{-# OPTIONS_GHC -Wno-missing-export-lists #-}
module Target.AntiPattern.Stan0214 where
isEq :: Int -> Int -> Bool
isEq :: Int -> Int -> Bool
isEq Int
x Int
y
| Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
y = Bool
False
| Int
x Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
y = Bool
False
| Bool
otherwise = Bool
True
isEq2 :: String -> String -> Bool
isEq2 :: String -> String -> Bool
isEq2 String
s1 String
s2
| String
s1 String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
s2 = Bool
True
| String
s1 String -> String -> Bool
forall a. Ord a => a -> a -> Bool
< String
s2 = Bool
False
| Bool
otherwise = Bool
True
weirdEq :: Int -> Int -> Bool
weirdEq :: Int -> Int -> Bool
weirdEq Int
a Int
b
| Int
a Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
b = Bool
True
| Int
a Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
b Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 = Bool
True
| Bool
otherwise = Bool
False
geqOrEq :: Int -> Int -> Bool
geqOrEq :: Int -> Int -> Bool
geqOrEq Int
a Int
b
| Int
a Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
b = Bool
True
| Bool
otherwise = Bool
False
inRange :: Int -> Bool
inRange :: Int -> Bool
inRange Int
i
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
100 = Bool
False
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
80 = Bool
True
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
60 = Bool
False
| Int
i Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
40 = Bool
True
| Bool
otherwise = Bool
False
data Tree a = Leaf | Node a (Tree a) (Tree a)
insert :: Ord a => a -> Tree a -> Tree a
insert :: forall a. Ord a => a -> Tree a -> Tree a
insert a
x Tree a
Leaf = a -> Tree a -> Tree a -> Tree a
forall a. a -> Tree a -> Tree a -> Tree a
Node a
x Tree a
forall a. Tree a
Leaf Tree a
forall a. Tree a
Leaf
insert a
x node :: Tree a
node@(Node a
y Tree a
l Tree a
r)
| a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
y = a -> Tree a -> Tree a -> Tree a
forall a. a -> Tree a -> Tree a -> Tree a
Node a
y (a -> Tree a -> Tree a
forall a. Ord a => a -> Tree a -> Tree a
insert a
x Tree a
l) Tree a
r
| a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> a
y = a -> Tree a -> Tree a -> Tree a
forall a. a -> Tree a -> Tree a -> Tree a
Node a
y Tree a
l (a -> Tree a -> Tree a
forall a. Ord a => a -> Tree a -> Tree a
insert a
x Tree a
r)
| Bool
otherwise = Tree a
node