POP' :: ('All2' c xss) => proxy c -> (forall a. c a => f a) -> 'Data.SOP.NP.POP' f xss -- @ -- hcpure :: (AllN h c xs) => proxy c -> (forall a. c a => f a) -> h f xs -- ** Generalized 'Control.Applicative.<*>' -- | Lifted functions. newtype (f -.-> g) a = Fn { (-.->) f g a -> f a -> g a apFn :: f a -> g a } infixr 1 -.-> -- | Construct a lifted function. -- -- Same as 'Fn'. Only available for uniformity with the -- higher-arity versions. -- fn :: (f a -> f' a) -> (f -.-> f') a -- | Construct a binary lifted function. fn_2 :: (f a -> f' a -> f'' a) -> (f -.-> f' -.-> f'') a -- | Construct a ternary lifted function. fn_3 :: (f a -> f' a -> f'' a -> f''' a) -> (f -.-> f' -.-> f'' -.-> f''') a -- | Construct a quarternary lifted function. fn_4 :: (f a -> f' a -> f'' a -> f''' a -> f'''' a) -> (f -.-> f' -.-> f'' -.-> f''' -.-> f'''') a fn :: (f a -> f' a) -> (-.->) f f' a fn f :: f a -> f' a f = (f a -> f' a) -> (-.->) f f' a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f a -> f' a) -> (-.->) f f' a) -> (f a -> f' a) -> (-.->) f f' a forall a b. (a -> b) -> a -> b $ \x :: f a x -> f a -> f' a f f a x fn_2 :: (f a -> f' a -> f'' a) -> (-.->) f (f' -.-> f'') a fn_2 f :: f a -> f' a -> f'' a f = (f a -> (-.->) f' f'' a) -> (-.->) f (f' -.-> f'') a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f a -> (-.->) f' f'' a) -> (-.->) f (f' -.-> f'') a) -> (f a -> (-.->) f' f'' a) -> (-.->) f (f' -.-> f'') a forall a b. (a -> b) -> a -> b $ \x :: f a x -> (f' a -> f'' a) -> (-.->) f' f'' a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f' a -> f'' a) -> (-.->) f' f'' a) -> (f' a -> f'' a) -> (-.->) f' f'' a forall a b. (a -> b) -> a -> b $ \x' :: f' a x' -> f a -> f' a -> f'' a f f a x f' a x' fn_3 :: (f a -> f' a -> f'' a -> f''' a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a fn_3 f :: f a -> f' a -> f'' a -> f''' a f = (f a -> (-.->) f' (f'' -.-> f''') a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f a -> (-.->) f' (f'' -.-> f''') a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a) -> (f a -> (-.->) f' (f'' -.-> f''') a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a forall a b. (a -> b) -> a -> b $ \x :: f a x -> (f' a -> (-.->) f'' f''' a) -> (-.->) f' (f'' -.-> f''') a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f' a -> (-.->) f'' f''' a) -> (-.->) f' (f'' -.-> f''') a) -> (f' a -> (-.->) f'' f''' a) -> (-.->) f' (f'' -.-> f''') a forall a b. (a -> b) -> a -> b $ \x' :: f' a x' -> (f'' a -> f''' a) -> (-.->) f'' f''' a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f'' a -> f''' a) -> (-.->) f'' f''' a) -> (f'' a -> f''' a) -> (-.->) f'' f''' a forall a b. (a -> b) -> a -> b $ \x'' :: f'' a x'' -> f a -> f' a -> f'' a -> f''' a f f a x f' a x' f'' a x'' fn_4 :: (f a -> f' a -> f'' a -> f''' a -> f'''' a) -> (-.->) f (f' -.-> (f'' -.-> (f''' -.-> f''''))) a fn_4 f :: f a -> f' a -> f'' a -> f''' a -> f'''' a f = (f a -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a) -> (-.->) f (f' -.-> (f'' -.-> (f''' -.-> f''''))) a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f a -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a) -> (-.->) f (f' -.-> (f'' -.-> (f''' -.-> f''''))) a) -> (f a -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a) -> (-.->) f (f' -.-> (f'' -.-> (f''' -.-> f''''))) a forall a b. (a -> b) -> a -> b $ \x :: f a x -> (f' a -> (-.->) f'' (f''' -.-> f'''') a) -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f' a -> (-.->) f'' (f''' -.-> f'''') a) -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a) -> (f' a -> (-.->) f'' (f''' -.-> f'''') a) -> (-.->) f' (f'' -.-> (f''' -.-> f'''')) a forall a b. (a -> b) -> a -> b $ \x' :: f' a x' -> (f'' a -> (-.->) f''' f'''' a) -> (-.->) f'' (f''' -.-> f'''') a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f'' a -> (-.->) f''' f'''' a) -> (-.->) f'' (f''' -.-> f'''') a) -> (f'' a -> (-.->) f''' f'''' a) -> (-.->) f'' (f''' -.-> f'''') a forall a b. (a -> b) -> a -> b $ \x'' :: f'' a x'' -> (f''' a -> f'''' a) -> (-.->) f''' f'''' a forall k (f :: k -> *) (g :: k -> *) (a :: k). (f a -> g a) -> (-.->) f g a Fn ((f''' a -> f'''' a) -> (-.->) f''' f'''' a) -> (f''' a -> f'''' a) -> (-.->) f''' f'''' a forall a b. (a -> b) -> a -> b $ \x''' :: f''' a x''' -> f a -> f' a -> f'' a -> f''' a -> f'''' a f f a x f' a x' f'' a x'' f''' a x''' -- | Maps a structure to the same structure. type family Same (h :: (k1 -> Type) -> (l1 -> Type)) :: (k2 -> Type) -> (l2 -> Type) -- | Maps a structure containing sums to the corresponding -- product structure. type family Prod (h :: (k -> Type) -> (l -> Type)) :: (k -> Type) -> (l -> Type) -- | A generalization of 'Control.Applicative.