| Copyright | (c) Brent Yorgey 2010 |
|---|---|
| License | BSD-style (see LICENSE) |
| Maintainer | byorgey@cis.upenn.edu |
| Stability | experimental |
| Safe Haskell | None |
| Language | Haskell2010 |
Math.Combinatorics.Species.AST
Contents
Description
Various data structures representing reified combinatorial species expressions. See also Math.Combinatorics.Species.AST.Instances.
- data SpeciesAST where
- Zero :: SpeciesAST
- One :: SpeciesAST
- N :: Integer -> SpeciesAST
- X :: SpeciesAST
- E :: SpeciesAST
- C :: SpeciesAST
- B :: SpeciesAST
- L :: SpeciesAST
- Subset :: SpeciesAST
- KSubset :: Integer -> SpeciesAST
- Elt :: SpeciesAST
- (:+) :: SpeciesAST -> SpeciesAST -> SpeciesAST
- (:*) :: SpeciesAST -> SpeciesAST -> SpeciesAST
- (:.) :: SpeciesAST -> SpeciesAST -> SpeciesAST
- (:><) :: SpeciesAST -> SpeciesAST -> SpeciesAST
- (:@) :: SpeciesAST -> SpeciesAST -> SpeciesAST
- Der :: SpeciesAST -> SpeciesAST
- OfSize :: SpeciesAST -> (Integer -> Bool) -> SpeciesAST
- OfSizeExactly :: SpeciesAST -> Integer -> SpeciesAST
- NonEmpty :: SpeciesAST -> SpeciesAST
- Rec :: ASTFunctor f => f -> SpeciesAST
- Omega :: SpeciesAST
- data TSpeciesAST (s :: * -> *) where
- TZero :: TSpeciesAST Void
- TOne :: TSpeciesAST Unit
- TN :: Integer -> TSpeciesAST (Const Integer)
- TX :: TSpeciesAST Id
- TE :: TSpeciesAST Set
- TC :: TSpeciesAST Cycle
- TB :: TSpeciesAST Bracelet
- TL :: TSpeciesAST []
- TSubset :: TSpeciesAST Set
- TKSubset :: Integer -> TSpeciesAST Set
- TElt :: TSpeciesAST Id
- (:+::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :+: g)
- (:*::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :*: g)
- (:.::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :.: g)
- (:><::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :*: g)
- (:@::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :.: g)
- TDer :: SizedSpeciesAST f -> TSpeciesAST (f :.: Star)
- TOfSize :: SizedSpeciesAST f -> (Integer -> Bool) -> TSpeciesAST f
- TOfSizeExactly :: SizedSpeciesAST f -> Integer -> TSpeciesAST f
- TNonEmpty :: SizedSpeciesAST f -> TSpeciesAST f
- TRec :: ASTFunctor f => f -> TSpeciesAST (Mu f)
- TOmega :: TSpeciesAST Void
- data SizedSpeciesAST (s :: * -> *) where
- Sized :: Interval -> TSpeciesAST s -> SizedSpeciesAST s
- interval :: TSpeciesAST s -> Interval
- annI :: TSpeciesAST s -> SizedSpeciesAST s
- getI :: SizedSpeciesAST s -> Interval
- stripI :: SizedSpeciesAST s -> TSpeciesAST s
- data ESpeciesAST where
- Wrap :: Typeable s => SizedSpeciesAST s -> ESpeciesAST
- wrap :: Typeable s => TSpeciesAST s -> ESpeciesAST
- unwrap :: Typeable s => ESpeciesAST -> TSpeciesAST s
- erase :: ESpeciesAST -> SpeciesAST
- erase' :: TSpeciesAST f -> SpeciesAST
- annotate :: SpeciesAST -> ESpeciesAST
- class (Typeable f, Show f, Typeable (Interp f (Mu f))) => ASTFunctor f where
- needsCI :: SpeciesAST -> Bool
- substRec :: ASTFunctor f => f -> SpeciesAST -> SpeciesAST -> SpeciesAST
Basic species expression AST
data SpeciesAST where Source #
A basic, untyped AST type for species expressions, for easily
doing things like analysis, simplification, deriving isomorphisms,
and so on. Converting between SpeciesAST and the typed variant
ESpeciesAST can be done with annotate and erase.
Constructors
| Zero :: SpeciesAST | |
| One :: SpeciesAST | |
| N :: Integer -> SpeciesAST | |
| X :: SpeciesAST | |
| E :: SpeciesAST | |
| C :: SpeciesAST | |
| B :: SpeciesAST | |
| L :: SpeciesAST | |
| Subset :: SpeciesAST | |
| KSubset :: Integer -> SpeciesAST | |
| Elt :: SpeciesAST | |
| (:+) :: SpeciesAST -> SpeciesAST -> SpeciesAST | |
| (:*) :: SpeciesAST -> SpeciesAST -> SpeciesAST | |
| (:.) :: SpeciesAST -> SpeciesAST -> SpeciesAST | |
| (:><) :: SpeciesAST -> SpeciesAST -> SpeciesAST | |
| (:@) :: SpeciesAST -> SpeciesAST -> SpeciesAST | |
| Der :: SpeciesAST -> SpeciesAST | |
| OfSize :: SpeciesAST -> (Integer -> Bool) -> SpeciesAST | |
| OfSizeExactly :: SpeciesAST -> Integer -> SpeciesAST | |
| NonEmpty :: SpeciesAST -> SpeciesAST | |
| Rec :: ASTFunctor f => f -> SpeciesAST | |
| Omega :: SpeciesAST |
Typed, sized species expression AST
data TSpeciesAST (s :: * -> *) where Source #
A variant of SpeciesAST with a phantom type parameter which
also reflects the structure, so we can write
quasi-dependently-typed functions over species, in particular for
species enumeration.
