supermonad-0.2.1.1: Plugin and base library to support supermonads in Haskell

Safe HaskellSafe
LanguageHaskell2010

Control.Super.Monad.PreludeWithoutMonad

Contents

Description

A verson of the standard prelude that does not export anything that involves standard monads.

Synopsis

Prelude

Standard types, classes and related functions

Basic data types

data Bool :: * #

Constructors

False 
True 

Instances

Bounded Bool

Since: 2.1

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Data Bool

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool #

toConstr :: Bool -> Constr #

dataTypeOf :: Bool -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Bool) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) #

gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r #

gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool #

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Read Bool

Since: 2.1

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Ix Bool

Since: 2.1

Methods

range :: (Bool, Bool) -> [Bool] #

index :: (Bool, Bool) -> Bool -> Int #

unsafeIndex :: (Bool, Bool) -> Bool -> Int

inRange :: (Bool, Bool) -> Bool -> Bool #

rangeSize :: (Bool, Bool) -> Int #

unsafeRangeSize :: (Bool, Bool) -> Int

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Lift Bool 

Methods

lift :: Bool -> Q Exp #

SingKind Bool

Since: 4.9.0.0

Associated Types

type DemoteRep Bool :: *

Methods

fromSing :: Sing Bool a -> DemoteRep Bool

Storable Bool

Since: 2.1

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

Bits Bool

Interpret Bool as 1-bit bit-field

Since: 4.7.0.0

FiniteBits Bool

Since: 4.7.0.0

Binary Bool 

Methods

put :: Bool -> Put #

get :: Get Bool #

putList :: [Bool] -> Put #

NFData Bool 

Methods

rnf :: Bool -> () #

Binary Bool 

Methods

put_ :: BinHandle -> Bool -> IO () #

put :: BinHandle -> Bool -> IO (Bin * Bool) #

get :: BinHandle -> IO Bool #

Outputable Bool 

Methods

ppr :: Bool -> SDoc #

pprPrec :: Rational -> Bool -> SDoc #

IArray UArray Bool 

Methods

bounds :: Ix i => UArray i Bool -> (i, i) #

numElements :: Ix i => UArray i Bool -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Bool)] -> UArray i Bool

unsafeAt :: Ix i => UArray i Bool -> Int -> Bool

unsafeReplace :: Ix i => UArray i Bool -> [(Int, Bool)] -> UArray i Bool

unsafeAccum :: Ix i => (Bool -> e' -> Bool) -> UArray i Bool -> [(Int, e')] -> UArray i Bool

unsafeAccumArray :: Ix i => (Bool -> e' -> Bool) -> Bool -> (i, i) -> [(Int, e')] -> UArray i Bool

SingI Bool False

Since: 4.9.0.0

Methods

sing :: Sing False a

SingI Bool True

Since: 4.9.0.0

Methods

sing :: Sing True a

MArray (STUArray s) Bool (ST s) 

Methods

getBounds :: Ix i => STUArray s i Bool -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Bool -> ST s Int

newArray :: Ix i => (i, i) -> Bool -> ST s (STUArray s i Bool) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Bool)

unsafeRead :: Ix i => STUArray s i Bool -> Int -> ST s Bool

unsafeWrite :: Ix i => STUArray s i Bool -> Int -> Bool -> ST s ()

type Rep Bool 
type Rep Bool = D1 * (MetaData "Bool" "GHC.Types" "ghc-prim" False) ((:+:) * (C1 * (MetaCons "False" PrefixI False) (U1 *)) (C1 * (MetaCons "True" PrefixI False) (U1 *)))
data Sing Bool 
data Sing Bool where
type DemoteRep Bool 
type DemoteRep Bool = Bool
type (==) Bool a b 
type (==) Bool a b = EqBool a b

(&&) :: Bool -> Bool -> Bool infixr 3 #

Boolean "and"

(||) :: Bool -> Bool -> Bool infixr 2 #

Boolean "or"

not :: Bool -> Bool #

Boolean "not"

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

data Maybe a :: * -> * #

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.

Constructors

Nothing 
Just a 

Instances

Monad Maybe

Since: 2.1

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

fail :: String -> Maybe a #

Functor Maybe

Since: 2.1

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

MonadFix Maybe

Since: 2.1

Methods

mfix :: (a -> Maybe a) -> Maybe a #

MonadFail Maybe

Since: 4.9.0.0

Methods

fail :: String -> Maybe a #

Applicative Maybe

Since: 2.1

Methods

pure :: a -> Maybe a #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b #

liftA2 :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

(*>) :: Maybe a -> Maybe b -> Maybe b #

(<*) :: Maybe a -> Maybe b -> Maybe a #

Foldable Maybe

Since: 2.1

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Traversable Maybe

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Eq1 Maybe

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool #

Ord1 Maybe

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Maybe a -> Maybe b -> Ordering #

Read1 Maybe

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Maybe a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Maybe a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Maybe a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Maybe a] #

Show1 Maybe

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Maybe a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Maybe a] -> ShowS #

MonadZip Maybe

Since: 4.8.0.0

Methods

mzip :: Maybe a -> Maybe b -> Maybe (a, b) #

mzipWith :: (a -> b -> c) -> Maybe a -> Maybe b -> Maybe c #

munzip :: Maybe (a, b) -> (Maybe a, Maybe b) #

Alternative Maybe

Since: 2.1

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

MonadPlus Maybe

Since: 2.1

Methods

mzero :: Maybe a #

mplus :: Maybe a -> Maybe a -> Maybe a #

NFData1 Maybe

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Maybe a -> () #

Fail Maybe Source # 

Associated Types

type FailCts (Maybe :: * -> *) :: Constraint Source #

Methods

fail :: FailCts Maybe => String -> Maybe a Source #

Return Maybe Source # 

Associated Types

type ReturnCts (Maybe :: * -> *) :: Constraint Source #

Methods

return :: ReturnCts Maybe => a -> Maybe a Source #

Functor Maybe Source # 

Associated Types

type FunctorCts (Maybe :: * -> *) a b :: Constraint Source #

Methods

fmap :: FunctorCts Maybe a b => (a -> b) -> Maybe a -> Maybe b Source #

(<$) :: FunctorCts Maybe b a => a -> Maybe b -> Maybe a Source #

Fail Maybe Source # 

Associated Types

type FailCts (Maybe :: * -> *) a :: Constraint Source #

Methods

fail :: FailCts Maybe a => String -> Maybe a Source #

Return Maybe Source # 

Associated Types

type ReturnCts (Maybe :: * -> *) a :: Constraint Source #

Methods

return :: ReturnCts Maybe a => a -> Maybe a Source #

AlternativeEmpty Maybe Source # 

Associated Types

type AlternativeEmptyCts (Maybe :: * -> *) :: Constraint Source #

MonadPlusZero Maybe Source # 

Associated Types

type MonadPlusZeroCts (Maybe :: * -> *) :: Constraint Source #

AlternativeEmpty Maybe Source # 

Associated Types

type AlternativeEmptyCts (Maybe :: * -> *) a :: Constraint Source #

MonadPlusZero Maybe Source # 

Associated Types

type MonadPlusZeroCts (Maybe :: * -> *) a :: Constraint Source #

Bind Maybe Maybe Maybe Source # 

Associated Types

type BindCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) :: Constraint Source #

Methods

(>>=) :: BindCts Maybe Maybe Maybe => Maybe a -> (a -> Maybe b) -> Maybe b Source #

(>>) :: BindCts Maybe Maybe Maybe => Maybe a -> Maybe b -> Maybe b Source #

Applicative Maybe Maybe Maybe Source # 

Associated Types

type ApplicativeCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) :: Constraint Source #