<*>'. class (Prod (Prod h) ~ Prod h, HPure (Prod h)) => HAp (h :: (k -> Type) -> (l -> Type)) where -- | Corresponds to 'Control.Applicative.<*>'. -- -- For products ('Data.SOP.NP.NP') as well as products of products -- ('Data.SOP.NP.POP'), the correspondence is rather direct. We combine -- a structure containing (lifted) functions and a compatible structure -- containing corresponding arguments into a compatible structure -- containing results. -- -- The same combinator can also be used to combine a product -- structure of functions with a sum structure of arguments, which then -- results in another sum structure of results. The sum structure -- determines which part of the product structure will be used. -- -- /Instances:/ -- -- @ -- 'hap', 'Data.SOP.NP.ap_NP' :: 'Data.SOP.NP.NP' (f -.-> g) xs -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NP.NP' g xs -- 'hap', 'Data.SOP.NS.ap_NS' :: 'Data.SOP.NS.NP' (f -.-> g) xs -> 'Data.SOP.NS.NS' f xs -> 'Data.SOP.NS.NS' g xs -- 'hap', 'Data.SOP.NP.ap_POP' :: 'Data.SOP.NP.POP' (f -.-> g) xss -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NP.POP' g xss -- 'hap', 'Data.SOP.NS.ap_SOP' :: 'Data.SOP.NS.POP' (f -.-> g) xss -> 'Data.SOP.NS.SOP' f xss -> 'Data.SOP.NS.SOP' g xss -- @ -- hap :: Prod h (f -.-> g) xs -> h f xs -> h g xs -- ** Derived functions -- | A generalized form of 'Control.Applicative.liftA', -- which in turn is a generalized 'map'. -- -- Takes a lifted function and applies it to every element of -- a structure while preserving its shape. -- -- /Specification:/ -- -- @ -- 'hliftA' f xs = 'hpure' ('fn' f) \` 'hap' \` xs -- @ -- -- /Instances:/ -- -- @ -- 'hliftA', 'Data.SOP.NP.liftA_NP' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a) -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NP.NP' f' xs -- 'hliftA', 'Data.SOP.NS.liftA_NS' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a) -> 'Data.SOP.NS.NS' f xs -> 'Data.SOP.NS.NS' f' xs -- 'hliftA', 'Data.SOP.NP.liftA_POP' :: 'SListI2' xss => (forall a. f a -> f' a) -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NP.POP' f' xss -- 'hliftA', 'Data.SOP.NS.liftA_SOP' :: 'SListI2' xss => (forall a. f a -> f' a) -> 'Data.SOP.NS.SOP' f xss -> 'Data.SOP.NS.SOP' f' xss -- @ -- hliftA :: (SListIN (Prod h) xs, HAp h) => (forall a. f a -> f' a) -> h f xs -> h f' xs -- | A generalized form of 'Control.Applicative.liftA2', -- which in turn is a generalized 'zipWith'. -- -- Takes a lifted binary function and uses it to combine two -- structures of equal shape into a single structure. -- -- It either takes two product structures to a product structure, -- or one product and one sum structure to a sum structure. -- -- /Specification:/ -- -- @ -- 'hliftA2' f xs ys = 'hpure' ('fn_2' f) \` 'hap' \` xs \` 'hap' \` ys -- @ -- -- /Instances:/ -- -- @ -- 'hliftA2', 'Data.SOP.NP.liftA2_NP' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a -> f'' a) -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NP.NP' f' xs -> 'Data.SOP.NP.NP' f'' xs -- 'hliftA2', 'Data.SOP.NS.liftA2_NS' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a -> f'' a) -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NS.NS' f' xs -> 'Data.SOP.NS.NS' f'' xs -- 'hliftA2', 'Data.SOP.NP.liftA2_POP' :: 'SListI2' xss => (forall a. f a -> f' a -> f'' a) -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NP.POP' f' xss -> 'Data.SOP.NP.POP' f'' xss -- 'hliftA2', 'Data.SOP.NS.liftA2_SOP' :: 'SListI2' xss => (forall a. f a -> f' a -> f'' a) -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NS.SOP' f' xss -> 'Data.SOP.NS.SOP' f'' xss -- @ -- hliftA2 :: (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall a. f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs -- | A generalized form of 'Control.Applicative.liftA3', -- which in turn is a generalized 'zipWith3'. -- -- Takes a lifted ternary function and uses it to combine three -- structures of equal shape into a single structure. -- -- It either takes three product structures to a product structure, -- or two product structures and one sum structure to a sum structure. -- -- /Specification:/ -- -- @ -- 'hliftA3' f xs ys zs = 'hpure' ('fn_3' f) \` 'hap' \` xs \` 'hap' \` ys \` 'hap' \` zs -- @ -- -- /Instances:/ -- -- @ -- 'hliftA3', 'Data.SOP.NP.liftA3_NP' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a -> f'' a -> f''' a) -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NP.NP' f' xs -> 'Data.SOP.NP.NP' f'' xs -> 'Data.SOP.NP.NP' f''' xs -- 'hliftA3', 'Data.SOP.NS.liftA3_NS' :: 'Data.SOP.Sing.SListI' xs => (forall a. f a -> f' a -> f'' a -> f''' a) -> 'Data.SOP.NP.NP' f xs -> 'Data.SOP.NP.NP' f' xs -> 'Data.SOP.NS.NS' f'' xs -> 'Data.SOP.NS.NS' f''' xs -- 'hliftA3', 'Data.SOP.NP.liftA3_POP' :: 'SListI2' xss => (forall a. f a -> f' a -> f'' a -> f''' a) -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NP.POP' f' xss -> 'Data.SOP.NP.POP' f'' xss -> 'Data.SOP.NP.POP' f''' xs -- 'hliftA3', 'Data.SOP.NS.liftA3_SOP' :: 'SListI2' xss => (forall a. f a -> f' a -> f'' a -> f''' a) -> 'Data.SOP.NP.POP' f xss -> 'Data.SOP.NP.POP' f' xss -> 'Data.SOP.NS.SOP' f'' xss -> 'Data.SOP.NP.SOP' f''' xs -- @ -- hliftA3 :: (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall a. f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hliftA :: (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs hliftA f :: forall (a :: k). f a -> f' a f xs :: h f xs xs = (forall (a :: k). (-.->) f f' a) -> Prod h (f -.-> f') xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *). (HPure h, SListIN h xs) => (forall (a :: k). f a) -> h f xs hpure ((f a -> f' a) -> (-.->) f f' a forall k (f :: k -> *) (a :: k) (f' :: k -> *). (f a -> f' a) -> (-.->) f f' a fn f a -> f' a forall (a :: k). f a -> f' a f) Prod h (f -.-> f') xs -> h f xs -> h f' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f xs xs hliftA2 :: (forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hliftA2 f :: forall (a :: k). f a -> f' a -> f'' a f xs :: Prod h f xs xs ys :: h f' xs ys = (forall (a :: k). (-.->) f (f' -.-> f'') a) -> Prod h (f -.-> (f' -.-> f'')) xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *). (HPure h, SListIN h xs) => (forall (a :: k). f a) -> h f xs hpure ((f a -> f' a -> f'' a) -> (-.->) f (f' -.-> f'') a forall k (f :: k -> *) (a :: k) (f' :: k -> *) (f'' :: k -> *). (f a -> f' a -> f'' a) -> (-.->) f (f' -.-> f'') a fn_2 f a -> f' a -> f'' a forall (a :: k). f a -> f' a -> f'' a f) Prod (Prod h) (f -.-> (f' -.-> f'')) xs -> Prod h f xs -> Prod h (f' -.-> f'') xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f xs xs Prod h (f' -.-> f'') xs -> h f' xs -> h f'' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f' xs ys hliftA3 :: (forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hliftA3 f :: forall (a :: k). f a -> f' a -> f'' a -> f''' a f xs :: Prod h f xs xs ys :: Prod h f' xs ys zs :: h f'' xs zs = (forall (a :: k). (-.->) f (f' -.-> (f'' -.-> f''')) a) -> Prod h (f -.-> (f' -.-> (f'' -.-> f'''))) xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *). (HPure h, SListIN h xs) => (forall (a :: k). f a) -> h f xs hpure ((f a -> f' a -> f'' a -> f''' a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a forall k (f :: k -> *) (a :: k) (f' :: k -> *) (f'' :: k -> *) (f''' :: k -> *). (f a -> f' a -> f'' a -> f''' a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a fn_3 f a -> f' a -> f'' a -> f''' a forall (a :: k). f a -> f' a -> f'' a -> f''' a f) Prod (Prod h) (f -.-> (f' -.-> (f'' -.-> f'''))) xs -> Prod h f xs -> Prod h (f' -.-> (f'' -.-> f''')) xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f xs xs Prod (Prod h) (f' -.-> (f'' -.-> f''')) xs -> Prod h f' xs -> Prod h (f'' -.-> f''') xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f' xs ys Prod h (f'' -.-> f''') xs -> h f'' xs -> h f''' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f'' xs zs -- | Another name for 'hliftA'. -- -- @since 0.2 -- hmap :: (SListIN (Prod h) xs, HAp h) => (forall a. f a -> f' a) -> h f xs -> h f' xs -- | Another name for 'hliftA2'. -- -- @since 0.2 -- hzipWith :: (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall a. f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs -- | Another name for 'hliftA3'. -- -- @since 0.2 -- hzipWith3 :: (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall a. f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hmap :: (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs hmap = (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *) (f' :: k -> *). (SListIN (Prod h) xs, HAp h) => (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs hliftA hzipWith :: (forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hzipWith = (forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *) (f' :: k -> *) (f'' :: k -> *). (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall (a :: k). f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hliftA2 hzipWith3 :: (forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hzipWith3 = (forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *) (f' :: k -> *) (f'' :: k -> *) (f''' :: k -> *). (SListIN (Prod h) xs, HAp h, HAp (Prod h)) => (forall (a :: k). f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hliftA3 -- | Variant of 'hliftA' that takes a constrained function. -- -- /Specification:/ -- -- @ -- 'hcliftA' p f xs = 'hcpure' p ('fn' f) \` 'hap' \` xs -- @ -- hcliftA :: (AllN (Prod h) c xs, HAp h) => proxy c -> (forall a. c a => f a -> f' a) -> h f xs -> h f' xs -- | Variant of 'hcliftA2' that takes a constrained function. -- -- /Specification:/ -- -- @ -- 'hcliftA2' p f xs ys = 'hcpure' p ('fn_2' f) \` 'hap' \` xs \` 'hap' \` ys -- @ -- hcliftA2 :: (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall a. c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs -- | Variant of 'hcliftA3' that takes a constrained function. -- -- /Specification:/ -- -- @ -- 'hcliftA3' p f xs ys zs = 'hcpure' p ('fn_3' f) \` 'hap' \` xs \` 'hap' \` ys \` 'hap' \` zs -- @ -- hcliftA3 :: (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall a. c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hcliftA :: proxy c -> (forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs hcliftA p :: proxy c p f :: forall (a :: k). c a => f a -> f' a f xs :: h f xs xs = proxy c -> (forall (a :: k). c a => (-.->) f f' a) -> Prod h (f -.-> f') xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *). (HPure h, AllN h c xs) => proxy c -> (forall (a :: k). c a => f a) -> h f xs hcpure proxy c p ((f a -> f' a) -> (-.->) f f' a forall k (f :: k -> *) (a :: k) (f' :: k -> *). (f a -> f' a) -> (-.->) f f' a fn f a -> f' a forall (a :: k). c a => f a -> f' a f) Prod h (f -.-> f') xs -> h f xs -> h f' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f xs xs hcliftA2 :: proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hcliftA2 p :: proxy c p f :: forall (a :: k). c a => f a -> f' a -> f'' a f xs :: Prod h f xs xs ys :: h f' xs ys = proxy c -> (forall (a :: k). c a => (-.->) f (f' -.-> f'') a) -> Prod h (f -.-> (f' -.-> f'')) xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *). (HPure h, AllN h c xs) => proxy c -> (forall (a :: k). c a => f a) -> h f xs hcpure proxy c p ((f a -> f' a -> f'' a) -> (-.->) f (f' -.-> f'') a forall k (f :: k -> *) (a :: k) (f' :: k -> *) (f'' :: k -> *). (f a -> f' a -> f'' a) -> (-.->) f (f' -.-> f'') a fn_2 f a -> f' a -> f'' a forall (a :: k). c a => f a -> f' a -> f'' a f) Prod (Prod h) (f -.-> (f' -.-> f'')) xs -> Prod h f xs -> Prod h (f' -.-> f'') xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f xs xs Prod h (f' -.-> f'') xs -> h f' xs -> h f'' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f' xs ys hcliftA3 :: proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hcliftA3 p :: proxy c p f :: forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a f xs :: Prod h f xs xs ys :: Prod h f' xs ys zs :: h f'' xs zs = proxy c -> (forall (a :: k). c a => (-.->) f (f' -.-> (f'' -.-> f''')) a) -> Prod h (f -.-> (f' -.-> (f'' -.-> f'''))) xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *). (HPure h, AllN h c xs) => proxy c -> (forall (a :: k). c a => f a) -> h f xs hcpure proxy c p ((f a -> f' a -> f'' a -> f''' a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a forall k (f :: k -> *) (a :: k) (f' :: k -> *) (f'' :: k -> *) (f''' :: k -> *). (f a -> f' a -> f'' a -> f''' a) -> (-.->) f (f' -.-> (f'' -.-> f''')) a fn_3 f a -> f' a -> f'' a -> f''' a forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a f) Prod (Prod h) (f -.-> (f' -.-> (f'' -.-> f'''))) xs -> Prod h f xs -> Prod h (f' -.-> (f'' -.-> f''')) xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f xs xs Prod (Prod h) (f' -.-> (f'' -.-> f''')) xs -> Prod h f' xs -> Prod h (f'' -.-> f''') xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` Prod h f' xs ys Prod h (f'' -.-> f''') xs -> h f'' xs -> h f''' xs forall k l (h :: (k -> *) -> l -> *) (f :: k -> *) (g :: k -> *) (xs :: l). HAp h => Prod h (f -.-> g) xs -> h f xs -> h g xs `hap` h f'' xs zs -- | Another name for 'hcliftA'. -- -- @since 0.2 -- hcmap :: (AllN (Prod h) c xs, HAp h) => proxy c -> (forall a. c a => f a -> f' a) -> h f xs -> h f' xs -- | Another name for 'hcliftA2'. -- -- @since 0.2 -- hczipWith :: (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall a. c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs -- | Another name for 'hcliftA3'. -- -- @since 0.2 -- hczipWith3 :: (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall a. c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hcmap :: proxy c -> (forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs hcmap = proxy c -> (forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *) (f' :: k -> *). (AllN (Prod h) c xs, HAp h) => proxy c -> (forall (a :: k). c a => f a -> f' a) -> h f xs -> h f' xs hcliftA