Of course, the non-uniform type parameter means that
TSpeciesAST cannot be an instance of the Species class; for
that purpose the existential wrapper ESpeciesAST is provided.
TSpeciesAST is defined via mutual recursion with
SizedSpeciesAST, which pairs a TSpeciesAST with an interval
annotation indicating (a conservative approximation of) the label
set sizes for which the species actually yields any structures;
this information makes enumeration faster and also prevents it
from getting stuck in infinite recursion in some cases. A value
of SizedSpeciesAST is thus an annotated species expression tree
with interval annotations at every node.
Constructors
| TZero :: TSpeciesAST Void | |
| TOne :: TSpeciesAST Unit | |
| TN :: Integer -> TSpeciesAST (Const Integer) | |
| TX :: TSpeciesAST Id | |
| TE :: TSpeciesAST Set | |
| TC :: TSpeciesAST Cycle | |
| TB :: TSpeciesAST Bracelet | |
| TL :: TSpeciesAST [] | |
| TSubset :: TSpeciesAST Set | |
| TKSubset :: Integer -> TSpeciesAST Set | |
| TElt :: TSpeciesAST Id | |
| (:+::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :+: g) | |
| (:*::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :*: g) | |
| (:.::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :.: g) | |
| (:><::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :*: g) | |
| (:@::) :: SizedSpeciesAST f -> SizedSpeciesAST g -> TSpeciesAST (f :.: g) | |
| TDer :: SizedSpeciesAST f -> TSpeciesAST (f :.: Star) | |
| TOfSize :: SizedSpeciesAST f -> (Integer -> Bool) -> TSpeciesAST f | |
| TOfSizeExactly :: SizedSpeciesAST f -> Integer -> TSpeciesAST f | |
| TNonEmpty :: SizedSpeciesAST f -> TSpeciesAST f | |
| TRec :: ASTFunctor f => f -> TSpeciesAST (Mu f) | |
| TOmega :: TSpeciesAST Void |
Size annotations
data SizedSpeciesAST (s :: * -> *) where Source #
Constructors
| Sized :: Interval -> TSpeciesAST s -> SizedSpeciesAST s |
interval :: TSpeciesAST s -> Interval Source #
Given a TSpeciesAST, compute (a conservative approximation of)
the interval of label set sizes on which the species yields any
structures.
annI :: TSpeciesAST s -> SizedSpeciesAST s Source #
Annotate a TSpeciesAST with the interval of label set sizes for
which it yields structures.
getI :: SizedSpeciesAST s -> Interval Source #
Retrieve the interval annotation from a SizedSpeciesAST.
stripI :: SizedSpeciesAST s -> TSpeciesAST s Source #
Strip the interval annotation from a SizedSpeciesAST.
Existentially wrapped AST
data ESpeciesAST where Source #
An existential wrapper to hide the phantom type parameter to
SizedSpeciesAST, so we can make it an instance of Species.
Constructors
| Wrap :: Typeable s => SizedSpeciesAST s -> ESpeciesAST |
wrap :: Typeable s => TSpeciesAST s -> ESpeciesAST Source #
Construct an ESpeciesAST from a TSpeciesAST by adding an
appropriate interval annotation and hiding the type.
unwrap :: Typeable s => ESpeciesAST -> TSpeciesAST s Source #
Unwrap an existential wrapper to get out a typed AST. You can get out any type you like as long as it is the right one.
CAUTION: Don't try this at home!
erase :: ESpeciesAST -> SpeciesAST Source #
Erase the type and interval information from an existentially wrapped species AST.
erase' :: TSpeciesAST f -> SpeciesAST Source #
Erase the type and interval information from a typed species AST.
annotate :: SpeciesAST -> ESpeciesAST Source #
Reconstruct the type and interval annotations on a species AST.
ASTFunctor class (codes for higher-order functors)
class (Typeable f, Show f, Typeable (Interp f (Mu f))) => ASTFunctor f where Source #
ASTFunctor is a type class for codes which can be interpreted
(via the Interp type family) as higher-order functors over
species expressions. The apply method allows such codes to be
applied to a species AST. The indirection is needed to implement
recursive species.
Minimal complete definition
Methods
apply :: Typeable g => f -> TSpeciesAST g -> TSpeciesAST (Interp f g) Source #
Miscellaneous AST operations
needsCI :: SpeciesAST -> Bool Source #
needsCI is a predicate which checks whether a species expression
uses any of the operations which are not supported directly by
ordinary generating functions (composition, differentiation,
cartesian product, and functor composition), and hence need cycle
index series.
substRec :: ASTFunctor f => f -> SpeciesAST -> SpeciesAST -> SpeciesAST Source #
Substitute an expression for recursive occurrences.