Bind Maybe Maybe Maybe Source # 

Associated Types

type BindCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a b :: Constraint Source #

Methods

(>>=) :: BindCts Maybe Maybe Maybe a b => Maybe a -> (a -> Maybe b) -> Maybe b Source #

(>>) :: BindCts Maybe Maybe Maybe a b => Maybe a -> Maybe b -> Maybe b Source #

Applicative Maybe Maybe Maybe Source # 

Associated Types

type ApplicativeCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a b :: Constraint Source #

type ApplicativeCtsR (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a b :: Constraint Source #

type ApplicativeCtsL (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a b :: Constraint Source #

AlternativeAlt Maybe Maybe Maybe Source # 

Associated Types

type AlternativeAltCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) :: Constraint Source #

MonadPlusAdd Maybe Maybe Maybe Source # 

Associated Types

type MonadPlusAddCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) :: Constraint Source #

AlternativeAlt Maybe Maybe Maybe Source # 

Associated Types

type AlternativeAltCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a :: Constraint Source #

MonadPlusAdd Maybe Maybe Maybe Source # 

Associated Types

type MonadPlusAddCts (Maybe :: * -> *) (Maybe :: * -> *) (Maybe :: * -> *) a :: Constraint Source #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Data a => Data (Maybe a)

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) #

toConstr :: Maybe a -> Constr #

dataTypeOf :: Maybe a -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) #

gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Read a => Read (Maybe a)

Since: 2.1

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Semigroup a => Semigroup (Maybe a)

Since: 4.9.0.0

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there used to be no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Since: 2.1

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Lift a => Lift (Maybe a) 

Methods

lift :: Maybe a -> Q Exp #

SingKind a => SingKind (Maybe a)

Since: 4.9.0.0

Associated Types

type DemoteRep (Maybe a) :: *

Methods

fromSing :: Sing (Maybe a) a -> DemoteRep (Maybe a)

Binary a => Binary (Maybe a) 

Methods

put :: Maybe a -> Put #

get :: Get (Maybe a) #

putList :: [Maybe a] -> Put #

NFData a => NFData (Maybe a) 

Methods

rnf :: Maybe a -> () #

Binary a => Binary (Maybe a) 

Methods

put_ :: BinHandle -> Maybe a -> IO () #

put :: BinHandle -> Maybe a -> IO (Bin * (Maybe a)) #

get :: BinHandle -> IO (Maybe a) #

Outputable a => Outputable (Maybe a) 

Methods

ppr :: Maybe a -> SDoc #

pprPrec :: Rational -> Maybe a -> SDoc #

Generic1 * Maybe 

Associated Types

type Rep1 Maybe (f :: Maybe -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 Maybe f a #

to1 :: Rep1 Maybe f a -> f a #

SingI (Maybe a) (Nothing a)

Since: 4.9.0.0

Methods

sing :: Sing (Nothing a) a

SingI a1 a2 => SingI (Maybe a1) (Just a1 a2)

Since: 4.9.0.0

Methods

sing :: Sing (Just a1 a2) a

type FailCts Maybe Source # 
type FailCts Maybe = ()
type ReturnCts Maybe Source # 
type ReturnCts Maybe = ()
type AlternativeEmptyCts Maybe Source # 
type MonadPlusZeroCts Maybe Source # 
type FailCts Maybe a Source # 
type FailCts Maybe a = ()
type ReturnCts Maybe a Source # 
type ReturnCts Maybe a = ()
type AlternativeEmptyCts Maybe a Source # 
type MonadPlusZeroCts Maybe a Source # 
type BindCts Maybe Maybe Maybe Source # 
type ApplicativeCts Maybe Maybe Maybe Source # 
type FunctorCts Maybe a b Source # 
type FunctorCts Maybe a b = ()
type AlternativeAltCts Maybe Maybe Maybe Source # 
type MonadPlusAddCts Maybe Maybe Maybe Source # 
type AlternativeAltCts Maybe Maybe Maybe a Source # 
type MonadPlusAddCts Maybe Maybe Maybe a Source # 
type BindCts Maybe Maybe Maybe a b Source # 
type BindCts Maybe Maybe Maybe a b = ()
type ApplicativeCts Maybe Maybe Maybe a b Source # 
type ApplicativeCtsR Maybe Maybe Maybe a b Source # 
type ApplicativeCtsL Maybe Maybe Maybe a b Source # 
type Rep (Maybe a) 
type Rep (Maybe a) = D1 * (MetaData "Maybe" "GHC.Base" "base" False) ((:+:) * (C1 * (MetaCons "Nothing" PrefixI False) (U1 *)) (C1 * (MetaCons "Just" PrefixI False) (S1 * (MetaSel (Nothing Symbol) NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 * a))))
data Sing (Maybe a) 
data Sing (Maybe a) where
type DemoteRep (Maybe a) 
type DemoteRep (Maybe a) = Maybe (DemoteRep a)
type Rep1 * Maybe 
type (==) (Maybe k) a b 
type (==) (Maybe k) a b = EqMaybe k a b

maybe :: b -> (a -> b) -> Maybe a -> b #

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

Examples

Basic usage:

>>> maybe False odd (Just 3)
True
>>> maybe False odd Nothing
False

Read an integer from a string using readMaybe. If we succeed, return twice the integer; that is, apply (*2) to it. If instead we fail to parse an integer, return 0 by default:

>>> import Text.Read ( readMaybe )
>>> maybe 0 (*2) (readMaybe "5")
10
>>> maybe 0 (*2) (readMaybe "")
0

Apply show to a Maybe Int. If we have Just n, we want to show the underlying Int n. But if we have Nothing, we return the empty string instead of (for example) "Nothing":

>>> maybe "" show (Just 5)
"5"
>>> maybe "" show Nothing
""

data Either a b :: * -> * -> * #

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Examples

The type Either String Int is the type of values which can be either a String or an Int. The Left constructor can be used only on Strings, and the Right constructor can be used only on Ints:

>>> let s = Left "foo" :: Either String Int
>>> s
Left "foo"
>>> let n = Right 3 :: Either String Int
>>> n
Right 3
>>> :type s
s :: Either String Int
>>> :type n
n :: Either String Int

The fmap from our Functor instance will ignore Left values, but will apply the supplied function to values contained in a Right:

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> fmap (*2) s
Left "foo"
>>> fmap (*2) n
Right 6

The Monad instance for Either allows us to chain together multiple actions which may fail, and fail overall if any of the individual steps failed. First we'll write a function that can either parse an Int from a Char, or fail.

>>> import Data.Char ( digitToInt, isDigit )
>>> :{
    let parseEither :: Char -> Either String Int
        parseEither c
          | isDigit c = Right (digitToInt c)
          | otherwise = Left "parse error"
>>> :}

The following should work, since both '1' and '2' can be parsed as Ints.

