| Copyright | (c) 2009 Bryan O'Sullivan |
|---|---|
| License | BSD3 |
| Maintainer | bos@serpentine.com |
| Stability | experimental |
| Portability | portable |
| Safe Haskell | None |
| Language | Haskell98 |
Statistics.Distribution.Normal
Contents
Description
The normal distribution. This is a continuous probability distribution that describes data that cluster around a mean.
- data NormalDistribution
- normalDistr :: Double -> Double -> NormalDistribution
- normalDistrE :: Double -> Double -> Maybe NormalDistribution
- standard :: NormalDistribution
Documentation
data NormalDistribution Source #
The normal distribution.
Instances
| Eq NormalDistribution Source # | |
| Data NormalDistribution Source # | |
| Read NormalDistribution Source # | |
| Show NormalDistribution Source # | |
| Generic NormalDistribution Source # | |
| ToJSON NormalDistribution Source # | |
| FromJSON NormalDistribution Source # | |
| Binary NormalDistribution Source # | |
| ContGen NormalDistribution Source # | |
| Entropy NormalDistribution Source # | |
| MaybeEntropy NormalDistribution Source # | |
| Variance NormalDistribution Source # | |
| MaybeVariance NormalDistribution Source # | |
| Mean NormalDistribution Source # | |
| MaybeMean NormalDistribution Source # | |
| ContDistr NormalDistribution Source # | |
| Distribution NormalDistribution Source # | |
| FromSample NormalDistribution Double Source # | Variance is estimated using maximum likelihood method (biased estimation). Returns |
| type Rep NormalDistribution Source # | |
Constructors
Arguments
| :: Double | Mean of distribution |
| -> Double | Standard deviation of distribution |
| -> NormalDistribution |
Create normal distribution from parameters.
IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.
Arguments
| :: Double | Mean of distribution |
| -> Double | Standard deviation of distribution |
| -> Maybe NormalDistribution |
Create normal distribution from parameters.
IMPORTANT: prior to 0.10 release second parameter was variance not standard deviation.
standard :: NormalDistribution Source #
Standard normal distribution with mean equal to 0 and variance equal to 1