hczipWith :: proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hczipWith = proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *) (f' :: k -> *) (f'' :: k -> *). (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a) -> Prod h f xs -> h f' xs -> h f'' xs hcliftA2 hczipWith3 :: proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hczipWith3 = proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (proxy :: (k -> Constraint) -> *) (f :: k -> *) (f' :: k -> *) (f'' :: k -> *) (f''' :: k -> *). (AllN (Prod h) c xs, HAp h, HAp (Prod h)) => proxy c -> (forall (a :: k). c a => f a -> f' a -> f'' a -> f''' a) -> Prod h f xs -> Prod h f' xs -> h f'' xs -> h f''' xs hcliftA3 -- * Collapsing homogeneous structures -- | Maps products to lists, and sums to identities. type family CollapseTo (h :: (k -> Type) -> (l -> Type)) (x :: Type) :: Type -- | A class for collapsing a heterogeneous structure into -- a homogeneous one. class HCollapse (h :: (k -> Type) -> (l -> Type)) where -- | Collapse a heterogeneous structure with homogeneous elements -- into a homogeneous structure. -- -- If a heterogeneous structure is instantiated to the constant -- functor 'K', then it is in fact homogeneous. This function -- maps such a value to a simpler Haskell datatype reflecting that. -- An @'Data.SOP.NS' ('K' a)@ contains a single @a@, and an @'Data.SOP.NP' ('K' a)@ contains -- a list of @a@s. -- -- /Instances:/ -- -- @ -- 'hcollapse', 'Data.SOP.NP.collapse_NP' :: 'Data.SOP.NP.NP' ('K' a) xs -> [a] -- 'hcollapse', 'Data.SOP.NS.collapse_NS' :: 'Data.SOP.NS.NS' ('K' a) xs -> a -- 'hcollapse', 'Data.SOP.NP.collapse_POP' :: 'Data.SOP.NP.POP' ('K' a) xss -> [[a]] -- 'hcollapse', 'Data.SOP.NS.collapse_SOP' :: 'Data.SOP.NP.SOP' ('K' a) xss -> [a] -- @ -- hcollapse :: SListIN h xs => h (K a) xs -> CollapseTo h a -- | A generalization of 'Data.Foldable.traverse_' or 'Data.Foldable.foldMap'. -- -- @since 0.3.2.0 -- class HTraverse_ (h :: (k -> Type) -> (l -> Type)) where -- | Corresponds to 'Data.Foldable.traverse_'. -- -- /Instances:/ -- -- @ -- 'hctraverse_', 'Data.SOP.NP.ctraverse__NP' :: ('All' c xs , 'Applicative' g) => proxy c -> (forall a. c a => f a -> g ()) -> 'Data.SOP.NP.NP' f xs -> g () -- 'hctraverse_', 'Data.SOP.NS.ctraverse__NS' :: ('All2' c xs , 'Applicative' g) => proxy c -> (forall a. c a => f a -> g ()) -> 'Data.SOP.NS.NS' f xs -> g () -- 'hctraverse_', 'Data.SOP.NP.ctraverse__POP' :: ('All' c xss, 'Applicative' g) => proxy c -> (forall a. c a => f a -> g ()) -> 'Data.SOP.NP.POP' f xss -> g () -- 'hctraverse_', 'Data.SOP.NS.ctraverse__SOP' :: ('All2' c xss, 'Applicative' g) => proxy c -> (forall a. c a => f a -> g ()) -> 'Data.SOP.NS.SOP' f xss -> g () -- @ -- -- @since 0.3.2.0 -- hctraverse_ :: (AllN h c xs, Applicative g) => proxy c -> (forall a. c a => f a -> g ()) -> h f xs -> g () -- | Unconstrained version of 'hctraverse_'. -- -- /Instances:/ -- -- @ -- 'traverse_', 'Data.SOP.NP.traverse__NP' :: ('SListI' xs , 'Applicative' g) => (forall a. f a -> g ()) -> 'Data.SOP.NP.NP' f xs -> g () -- 'traverse_', 'Data.SOP.NS.traverse__NS' :: ('SListI' xs , 'Applicative' g) => (forall a. f a -> g ()) -> 'Data.SOP.NS.NS' f xs -> g () -- 'traverse_', 'Data.SOP.NP.traverse__POP' :: ('SListI2' xss, 'Applicative' g) => (forall a. f a -> g ()) -> 'Data.SOP.NP.POP' f xss -> g () -- 'traverse_', 'Data.SOP.NS.traverse__SOP' :: ('SListI2' xss, 'Applicative' g) => (forall a. f a -> g ()) -> 'Data.SOP.NS.SOP' f xss -> g () -- @ -- -- @since 0.3.2.0 -- htraverse_ :: (SListIN h xs, Applicative g) => (forall a. f a -> g ()) -> h f xs -> g () -- | Flipped version of 'hctraverse_'. -- -- @since 0.3.2.0 -- hcfor_ :: (HTraverse_ h, AllN h c xs, Applicative g) => proxy c -> h f xs -> (forall a. c a => f a -> g ()) -> g () hcfor_ :: proxy c -> h f xs -> (forall (a :: k). c a => f a -> g ()) -> g () hcfor_ p :: proxy c p xs :: h f xs xs f :: forall (a :: k). c a => f a -> g () f = proxy c -> (forall (a :: k). c a => f a -> g ()) -> h f xs -> g () forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (g :: * -> *) (proxy :: (k -> Constraint) -> *) (f :: k -> *). (HTraverse_ h, AllN h c xs, Applicative g) => proxy c -> (forall (a :: k). c a => f a -> g ()) -> h f xs -> g () hctraverse_ proxy c p forall (a :: k). c a => f a -> g () f h f xs xs -- | Special case of 'hctraverse_'. -- -- @since 0.3.2.0 -- hcfoldMap :: (HTraverse_ h, AllN h c xs, Monoid m) => proxy c -> (forall a. c a => f a -> m) -> h f xs -> m hcfoldMap :: proxy c -> (forall (a :: k). c a => f a -> m) -> h f xs -> m hcfoldMap p :: proxy c p f :: forall (a :: k). c a => f a -> m f = K m () -> m forall k a (b :: k). K a b -> a unK (K m () -> m) -> (h f xs -> K m ()) -> h f xs -> m forall b c a. (b -> c) -> (a -> b) -> a -> c . proxy c -> (forall (a :: k). c a => f a -> K m ()) -> h f xs -> K m () forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (g :: * -> *) (proxy :: (k -> Constraint) -> *) (f :: k -> *). (HTraverse_ h, AllN h c xs, Applicative g) => proxy c -> (forall (a :: k). c a => f a -> g ()) -> h f xs -> g () hctraverse_ proxy c p (m -> K m () forall k a (b :: k). a -> K a b K (m -> K m ()) -> (f a -> m) -> f a -> K m () forall b c a. (b -> c) -> (a -> b) -> a -> c . f a -> m forall (a :: k). c a => f a -> m f) -- * Sequencing effects -- | A generalization of 'Data.Traversable.sequenceA'. class HAp h => HSequence (h :: (k -> Type) -> (l -> Type)) where -- | Corresponds to 'Data.Traversable.sequenceA'. -- -- Lifts an applicative functor out of a structure. -- -- /Instances:/ -- -- @ -- 'hsequence'', 'Data.SOP.NP.sequence'_NP' :: ('Data.SOP.Sing.SListI' xs , 'Applicative' f) => 'Data.SOP.NP.NP' (f ':.:' g) xs -> f ('Data.SOP.NP.NP' g xs ) -- 'hsequence'', 'Data.SOP.NS.sequence'_NS' :: ('Data.SOP.Sing.SListI' xs , 'Applicative' f) => 'Data.SOP.NS.NS' (f ':.:' g) xs -> f ('Data.SOP.NS.NS' g xs ) -- 'hsequence'', 'Data.SOP.NP.sequence'_POP' :: ('SListI2' xss, 'Applicative' f) => 'Data.SOP.NP.POP' (f ':.:' g) xss -> f ('Data.SOP.NP.POP' g xss) -- 'hsequence'', 'Data.SOP.NS.sequence'_SOP' :: ('SListI2' xss, 'Applicative' f) => 'Data.SOP.NS.SOP' (f ':.:' g) xss -> f ('Data.SOP.NS.SOP' g xss) -- @ -- hsequence' :: (SListIN h xs, Applicative f) => h (f :.: g) xs -> f (h g xs) -- | Corresponds to 'Data.Traversable.traverse'. -- -- /Instances:/ -- -- @ -- 'hctraverse'', 'Data.SOP.NP.ctraverse'_NP' :: ('All' c xs , 'Applicative' g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NP.NP' f xs -> g ('Data.SOP.NP.NP' f' xs ) -- 'hctraverse'', 'Data.SOP.NS.ctraverse'_NS' :: ('All2' c xs , 'Applicative' g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NS.NS' f xs -> g ('Data.SOP.NS.NS' f' xs ) -- 'hctraverse'', 'Data.SOP.NP.ctraverse'_POP' :: ('All' c xss, 'Applicative' g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NP.POP' f xss -> g ('Data.SOP.NP.POP' f' xss) -- 'hctraverse'', 'Data.SOP.NS.ctraverse'_SOP' :: ('All2' c xss, 'Applicative' g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NS.SOP' f xss -> g ('Data.SOP.NS.SOP' f' xss) -- @ -- -- @since 0.3.2.0 -- hctraverse' :: (AllN h c xs, Applicative g) => proxy c -> (forall a. c a => f a -> g (f' a)) -> h f xs -> g (h f' xs) -- | Unconstrained variant of `htraverse'`. -- -- /Instances:/ -- -- @ -- 'htraverse'', 'Data.SOP.NP.traverse'_NP' :: ('SListI' xs , 'Applicative' g) => (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NP.NP' f xs -> g ('Data.SOP.NP.NP' f' xs ) -- 'htraverse'', 'Data.SOP.NS.traverse'_NS' :: ('SListI2' xs , 'Applicative' g) => (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NS.NS' f xs -> g ('Data.SOP.NS.NS' f' xs ) -- 'htraverse'', 'Data.SOP.NP.traverse'_POP' :: ('SListI' xss, 'Applicative' g) => (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NP.POP' f xss -> g ('Data.SOP.NP.POP' f' xss) -- 'htraverse'', 'Data.SOP.NS.traverse'_SOP' :: ('SListI2' xss, 'Applicative' g) => (forall a. c a => f a -> g (f' a)) -> 'Data.SOP.NS.SOP' f xss -> g ('Data.SOP.NS.SOP' f' xss) -- @ -- -- @since 0.3.2.0 -- htraverse' :: (SListIN h xs, Applicative g) => (forall a. f a -> g (f' a)) -> h f xs -> g (h f' xs) -- ** Derived functions -- | Special case of 'hctraverse'' where @f' = 'I'@. -- -- @since 0.3.2.0 -- hctraverse :: (HSequence h, AllN h c xs, Applicative g) => proxy c -> (forall a. c a => f a -> g a) -> h f xs -> g (h I xs) hctraverse :: proxy c -> (forall a. c a => f a -> g a) -> h f xs -> g (h I xs) hctraverse p :: proxy c p f :: forall a. c a => f a -> g a f = proxy c -> (forall a. c a => f a -> g (I a)) -> h f xs -> g (h I xs) forall k l (h :: (k -> *) -> l -> *) (c :: k -> Constraint) (xs :: l) (g :: * -> *) (proxy :: (k -> Constraint) -> *) (f :: k -> *) (f' :: k -> *). (HSequence h, AllN h c xs, Applicative g) => proxy c -> (forall (a :: k). c a => f a -> g (f' a)) -> h f xs -> g (h f' xs) hctraverse' proxy c p ((a -> I a) -> g a -> g (I a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap a -> I a forall a. a -> I a I (g a -> g (I a)) -> (f a -> g a) -> f a -> g (I a) forall b c a. (b -> c) -> (a -> b) -> a -> c . f a -> g a forall a. c a => f a -> g a f) -- | Flipped version of 'hctraverse'. -- -- @since 0.3.2.0 -- hcfor :: (HSequence h, AllN h c xs, Applicative g) => proxy c -> h f xs -> (forall a. c a => f a -> g a) -> g (h I xs) hcfor :: proxy