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither '1'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Right 3

But the following should fail overall, since the first operation where we attempt to parse 'm' as an Int will fail:

>>> :{
    let parseMultiple :: Either String Int
        parseMultiple = do
          x <- parseEither 'm'
          y <- parseEither '2'
          return (x + y)
>>> :}
>>> parseMultiple
Left "parse error"

Constructors

Left a 
Right b 

Instances

Bitraversable Either

Since: 4.10.0.0

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) #

Bifoldable Either

Since: 4.10.0.0

Methods

bifold :: Monoid m => Either m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Either a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Either a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Either a b -> c #

Bifunctor Either

Since: 4.8.0.0

Methods

bimap :: (a -> b) -> (c -> d) -> Either a c -> Either b d #

first :: (a -> b) -> Either a c -> Either b c #

second :: (b -> c) -> Either a b -> Either a c #

Eq2 Either

Since: 4.9.0.0

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Either a c -> Either b d -> Bool #

Ord2 Either

Since: 4.9.0.0

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Either a c -> Either b d -> Ordering #

Read2 Either

Since: 4.9.0.0

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Either a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Either a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Either a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Either a b] #

Show2 Either

Since: 4.9.0.0

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Either a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Either a b] -> ShowS #

NFData2 Either

Since: 1.4.3.0

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Either a b -> () #

MonadError e (Either e) 

Methods

throwError :: e -> Either e a #

catchError :: Either e a -> (e -> Either e a) -> Either e a #

Monad (Either e)

Since: 4.4.0.0

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

fail :: String -> Either e a #

Functor (Either a)

Since: 3.0

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

MonadFix (Either e)

Since: 4.3.0.0

Methods

mfix :: (a -> Either e a) -> Either e a #

Applicative (Either e)

Since: 3.0

Methods

pure :: a -> Either e a #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b #

liftA2 :: (a -> b -> c) -> Either e a -> Either e b -> Either e c #

(*>) :: Either e a -> Either e b -> Either e b #

(<*) :: Either e a -> Either e b -> Either e a #

Foldable (Either a)

Since: 4.7.0.0

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a -> m) -> Either a a -> m #

foldr :: (a -> b -> b) -> b -> Either a a -> b #

foldr' :: (a -> b -> b) -> b -> Either a a -> b #

foldl :: (b -> a -> b) -> b -> Either a a -> b #

foldl' :: (b -> a -> b) -> b -> Either a a -> b #

foldr1 :: (a -> a -> a) -> Either a a -> a #

foldl1 :: (a -> a -> a) -> Either a a -> a #

toList :: Either a a -> [a] #

null :: Either a a -> Bool #

length :: Either a a -> Int #

elem :: Eq a => a -> Either a a -> Bool #

maximum :: Ord a => Either a a -> a #

minimum :: Ord a => Either a a -> a #

sum :: Num a => Either a a -> a #

product :: Num a => Either a a -> a #

Traversable (Either a)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Either a a -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a) -> f (Either a a) #

mapM :: Monad m => (a -> m b) -> Either a a -> m (Either a b) #

sequence :: Monad m => Either a (m a) -> m (Either a a) #

Eq a => Eq1 (Either a)

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Either a a -> Either a b -> Bool #

Ord a => Ord1 (Either a)

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Either a a -> Either a b -> Ordering #

Read a => Read1 (Either a)

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Either a a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Either a a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Either a a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Either a a] #

Show a => Show1 (Either a)

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Either a a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Either a a] -> ShowS #

NFData a => NFData1 (Either a)

Since: 1.4.3.0

Methods

liftRnf :: (a -> ()) -> Either a a -> () #

Fail (Either e) Source # 

Associated Types

type FailCts (Either e :: * -> *) :: Constraint Source #

Methods

fail :: FailCts (Either e) => String -> Either e a Source #

Return (Either e) Source # 

Associated Types

type ReturnCts (Either e :: * -> *) :: Constraint Source #

Methods

return :: ReturnCts (Either e) => a -> Either e a Source #

Functor (Either e) Source # 

Associated Types

type FunctorCts (Either e :: * -> *) a b :: Constraint Source #

Methods

fmap :: FunctorCts (Either e) a b => (a -> b) -> Either e a -> Either e b Source #

(<$) :: FunctorCts (Either e) b a => a -> Either e b -> Either e a Source #

Fail (Either e) Source # 

Associated Types

type FailCts (Either e :: * -> *) a :: Constraint Source #

Methods

fail :: FailCts (Either e) a => String -> Either e a Source #

Return (Either e) Source # 

Associated Types

type ReturnCts (Either e :: * -> *) a :: Constraint Source #

Methods

return :: ReturnCts (Either e) a => a -> Either e a Source #

Generic1 * (Either a) 

Associated Types

type Rep1 (Either a) (f :: Either a -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (Either a) f a #

to1 :: Rep1 (Either a) f a -> f a #

Bind (Either e) (Either e) (Either e) Source # 

Associated Types

type BindCts (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) :: Constraint Source #

Methods

(>>=) :: BindCts (Either e) (Either e) (Either e) => Either e a -> (a -> Either e b) -> Either e b Source #

(>>) :: BindCts (Either e) (Either e) (Either e) => Either e a -> Either e b -> Either e b Source #

Applicative (Either e) (Either e) (Either e) Source # 

Associated Types

type ApplicativeCts (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) :: Constraint Source #

Methods

(<*>) :: ApplicativeCts (Either e) (Either e) (Either e) => Either e (a -> b) -> Either e a -> Either e b Source #

(*>) :: ApplicativeCts (Either e) (Either e) (Either e) => Either e a -> Either e b -> Either e b Source #

(<*) :: ApplicativeCts (Either e) (Either e) (Either e) => Either e a -> Either e b -> Either e a Source #

Bind (Either e) (Either e) (Either e) Source # 

Associated Types

type BindCts (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) a b :: Constraint Source #

Methods

(>>=) :: BindCts (Either e) (Either e) (Either e) a b => Either e a -> (a -> Either e b) -> Either e b Source #

(>>) :: BindCts (Either e) (Either e) (Either e) a b => Either e a -> Either e b -> Either e b Source #

Applicative (Either e) (Either e) (Either e) Source # 

Associated Types

type ApplicativeCts (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) a b :: Constraint Source #

type ApplicativeCtsR (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) a b :: Constraint Source #

type ApplicativeCtsL (Either e :: * -> *) (Either e :: * -> *) (Either e :: * -> *) a b :: Constraint Source #

Methods

(<*>) :: ApplicativeCts (Either e) (Either e) (Either e) a b => Either e (a -> b) -> Either e a -> Either e b Source #

(*>) :: ApplicativeCtsR (Either e) (Either e) (Either e) a b => Either e a -> Either e b -> Either e b Source #

(<*) :: ApplicativeCtsL (Either e) (Either e) (Either e) a b => Either e a -> Either e b -> Either e a Source #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

(Data a, Data b) => Data (Either a b)

Since: 4.0.0.0

Methods

gfoldl :: (forall d c. Data d => c (d -> c) -> d -> c c) -> (forall g. g -> c g) -> Either a b -> c (Either a b) #

gunfold :: (forall c r. Data c => c (c -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) #

toConstr :: Either a b -> Constr #

dataTypeOf :: Either a b -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) #

gmapT :: (forall c. Data c => c -> c) -> Either a b -> Either a b #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r #

gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

(Read b, Read a) => Read (Either a b) 
(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Semigroup (Either a b)

Since: 4.9.0.0

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b => b -> Either a b -> Either a b #

(Lift a, Lift b) => Lift (Either a b) 

Methods

lift :: Either a b -> Q Exp #

(Binary a, Binary b) => Binary (Either a b) 

Methods

put :: Either a b -> Put #

get :: Get (Either a b) #

putList :: [Either a b] -> Put #

(NFData a, NFData b) => NFData (Either a b) 

Methods

rnf :: Either a b -> () #

(Binary a, Binary b) => Binary (Either a b) 

Methods

put_ :: BinHandle -> Either a b -> IO () #

put :: BinHandle -> Either a b -> IO (Bin * (Either a b)) #

get :: BinHandle -> IO (Either a b) #

(Outputable a, Outputable b) => Outputable (Either a b) 

Methods

ppr :: Either a b -> SDoc #

pprPrec :: Rational -> Either a b -> SDoc #

type FailCts (Either e) Source # 
type FailCts (Either e) = ()
type ReturnCts (Either e) Source # 
type ReturnCts (Either e) = ()
type FailCts (Either e) a Source # 
type FailCts (Either e) a = ()
type ReturnCts (Either e) a Source # 
type ReturnCts (Either e) a = ()
type FunctorCts (Either e) a b Source # 
type FunctorCts (Either e) a b = ()
type Rep1 * (Either a) 
type BindCts (Either e) (Either e) (Either e) Source # 
type BindCts (Either e) (Either e) (Either e) = ()
type ApplicativeCts (Either e) (Either e) (Either e) Source # 
type ApplicativeCts (Either e) (Either e) (Either e) = ()
type BindCts (Either e) (Either e) (Either e) a b Source # 
type BindCts (Either e) (Either e) (Either e) a b = ()
type ApplicativeCts (Either e) (Either e) (Either e) a b Source # 
type ApplicativeCts (Either e) (Either e) (Either e) a b = ()
type ApplicativeCtsR (Either e) (Either e) (Either e) a b Source # 
type ApplicativeCtsR (Either e) (Either e) (Either e) a b = ApplicativeCts (Either e) (Either e) (Either e) a b
type ApplicativeCtsL (Either e) (Either e) (Either e) a b Source # 
type ApplicativeCtsL (Either e) (Either e) (Either e) a b = ApplicativeCts (Either e) (Either e) (Either e) a b
type Rep (Either a b) 
type (==) (Either k1 k2) a b 
type (==) (Either k1 k2) a b = EqEither k1 k2 a b

either :: (a -> c) -> (b -> c) -> Either a b -> c #

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the second function to b.

Examples

We create two values of type Either String Int, one using the Left constructor and another using the Right constructor. Then we apply "either" the length function (if we have a String) or the "times-two" function (if we have an Int):

>>> let s = Left "foo" :: Either String Int
>>> let n = Right 3 :: Either String Int
>>> either length (*2) s
3
>>> either length (*2) n
6

data Ordering :: * #

Constructors

LT 
EQ 
GT 

Instances

Bounded Ordering

Since: 2.1

Enum Ordering

Since: 2.1

Eq Ordering 
Data Ordering

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering #

toConstr :: Ordering -> Constr #

dataTypeOf :: Ordering -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) #

gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r #

gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering #

Ord Ordering 
Read Ordering

Since: 2.1

Show Ordering 
Ix Ordering

Since: 2.1

Generic Ordering 

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Semigroup Ordering

Since: 4.9.0.0

Monoid Ordering

Since: 2.1

Binary Ordering 

Methods

put :: Ordering -> Put #

get :: Get Ordering #

putList :: [Ordering] -> Put #

NFData Ordering 

Methods

rnf :: Ordering -> () #

Outputable Ordering 
type Rep Ordering 
type Rep Ordering = D1 * (MetaData "Ordering" "GHC.Types" "ghc-prim" False) ((:+:) * (C1 * (MetaCons "LT" PrefixI False) (U1 *)) ((:+:) * (C1 * (MetaCons "EQ" PrefixI False) (U1 *)) (C1 * (MetaCons "GT" PrefixI False) (U1 *))))
type (==) Ordering a b 
type (==) Ordering a b = EqOrdering a b

data Char :: * #

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Instances

Bounded Char

Since: 2.1

Enum Char

Since: 2.1

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Data Char

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char #

toConstr :: Char -> Constr #

dataTypeOf :: Char -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Char) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Read Char

Since: 2.1

Show Char

Since: 2.1

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Ix Char

Since: 2.1

Methods

range :: (Char, Char) -> [Char] #

index :: (Char, Char) -> Char -> Int #

unsafeIndex :: (Char, Char) -> Char -> Int

inRange :: (Char, Char) -> Char -> Bool #

rangeSize :: (Char, Char) -> Int #

unsafeRangeSize :: (Char, Char) -> Int

Lift Char 

Methods

lift :: Char -> Q Exp #

Storable Char

Since: 2.1

Methods

sizeOf :: Char -> Int #

alignment :: Char -> Int #

peekElemOff :: Ptr Char -> Int -> IO Char #

pokeElemOff :: Ptr Char -> Int -> Char -> IO () #

peekByteOff :: Ptr b -> Int -> IO Char #

pokeByteOff :: Ptr b -> Int -> Char -> IO () #

peek :: Ptr Char -> IO Char #

poke :: Ptr Char -> Char -> IO () #

Binary Char 

Methods

put :: Char -> Put #

get :: Get Char #

putList :: [Char] -> Put #

NFData Char 

Methods

rnf :: Char -> () #

Binary Char 

Methods

put_ :: BinHandle -> Char -> IO () #

put :: BinHandle -> Char -> IO (Bin * Char) #

get :: BinHandle -> IO Char #

Outputable Char 

Methods

ppr :: Char -> SDoc #

pprPrec :: Rational -> Char -> SDoc #

ErrorList Char 

Methods

listMsg :: String -> [Char] #

IArray UArray Char 

Methods

bounds :: Ix i => UArray i Char -> (i, i) #

numElements :: Ix i => UArray i Char -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Char)] -> UArray i Char

unsafeAt :: Ix i => UArray i Char -> Int -> Char

unsafeReplace :: Ix i => UArray i Char -> [(Int, Char)] -> UArray i Char

unsafeAccum :: Ix i => (Char -> e' -> Char) -> UArray i Char -> [(Int, e')] -> UArray i Char

unsafeAccumArray :: Ix i => (Char -> e' -> Char) -> Char -> (i, i) -> [(Int, e')] -> UArray i Char

Generic1 k (URec k Char) 

Associated Types

type Rep1 (URec k Char) (f :: URec k Char -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Char) f a #

to1 :: Rep1 (URec k Char) f a -> f a #

IsString (Seq Char) 

Methods

fromString :: String -> Seq Char #

MArray (STUArray s) Char (ST s) 

Methods

getBounds :: Ix i => STUArray s i Char -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Char -> ST s Int

newArray :: Ix i => (i, i) -> Char -> ST s (STUArray s i Char) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Char)

unsafeRead :: Ix i => STUArray s i Char -> Int -> ST s Char

unsafeWrite :: Ix i => STUArray s i Char -> Int -> Char -> ST s ()

Functor (URec * Char) 

Methods

fmap :: (a -> b) -> URec * Char a -> URec * Char b #

(<$) :: a -> URec * Char b -> URec * Char a #

Foldable (URec * Char) 

Methods

fold :: Monoid m => URec * Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Char a -> m #

foldr :: (a -> b -> b) -> b -> URec * Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Char a -> b #

foldl :: (b -> a -> b) -> b -> URec * Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Char a -> b #

foldr1 :: (a -> a -> a) -> URec * Char a -> a #

foldl1 :: (a -> a -> a) -> URec * Char a -> a #

toList :: URec * Char a -> [a] #

null :: URec * Char a -> Bool #

length :: URec * Char a -> Int #

elem :: Eq a => a -> URec * Char a -> Bool #

maximum :: Ord a => URec * Char a -> a #

minimum :: Ord a => URec * Char a -> a #

sum :: Num a => URec * Char a -> a #

product :: Num a => URec * Char a -> a #

Traversable (URec * Char) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Char a -> f (URec * Char b) #

sequenceA :: Applicative f => URec * Char (f a) -> f (URec * Char a) #

mapM :: Monad m => (a -> m b) -> URec * Char a -> m (URec * Char b) #

sequence :: Monad m => URec * Char (m a) -> m (URec * Char a) #

Eq (URec k Char p) 

Methods

(==) :: URec k Char p -> URec k Char p -> Bool #

(/=) :: URec k Char p -> URec k Char p -> Bool #

Ord (URec k Char p) 