c -> h f xs -> (forall a. c a => f a -> g a) -> g (h I xs) hcfor p :: proxy c p xs :: h f xs xs f :: forall a. c a => f a -> g a f = proxy c -> (forall a. c a => f a -> g a) -> h f xs -> g (h I xs) forall l (h :: (* -> *) -> l -> *) (c :: * -> Constraint) (xs :: l) (g :: * -> *) (proxy :: (* -> Constraint) -> *) (f :: * -> *). (HSequence h, AllN h c xs, Applicative g) => proxy c -> (forall a. c a => f a -> g a) -> h f xs -> g (h I xs) hctraverse proxy c p forall a. c a => f a -> g a f h f xs xs -- | Special case of 'hsequence'' where @g = 'I'@. hsequence :: (SListIN h xs, SListIN (Prod h) xs, HSequence h) => Applicative f => h f xs -> f (h I xs) hsequence :: h f xs -> f (h I xs) hsequence = h (f :.: I) xs -> f (h I xs) forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: * -> *) (g :: k -> *). (HSequence h, SListIN h xs, Applicative f) => h (f :.: g) xs -> f (h g xs) hsequence' (h (f :.: I) xs -> f (h I xs)) -> (h f xs -> h (f :.: I) xs) -> h f xs -> f (h I xs) forall b c a. (b -> c) -> (a -> b) -> a -> c . (forall a. f a -> (:.:) f I a) -> h f xs -> h (f :.: I) xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *) (f' :: k -> *). (SListIN (Prod h) xs, HAp h) => (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs hliftA (f (I a) -> (:.:) f I a forall l k (f :: l -> *) (g :: k -> l) (p :: k). f (g p) -> (:.:) f g p Comp (f (I a) -> (:.:) f I a) -> (f a -> f (I a)) -> f a -> (:.:) f I a forall b c a. (b -> c) -> (a -> b) -> a -> c . (a -> I a) -> f a -> f (I a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap a -> I a forall a. a -> I a I) -- | Special case of 'hsequence'' where @g = 'K' a@. hsequenceK :: (SListIN h xs, SListIN (Prod h) xs, Applicative f, HSequence h) => h (K (f a)) xs -> f (h (K a) xs) hsequenceK :: h (K (f a)) xs -> f (h (K a) xs) hsequenceK = h (f :.: K a) xs -> f (h (K a) xs) forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: * -> *) (g :: k -> *). (HSequence h, SListIN h xs, Applicative f) => h (f :.: g) xs -> f (h g xs) hsequence' (h (f :.: K a) xs -> f (h (K a) xs)) -> (h (K (f a)) xs -> h (f :.: K a) xs) -> h (K (f a)) xs -> f (h (K a) xs) forall b c a. (b -> c) -> (a -> b) -> a -> c . (forall (a :: k). K (f a) a -> (:.:) f (K a) a) -> h (K (f a)) xs -> h (f :.: K a) xs forall k l (h :: (k -> *) -> l -> *) (xs :: l) (f :: k -> *) (f' :: k -> *). (SListIN (Prod h) xs, HAp h) => (forall (a :: k). f a -> f' a) -> h f xs -> h f' xs hliftA (f (K a a) -> (:.:) f (K a) a forall l k (f :: l -> *) (g :: k -> l) (p :: k). f (g p) -> (:.:) f g p Comp (f (K a a) -> (:.:) f (K a) a) -> (K (f a) a -> f (K a a)) -> K (f a) a -> (:.:) f (K a) a forall b c a. (b -> c) -> (a -> b) -> a -> c . (a -> K a a) -> f a -> f (K a a) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b fmap a -> K a a forall k a (b :: k). a -> K a b K (f a -> f (K a a)) -> (K (f a) a -> f a) -> K (f a) a -> f (K a a) forall b c a. (b -> c) -> (a -> b) -> a -> c . K (f a) a -> f a forall k a (b :: k). K a b -> a unK) -- * Indexing into sums -- | A class for determining which choice in a sum-like structure -- a value represents. -- class HIndex (h :: (k -> Type) -> (l -> Type)) where -- | If 'h' is a sum-like structure representing a choice -- between @n@ different options, and @x@ is a value of -- type @h f xs@, then @'hindex' x@ returns a number between -- @0@ and @n - 1@ representing the index of the choice -- made by @x@. -- -- /Instances:/ -- -- @ -- 'hindex', 'Data.SOP.NS.index_NS' :: 'Data.SOP.NS.NS' f xs -> Int -- 'hindex', 'Data.SOP.NS.index_SOP' :: 'Data.SOP.NS.SOP' f xs -> Int -- @ -- -- /Examples:/ -- -- >>> hindex (S (S (Z (I False)))) -- 2 -- >>> hindex (Z (K ())) -- 0 -- >>> hindex (SOP (S (Z (I True :* I 'x' :* Nil)))) -- 1 -- -- @since 0.2.4.0 -- hindex :: h f xs -> Int -- * Applying all injections -- | Maps a structure containing products to the corresponding -- sum structure. -- -- @since 0.2.4.0 -- type family UnProd (h :: (k -> Type) -> (l -> Type)) :: (k -> Type) -> (l -> Type) -- | A class for applying all injections corresponding to a sum-like -- structure to a table containing suitable arguments. -- class (UnProd (Prod h) ~ h) => HApInjs (h :: (k -> Type) -> (l -> Type)) where -- | For a given table (product-like structure), produce a list where -- each element corresponds to the application of an injection function -- into the corresponding sum-like structure. -- -- /Instances:/ -- -- @ -- 'hapInjs', 'Data.SOP.NS.apInjs_NP' :: 'Data.SOP.Sing.SListI' xs => 'Data.SOP.NP.NP' f xs -> ['Data.SOP.NS.NS' f xs ] -- 'hapInjs', 'Data.SOP.NS.apInjs_SOP' :: 'SListI2' xss => 'Data.SOP.NP.POP' f xs -> ['Data.SOP.NS.SOP' f