Methods

compare :: URec k Char p -> URec k Char p -> Ordering #

(<) :: URec k Char p -> URec k Char p -> Bool #

(<=) :: URec k Char p -> URec k Char p -> Bool #

(>) :: URec k Char p -> URec k Char p -> Bool #

(>=) :: URec k Char p -> URec k Char p -> Bool #

max :: URec k Char p -> URec k Char p -> URec k Char p #

min :: URec k Char p -> URec k Char p -> URec k Char p #

Show (URec k Char p) 

Methods

showsPrec :: Int -> URec k Char p -> ShowS #

show :: URec k Char p -> String #

showList :: [URec k Char p] -> ShowS #

Generic (URec k Char p) 

Associated Types

type Rep (URec k Char p) :: * -> * #

Methods

from :: URec k Char p -> Rep (URec k Char p) x #

to :: Rep (URec k Char p) x -> URec k Char p #

data URec k Char

Used for marking occurrences of Char#

Since: 4.9.0.0

data URec k Char = UChar {}
type Rep1 k (URec k Char) 
type Rep1 k (URec k Char) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UChar" PrefixI True) (S1 k (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar k)))
type Rep (URec k Char p) 
type Rep (URec k Char p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UChar" PrefixI True) (S1 * (MetaSel (Just Symbol "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar *)))

type String = [Char] #

A String is a list of characters. String constants in Haskell are values of type String.

Tuples

fst :: (a, b) -> a #

Extract the first component of a pair.

snd :: (a, b) -> b #

Extract the second component of a pair.

curry :: ((a, b) -> c) -> a -> b -> c #

curry converts an uncurried function to a curried function.

uncurry :: (a -> b -> c) -> (a, b) -> c #

uncurry converts a curried function to a function on pairs.

Basic type classes

class Eq a where #

The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.

Minimal complete definition: either == or /=.

Minimal complete definition

(==) | (/=)

Methods

(==) :: a -> a -> Bool infix 4 #

(/=) :: a -> a -> Bool infix 4 #

Instances

Eq Bool 

Methods

(==) :: Bool -> Bool -> Bool #

(/=) :: Bool -> Bool -> Bool #

Eq Char 

Methods

(==) :: Char -> Char -> Bool #

(/=) :: Char -> Char -> Bool #

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Eq Int8

Since: 2.1

Methods

(==) :: Int8 -> Int8 -> Bool #

(/=) :: Int8 -> Int8 -> Bool #

Eq Int16

Since: 2.1

Methods

(==) :: Int16 -> Int16 -> Bool #

(/=) :: Int16 -> Int16 -> Bool #

Eq Int32

Since: 2.1

Methods

(==) :: Int32 -> Int32 -> Bool #

(/=) :: Int32 -> Int32 -> Bool #

Eq Int64

Since: 2.1

Methods

(==) :: Int64 -> Int64 -> Bool #

(/=) :: Int64 -> Int64 -> Bool #

Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Eq Natural 

Methods

(==) :: Natural -> Natural -> Bool #

(/=) :: Natural -> Natural -> Bool #

Eq Ordering 
Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Eq Word8

Since: 2.1

Methods

(==) :: Word8 -> Word8 -> Bool #

(/=) :: Word8 -> Word8 -> Bool #

Eq Word16

Since: 2.1

Methods

(==) :: Word16 -> Word16 -> Bool #

(/=) :: Word16 -> Word16 -> Bool #

Eq Word32

Since: 2.1

Methods

(==) :: Word32 -> Word32 -> Bool #

(/=) :: Word32 -> Word32 -> Bool #

Eq Word64

Since: 2.1

Methods

(==) :: Word64 -> Word64 -> Bool #

(/=) :: Word64 -> Word64 -> Bool #

Eq SomeTypeRep 
Eq Exp 

Methods

(==) :: Exp -> Exp -> Bool #

(/=) :: Exp -> Exp -> Bool #

Eq Match 

Methods

(==) :: Match -> Match -> Bool #

(/=) :: Match -> Match -> Bool #

Eq Clause 

Methods

(==) :: Clause -> Clause -> Bool #

(/=) :: Clause -> Clause -> Bool #

Eq Pat 

Methods

(==) :: Pat -> Pat -> Bool #

(/=) :: Pat -> Pat -> Bool #

Eq Type 

Methods

(==) :: Type -> Type -> Bool #

(/=) :: Type -> Type -> Bool #

Eq Dec 

Methods

(==) :: Dec -> Dec -> Bool #

(/=) :: Dec -> Dec -> Bool #

Eq Name 

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Eq FunDep 

Methods

(==) :: FunDep -> FunDep -> Bool #

(/=) :: FunDep -> FunDep -> Bool #

Eq TyVarBndr 
Eq InjectivityAnn 
Eq Overlap 

Methods

(==) :: Overlap -> Overlap -> Bool #

(/=) :: Overlap -> Overlap -> Bool #

Eq DerivStrategy 
Eq () 

Methods

(==) :: () -> () -> Bool #

(/=) :: () -> () -> Bool #

Eq TyCon 

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq TrName 

Methods

(==) :: TrName -> TrName -> Bool #

(/=) :: TrName -> TrName -> Bool #

Eq EventLifetime 

Methods

(==) :: EventLifetime -> EventLifetime -> Bool #

(/=) :: EventLifetime -> EventLifetime -> Bool #

Eq BigNat 

Methods

(==) :: BigNat -> BigNat -> Bool #

(/=) :: BigNat -> BigNat -> Bool #

Eq Void

Since: 4.8.0.0

Methods

(==) :: Void -> Void -> Bool #

(/=) :: Void -> Void -> Bool #

Eq SpecConstrAnnotation 
Eq Constr

Equality of constructors

Since: 4.0.0.0

Methods

(==) :: Constr -> Constr -> Bool #

(/=) :: Constr -> Constr -> Bool #

Eq DataRep 

Methods

(==) :: DataRep -> DataRep -> Bool #

(/=) :: DataRep -> DataRep -> Bool #

Eq ConstrRep 
Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Unique 

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

Eq Version

Since: 2.1

Methods

(==) :: Version -> Version -> Bool #

(/=) :: Version -> Version -> Bool #

Eq ThreadId

Since: 4.2.0.0

Eq BlockReason 
Eq ThreadStatus 
Eq Event 

Methods

(==) :: Event -> Event -> Bool #

(/=) :: Event -> Event -> Bool #

Eq Lifetime 
Eq AsyncException 
Eq ArrayException 
Eq ExitCode 
Eq IOErrorType

Since: 4.1.0.0

Eq MaskingState 
Eq IOException

Since: 4.1.0.0

Eq ErrorCall 
Eq ArithException 
Eq All 

Methods

(==) :: All -> All -> Bool #

(/=) :: All -> All -> Bool #

Eq Any 

Methods

(==) :: Any -> Any -> Bool #

(/=) :: Any -> Any -> Bool #

Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq Associativity 
Eq SourceUnpackedness 
Eq SourceStrictness 
Eq DecidedStrictness 
Eq SomeSymbol

Since: 4.7.0.0

Eq SomeNat

Since: 4.7.0.0

Methods

(==) :: SomeNat -> SomeNat -> Bool #

(/=) :: SomeNat -> SomeNat -> Bool #

Eq CChar 

Methods

(==) :: CChar -> CChar -> Bool #

(/=) :: CChar -> CChar -> Bool #

Eq CSChar 

Methods

(==) :: CSChar -> CSChar -> Bool #

(/=) :: CSChar -> CSChar -> Bool #

Eq CUChar 

Methods

(==) :: CUChar -> CUChar -> Bool #

(/=) :: CUChar -> CUChar -> Bool #

Eq CShort 

Methods

(==) :: CShort -> CShort -> Bool #

(/=) :: CShort -> CShort -> Bool #

Eq CUShort 

Methods

(==) :: CUShort -> CUShort -> Bool #

(/=) :: CUShort -> CUShort -> Bool #

Eq CInt 

Methods

(==) :: CInt -> CInt -> Bool #

(/=) :: CInt -> CInt -> Bool #

Eq CUInt 

Methods

(==) :: CUInt -> CUInt -> Bool #

(/=) :: CUInt -> CUInt -> Bool #

Eq CLong 

Methods

(==) :: CLong -> CLong -> Bool #

(/=) :: CLong -> CLong -> Bool #

Eq CULong 

Methods

(==) :: CULong -> CULong -> Bool #

(/=) :: CULong -> CULong -> Bool #

Eq CLLong 

Methods

(==) :: CLLong -> CLLong -> Bool #

(/=) :: CLLong -> CLLong -> Bool #

Eq CULLong 

Methods

(==) :: CULLong -> CULLong -> Bool #

(/=) :: CULLong -> CULLong -> Bool #

Eq CBool 

Methods

(==) :: CBool -> CBool -> Bool #

(/=) :: CBool -> CBool -> Bool #

Eq CFloat 

Methods

(==) :: CFloat -> CFloat -> Bool #

(/=) :: CFloat -> CFloat -> Bool #

Eq CDouble 

Methods

(==) :: CDouble -> CDouble -> Bool #

(/=) :: CDouble -> CDouble -> Bool #

Eq CPtrdiff 
Eq CSize 

Methods

(==) :: CSize -> CSize -> Bool #

(/=) :: CSize -> CSize -> Bool #

Eq CWchar 

Methods

(==) :: CWchar -> CWchar -> Bool #

(/=) :: CWchar -> CWchar -> Bool #

Eq CSigAtomic 
Eq CClock 

Methods

(==) :: CClock -> CClock -> Bool #

(/=) :: CClock -> CClock -> Bool #

Eq CTime 

Methods

(==) :: CTime -> CTime -> Bool #

(/=) :: CTime -> CTime -> Bool #

Eq CUSeconds 
Eq CSUSeconds 
Eq CIntPtr 

Methods

(==) :: CIntPtr -> CIntPtr -> Bool #

(/=) :: CIntPtr -> CIntPtr -> Bool #

Eq CUIntPtr 
Eq CIntMax 

Methods

(==) :: CIntMax -> CIntMax -> Bool #

(/=) :: CIntMax -> CIntMax -> Bool #

Eq CUIntMax 
Eq Fingerprint 
Eq Lexeme 

Methods

(==) :: Lexeme -> Lexeme -> Bool #

(/=) :: Lexeme -> Lexeme -> Bool #

Eq Number 

Methods

(==) :: Number -> Number -> Bool #

(/=) :: Number -> Number -> Bool #

Eq GeneralCategory 
Eq SrcLoc 

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq ShortByteString 
Eq ByteString 
Eq ByteString 
Eq IntSet 

Methods

(==) :: IntSet -> IntSet -> Bool #

(/=) :: IntSet -> IntSet -> Bool #

Eq TypeOrdering 

Methods

(==) :: TypeOrdering -> TypeOrdering -> Bool #

(/=) :: TypeOrdering -> TypeOrdering -> Bool #

Eq TyLit 

Methods

(==) :: TyLit -> TyLit -> Bool #

(/=) :: TyLit -> TyLit -> Bool #

Eq Deprecation 

Methods

(==) :: Deprecation -> Deprecation -> Bool #

(/=) :: Deprecation -> Deprecation -> Bool #

Eq SseVersion 

Methods

(==) :: SseVersion -> SseVersion -> Bool #

(/=) :: SseVersion -> SseVersion -> Bool #

Eq Extension 
Eq NDModule 

Methods

(==) :: NDModule -> NDModule -> Bool #

(/=) :: NDModule -> NDModule -> Bool #

Eq Tick 

Methods

(==) :: Tick -> Tick -> Bool #

(/=) :: Tick -> Tick -> Bool #

Eq CtFlavour 
Eq ShadowInfo 
Eq SubGoalDepth 
Eq TypeOrKind 
Eq TargetId 
Eq Warnings 
Eq Dependencies 
Eq Usage 

Methods

(==) :: Usage -> Usage -> Bool #

(/=) :: Usage -> Usage -> Bool #

Eq TcLevel 

Methods

(==) :: TcLevel -> TcLevel -> Bool #

(/=) :: TcLevel -> TcLevel -> Bool #

Eq AltCon 

Methods

(==) :: AltCon -> AltCon -> Bool #

(/=) :: AltCon -> AltCon -> Bool #

Eq TickishScoping 
Eq TickishPlacement 
Eq UnfoldingGuidance 
Eq BindFlag 
Eq EqRel 

Methods

(==) :: EqRel -> EqRel -> Bool #

(/=) :: EqRel -> EqRel -> Bool #

Eq Injectivity 
Eq PrimRep 

Methods

(==) :: PrimRep -> PrimRep -> Bool #

(/=) :: PrimRep -> PrimRep -> Bool #

Eq PrimElemRep 
Eq Class 

Methods

(==) :: Class -> Class -> Bool #

(/=) :: Class -> Class -> Bool #

Eq Role 

Methods

(==) :: Role -> Role -> Bool #

(/=) :: Role -> Role -> Bool #

Eq CoAxiomRule 
Eq Var 

Methods

(==) :: Var -> Var -> Bool #

(/=) :: Var -> Var -> Bool #

Eq ArgFlag 

Methods

(==) :: ArgFlag -> ArgFlag -> Bool #

(/=) :: ArgFlag -> ArgFlag -> Bool #

Eq RdrName 

Methods

(==) :: RdrName -> RdrName -> Bool #

(/=) :: RdrName -> RdrName -> Bool #

Eq GlobalRdrElt 
Eq Parent 

Methods

(==) :: Parent -> Parent -> Bool #

(/=) :: Parent -> Parent -> Bool #

Eq ImportSpec 
Eq ImpDeclSpec 
Eq ImpItemSpec 
Eq NameSpace 
Eq GeneralFlag 
Eq WarningFlag 
Eq Language 
Eq SafeHaskellMode 
Eq ProfAuto 
Eq HscTarget 
Eq GhcMode 

Methods

(==) :: GhcMode -> GhcMode -> Bool #

(/=) :: GhcMode -> GhcMode -> Bool #

Eq GhcLink 

Methods

(==) :: GhcLink -> GhcLink -> Bool #

(/=) :: GhcLink -> GhcLink -> Bool #

Eq PackageArg 
Eq ModRenaming 
Eq IgnorePackageFlag 
Eq TrustFlag 
Eq PackageFlag 
Eq PackageDBFlag 
Eq DynLibLoader 
Eq Way 

Methods

(==) :: Way -> Way -> Bool #

(/=) :: Way -> Way -> Bool #

Eq Option 

Methods

(==) :: Option -> Option -> Bool #

(/=) :: Option -> Option -> Bool #

Eq PkgConfRef 
Eq LinkerInfo 
Eq CompilerInfo 
Eq IndefUnitId 
Eq IndefModule 
Eq InstalledModule 
Eq DefUnitId 
Eq Unique 

Methods

(==) :: Unique -> Unique -> Bool #

(/=) :: Unique -> Unique -> Bool #

Eq LeftOrRight 
Eq OneShotInfo 
Eq FunctionOrData 
Eq StringLiteral 
Eq WarningTxt 
Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq FixityDirection 
Eq LexicalFixity 
Eq Boxity 