xss] -- @ -- -- /Examples:/ -- -- >>> hapInjs (I 'x' :* I True :* I 2 :* Nil) :: [NS I '[Char, Bool, Int]] -- [Z (I 'x'),S (Z (I True)),S (S (Z (I 2)))] -- -- >>> hapInjs (POP ((I 'x' :* Nil) :* (I True :* I 2 :* Nil) :* Nil)) :: [SOP I '[ '[Char], '[Bool, Int]]] -- [SOP (Z (I 'x' :* Nil)),SOP (S (Z (I True :* I 2 :* Nil)))] -- -- Unfortunately the type-signatures are required in GHC-7.10 and older. -- -- @since 0.2.4.0 -- hapInjs :: (SListIN h xs) => Prod h f xs -> [h f xs] -- * Expanding sums to products -- | A class for expanding sum structures into corresponding product -- structures, filling in the slots not targeted by the sum with -- default values. -- -- @since 0.2.5.0 -- class HExpand (h :: (k -> Type) -> (l -> Type)) where -- | Expand a given sum structure into a corresponding product -- structure by placing the value contained in the sum into the -- corresponding position in the product, and using the given -- default value for all other positions. -- -- /Instances:/ -- -- @ -- 'hexpand', 'Data.SOP.NS.expand_NS' :: 'Data.SOP.Sing.SListI' xs => (forall x . f x) -> 'Data.SOP.NS.NS' f xs -> 'Data.SOP.NS.NP' f xs -- 'hexpand', 'Data.SOP.NS.expand_SOP' :: 'SListI2' xss => (forall x . f x) -> 'Data.SOP.NS.SOP' f xss -> 'Data.SOP.NP.POP' f xss -- @ -- -- /Examples:/ -- -- >>> hexpand Nothing (S (Z (Just 3))) :: NP Maybe '[Char, Int, Bool] -- Nothing :* Just 3 :* Nothing :* Nil -- >>> hexpand [] (SOP (S (Z ([1,2] :* "xyz" :* Nil)))) :: POP [] '[ '[Bool], '[Int, Char] ] -- POP (([] :* Nil) :* ([1,2] :* "xyz" :* Nil) :* Nil) -- -- @since 0.2.5.0 -- hexpand :: (SListIN (Prod h) xs) => (forall x . f x) -> h f xs -> Prod h f xs -- | Variant of 'hexpand' that allows passing a constrained default. -- -- /Instances:/ -- -- @ -- 'hcexpand', 'Data.SOP.NS.cexpand_NS' :: 'All' c xs => proxy c -> (forall x . c x => f x) -> 'Data.SOP.NS.NS' f xs -> 'Data.SOP.NP.NP' f xs -- 'hcexpand', 'Data.SOP.NS.cexpand_SOP' :: 'All2' c xss => proxy c -> (forall x . c x => f x) -> 'Data.SOP.NS.SOP' f xss -> 'Data.SOP.NP.POP' f xss -- @ -- -- /Examples:/ -- -- >>> hcexpand (Proxy :: Proxy Bounded) (I minBound) (S (Z (I 20))) :: NP I '[Bool, Int, Ordering] -- I False :* I 20 :* I LT :* Nil -- >>> hcexpand (Proxy :: Proxy Num) (I 0) (SOP (S (Z (I 1 :* I 2 :* Nil)))) :: POP I '[ '[Double], '[Int, Int] ] -- POP ((I 0.0 :* Nil) :* (I 1 :* I 2 :* Nil) :* Nil) -- -- @since 0.2.5.0 -- hcexpand :: (AllN (Prod h) c xs) => proxy c -> (forall x . c x => f x) -> h f xs -> Prod h f xs -- | A class for transforming structures into related structures with -- a different index list, as long as the index lists have the same shape -- and the elements and interpretation functions are suitably related. -- -- @since 0.3.1.0 -- class (Same h1 ~ h2, Same h2 ~ h1) => HTrans (h1 :: (k1 -> Type) -> (l1 -> Type)) (h2 :: (k2 -> Type) -> (l2 -> Type)) where -- | Transform a structure into a related structure given a conversion -- function for the elements. -- -- @since 0.3.1.0 -- htrans :: AllZipN (Prod h1) c xs ys => proxy c -> (forall x y . c x y => f x -> g y) -> h1 f xs -> h2 g ys -- | Safely coerce a structure into a representationally equal structure. -- -- This is a special case of 'htrans', but can be implemented more efficiently; -- for example in terms of 'Unsafe.Coerce.unsafeCoerce'. -- -- /Examples:/ -- -- >>> hcoerce (I (Just LT) :* I (Just 'x') :* I (Just True) :* Nil) :: NP Maybe '[Ordering, Char, Bool] -- Just LT :* Just 'x' :* Just True :* Nil -- >>> hcoerce (SOP (Z (K True :* K False :* Nil))) :: SOP I '[ '[Bool, Bool], '[Bool] ] -- SOP (Z (I True :* I False :* Nil)) -- -- @since 0.3.1.0 -- hcoerce :: (AllZipN (Prod h1) (LiftedCoercible f g) xs ys, HTrans h1 h2) => h1 f xs -> h2 g ys -- | Specialization of 'hcoerce'. -- -- @since 0.3.1.0 -- hfromI :: (AllZipN (Prod h1) (LiftedCoercible I f) xs ys, HTrans h1 h2) => h1 I xs -> h2 f ys hfromI :: h1 I xs -> h2 f ys hfromI = h1 I xs -> h2 f ys forall k1 l1 k2 l2 (h1 :: (k1 -> *) -> l1 -> *) (h2 :: (k2 -> *) -> l2 -> *) (f :: k1 -> *) (g :: k2 -> *) (xs :: l1) (ys :: l2). (HTrans h1 h2, AllZipN (Prod h1) (LiftedCoercible f g) xs ys, HTrans h1 h2) => h1 f xs -> h2 g ys hcoerce -- | Specialization of 'hcoerce'. -- -- @since 0.3.1.0 -- htoI :: (AllZipN (Prod h1) (LiftedCoercible f I) xs ys, HTrans h1 h2) => h1 f xs -> h2 I ys htoI :: h1 f xs -> h2 I ys htoI = h1 f xs -> h2 I ys forall k1 l1 k2 l2 (h1 :: (k1 -> *) -> l1 -> *) (h2 :: (k2 -> *) -> l2 -> *) (f :: k1 -> *) (g :: k2 -> *) (xs :: l1) (ys :: l2). (HTrans h1 h2, AllZipN (Prod h1) (LiftedCoercible f g) xs ys, HTrans h1 h2) => h1 f xs -> h2 g ys hcoerce -- $setup -- >>> import Data.SOP