Methods

(==) :: Boxity -> Boxity -> Bool #

(/=) :: Boxity -> Boxity -> Bool #

Eq RecFlag 

Methods

(==) :: RecFlag -> RecFlag -> Bool #

(/=) :: RecFlag -> RecFlag -> Bool #

Eq Origin 

Methods

(==) :: Origin -> Origin -> Bool #

(/=) :: Origin -> Origin -> Bool #

Eq DerivStrategy 
Eq OverlapFlag 
Eq OverlapMode 
Eq TyPrec 

Methods

(==) :: TyPrec -> TyPrec -> Bool #

(/=) :: TyPrec -> TyPrec -> Bool #

Eq TupleSort 
Eq OccInfo 

Methods

(==) :: OccInfo -> OccInfo -> Bool #

(/=) :: OccInfo -> OccInfo -> Bool #

Eq TailCallInfo 
Eq SourceText 
Eq Activation 
Eq RuleMatchInfo 
Eq InlinePragma 
Eq InlineSpec 
Eq FractionalLit 
Eq IntWithInf 
Eq RealSrcLoc 
Eq SrcLoc 

Methods

(==) :: SrcLoc -> SrcLoc -> Bool #

(/=) :: SrcLoc -> SrcLoc -> Bool #

Eq RealSrcSpan 
Eq SrcSpan 

Methods

(==) :: SrcSpan -> SrcSpan -> Bool #

(/=) :: SrcSpan -> SrcSpan -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq ModuleName 
Eq UnitId 

Methods

(==) :: UnitId -> UnitId -> Bool #

(/=) :: UnitId -> UnitId -> Bool #

Eq InstalledUnitId 
Eq ComponentId 
Eq FastString 
Eq TyCon 

Methods

(==) :: TyCon -> TyCon -> Bool #

(/=) :: TyCon -> TyCon -> Bool #

Eq DumpFlag 
Eq OccName 

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Eq Name 

Methods

(==) :: Name -> Name -> Bool #

(/=) :: Name -> Name -> Bool #

Eq ForeignSrcLang 
Eq Doc 

Methods

(==) :: Doc -> Doc -> Bool #

(/=) :: Doc -> Doc -> Bool #

Eq TextDetails 
Eq Style 

Methods

(==) :: Style -> Style -> Bool #

(/=) :: Style -> Style -> Bool #

Eq Mode 

Methods

(==) :: Mode -> Mode -> Bool #

(/=) :: Mode -> Mode -> Bool #

Eq ModName 

Methods

(==) :: ModName -> ModName -> Bool #

(/=) :: ModName -> ModName -> Bool #

Eq PkgName 

Methods

(==) :: PkgName -> PkgName -> Bool #

(/=) :: PkgName -> PkgName -> Bool #

Eq Module 

Methods

(==) :: Module -> Module -> Bool #

(/=) :: Module -> Module -> Bool #

Eq OccName 

Methods

(==) :: OccName -> OccName -> Bool #

(/=) :: OccName -> OccName -> Bool #

Eq NameFlavour 
Eq NameSpace 
Eq Loc 

Methods

(==) :: Loc -> Loc -> Bool #

(/=) :: Loc -> Loc -> Bool #

Eq Info 

Methods

(==) :: Info -> Info -> Bool #

(/=) :: Info -> Info -> Bool #

Eq ModuleInfo 
Eq Fixity 

Methods

(==) :: Fixity -> Fixity -> Bool #

(/=) :: Fixity -> Fixity -> Bool #

Eq FixityDirection 
Eq Lit 

Methods

(==) :: Lit -> Lit -> Bool #

(/=) :: Lit -> Lit -> Bool #

Eq Body 

Methods

(==) :: Body -> Body -> Bool #

(/=) :: Body -> Body -> Bool #

Eq Guard 

Methods

(==) :: Guard -> Guard -> Bool #

(/=) :: Guard -> Guard -> Bool #

Eq Stmt 

Methods

(==) :: Stmt -> Stmt -> Bool #

(/=) :: Stmt -> Stmt -> Bool #

Eq Range 

Methods

(==) :: Range -> Range -> Bool #

(/=) :: Range -> Range -> Bool #

Eq DerivClause 
Eq TypeFamilyHead 
Eq TySynEqn 
Eq FamFlavour 
Eq Foreign 

Methods

(==) :: Foreign -> Foreign -> Bool #

(/=) :: Foreign -> Foreign -> Bool #

Eq Callconv 
Eq Safety 

Methods

(==) :: Safety -> Safety -> Bool #

(/=) :: Safety -> Safety -> Bool #

Eq Pragma 

Methods

(==) :: Pragma -> Pragma -> Bool #

(/=) :: Pragma -> Pragma -> Bool #

Eq Inline 

Methods

(==) :: Inline -> Inline -> Bool #

(/=) :: Inline -> Inline -> Bool #

Eq RuleMatch 
Eq Phases 

Methods

(==) :: Phases -> Phases -> Bool #

(/=) :: Phases -> Phases -> Bool #

Eq RuleBndr 
Eq AnnTarget 
Eq SourceUnpackedness 
Eq SourceStrictness 
Eq DecidedStrictness 
Eq Con 

Methods

(==) :: Con -> Con -> Bool #

(/=) :: Con -> Con -> Bool #

Eq Bang 

Methods

(==) :: Bang -> Bang -> Bool #

(/=) :: Bang -> Bang -> Bool #

Eq PatSynDir 
Eq PatSynArgs 
Eq FamilyResultSig 
Eq TyLit 

Methods

(==) :: TyLit -> TyLit -> Bool #

(/=) :: TyLit -> TyLit -> Bool #

Eq Role 

Methods

(==) :: Role -> Role -> Bool #

(/=) :: Role -> Role -> Bool #

Eq AnnLookup 
Eq LocalTime 
Eq TimeOfDay 
Eq TimeZone 
Eq UniversalTime 
Eq UTCTime 

Methods

(==) :: UTCTime -> UTCTime -> Bool #

(/=) :: UTCTime -> UTCTime -> Bool #

Eq DiffTime 
Eq Day 

Methods

(==) :: Day -> Day -> Bool #

(/=) :: Day -> Day -> Bool #

Eq a => Eq [a] 

Methods

(==) :: [a] -> [a] -> Bool #

(/=) :: [a] -> [a] -> Bool #

Eq a => Eq (Maybe a) 

Methods

(==) :: Maybe a -> Maybe a -> Bool #

(/=) :: Maybe a -> Maybe a -> Bool #

Eq a => Eq (Ratio a) 

Methods

(==) :: Ratio a -> Ratio a -> Bool #

(/=) :: Ratio a -> Ratio a -> Bool #

Eq (StablePtr a)

Since: 2.1

Methods

(==) :: StablePtr a -> StablePtr a -> Bool #

(/=) :: StablePtr a -> StablePtr a -> Bool #

Eq (Ptr a) 

Methods

(==) :: Ptr a -> Ptr a -> Bool #

(/=) :: Ptr a -> Ptr a -> Bool #

Eq (FunPtr a) 

Methods

(==) :: FunPtr a -> FunPtr a -> Bool #

(/=) :: FunPtr a -> FunPtr a -> Bool #

Eq p => Eq (Par1 p) 

Methods

(==) :: Par1 p -> Par1 p -> Bool #

(/=) :: Par1 p -> Par1 p -> Bool #

Eq (ForeignPtr a)

Since: 2.1

Methods

(==) :: ForeignPtr a -> ForeignPtr a -> Bool #

(/=) :: ForeignPtr a -> ForeignPtr a -> Bool #

Eq a => Eq (Complex a) 

Methods

(==) :: Complex a -> Complex a -> Bool #

(/=) :: Complex a -> Complex a -> Bool #

Eq (Fixed a) 

Methods

(==) :: Fixed a -> Fixed a -> Bool #

(/=) :: Fixed a -> Fixed a -> Bool #

Eq a => Eq (Min a) 

Methods

(==) :: Min a -> Min a -> Bool #

(/=) :: Min a -> Min a -> Bool #

Eq a => Eq (Max a) 

Methods

(==) :: Max a -> Max a -> Bool #

(/=) :: Max a -> Max a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq m => Eq (WrappedMonoid m) 
Eq a => Eq (Option a) 

Methods

(==) :: Option a -> Option a -> Bool #

(/=) :: Option a -> Option a -> Bool #

Eq a => Eq (NonEmpty a) 

Methods

(==) :: NonEmpty a -> NonEmpty a -> Bool #

(/=) :: NonEmpty a -> NonEmpty a -> Bool #

Eq (StableName a)

Since: 2.1

Methods

(==) :: StableName a -> StableName a -> Bool #

(/=) :: StableName a -> StableName a -> Bool #

Eq a => Eq (ZipList a) 

Methods

(==) :: ZipList a -> ZipList a -> Bool #

(/=) :: ZipList a -> ZipList a -> Bool #

Eq a => Eq (Identity a) 

Methods

(==) :: Identity a -> Identity a -> Bool #

(/=) :: Identity a -> Identity a -> Bool #

Eq (TVar a)

Since: 4.8.0.0

Methods

(==) :: TVar a -> TVar a -> Bool #

(/=) :: TVar a -> TVar a -> Bool #

Eq (IORef a)

Since: 4.1.0.0

Methods

(==) :: IORef a -> IORef a -> Bool #

(/=) :: IORef a -> IORef a -> Bool #

Eq a => Eq (Dual a) 

Methods

(==) :: Dual a -> Dual a -> Bool #

(/=) :: Dual a -> Dual a -> Bool #

Eq a => Eq (Sum a) 

Methods

(==) :: Sum a -> Sum a -> Bool #

(/=) :: Sum a -> Sum a -> Bool #

Eq a => Eq (Product a) 

Methods

(==) :: Product a -> Product a -> Bool #

(/=) :: Product a -> Product a -> Bool #

Eq a => Eq (First a) 

Methods

(==) :: First a -> First a -> Bool #

(/=) :: First a -> First a -> Bool #

Eq a => Eq (Last a) 

Methods

(==) :: Last a -> Last a -> Bool #

(/=) :: Last a -> Last a -> Bool #

Eq a => Eq (Down a) 

Methods

(==) :: Down a -> Down a -> Bool #

(/=) :: Down a -> Down a -> Bool #

Eq (MVar a)

Since: 4.1.0.0

Methods

(==) :: MVar a -> MVar a -> Bool #

(/=) :: MVar a -> MVar a -> Bool #

Eq a => Eq (IntMap a) 

Methods

(==) :: IntMap a -> IntMap a -> Bool #

(/=) :: IntMap a -> IntMap a -> Bool #

Eq vertex => Eq (SCC vertex) 

Methods

(==) :: SCC vertex -> SCC vertex -> Bool #

(/=) :: SCC vertex -> SCC vertex -> Bool #

Eq a => Eq (Tree a) 

Methods

(==) :: Tree a -> Tree a -> Bool #

(/=) :: Tree a -> Tree a -> Bool #

Eq a => Eq (Seq a) 

Methods

(==) :: Seq a -> Seq a -> Bool #

(/=) :: Seq a -> Seq a -> Bool #

Eq a => Eq (ViewL a) 

Methods

(==) :: ViewL a -> ViewL a -> Bool #

(/=) :: ViewL a -> ViewL a -> Bool #

Eq a => Eq (ViewR a) 

Methods

(==) :: ViewR a -> ViewR a -> Bool #

(/=) :: ViewR a -> ViewR a -> Bool #

Eq a => Eq (Set a) 

Methods

(==) :: Set a -> Set a -> Bool #

(/=) :: Set a -> Set a -> Bool #

Eq a => Eq (FromListCounting a) 

Methods

(==) :: FromListCounting a -> FromListCounting a -> Bool #

(/=) :: FromListCounting a -> FromListCounting a -> Bool #

Eq b => Eq (GroupEdges b) 

Methods

(==) :: GroupEdges b -> GroupEdges b -> Bool #

(/=) :: GroupEdges b -> GroupEdges b -> Bool #

Eq a => Eq (LPath a) 

Methods

(==) :: LPath a -> LPath a -> Bool #

(/=) :: LPath a -> LPath a -> Bool #

Eq (DeBruijn a) => Eq (DeBruijn [a]) 

Methods

(==) :: DeBruijn [a] -> DeBruijn [a] -> Bool #

(/=) :: DeBruijn [a] -> DeBruijn [a] -> Bool #

Eq (DeBruijn CoreExpr) 

Methods

(==) :: DeBruijn CoreExpr -> DeBruijn CoreExpr -> Bool #

(/=) :: DeBruijn CoreExpr -> DeBruijn CoreExpr -> Bool #

Eq (DeBruijn CoreAlt) 

Methods

(==) :: DeBruijn CoreAlt -> DeBruijn CoreAlt -> Bool #

(/=) :: DeBruijn CoreAlt -> DeBruijn CoreAlt -> Bool #

Eq (DeBruijn Type) 

Methods

(==) :: DeBruijn Type -> DeBruijn Type -> Bool #

(/=) :: DeBruijn Type -> DeBruijn Type -> Bool #

Eq (DeBruijn Coercion) 

Methods

(==) :: DeBruijn Coercion -> DeBruijn Coercion -> Bool #

(/=) :: DeBruijn Coercion -> DeBruijn Coercion -> Bool #

Eq a => Eq (OnOff a) 

Methods

(==) :: OnOff a -> OnOff a -> Bool #

(/=) :: OnOff a -> OnOff a -> Bool #

Eq val => Eq (TaggedVal val) 

Methods

(==) :: TaggedVal val -> TaggedVal val -> Bool #

(/=) :: TaggedVal val -> TaggedVal val -> Bool #

Eq id => Eq (Tickish id) 

Methods

(==) :: Tickish id -> Tickish id -> Bool #

(/=) :: Tickish id -> Tickish id -> Bool #

Eq (CoAxiom br) 

Methods

(==) :: CoAxiom br -> CoAxiom br -> Bool #

(/=) :: CoAxiom br -> CoAxiom br -> Bool #

Eq (UniqSet a) 

Methods

(==) :: UniqSet a -> UniqSet a -> Bool #

(/=) :: UniqSet a -> UniqSet a -> Bool #

Eq ele => Eq (UniqFM ele) 

Methods

(==) :: UniqFM ele -> UniqFM ele -> Bool #

(/=) :: UniqFM ele -> UniqFM ele -> Bool #

Eq (Doc a) 

Methods

(==) :: Doc a -> Doc a -> Bool #

(/=) :: Doc a -> Doc a -> Bool #

Eq a => Eq (AnnotDetails a) 
Eq a => Eq (Span a) 

Methods

(==) :: Span a -> Span a -> Bool #

(/=) :: Span a -> Span a -> Bool #

(Eq b, Eq a) => Eq (Either a b) 

Methods

(==) :: Either a b -> Either a b -> Bool #

(/=) :: Either a b -> Either a b -> Bool #

Eq (V1 k p) 

Methods

(==) :: V1 k p -> V1 k p -> Bool #

(/=) :: V1 k p -> V1 k p -> Bool #

Eq (U1 k p)

Since: 4.9.0.0

Methods

(==) :: U1 k p -> U1 k p -> Bool #

(/=) :: U1 k p -> U1 k p -> Bool #

Eq (TypeRep k a)

Since: 2.1

Methods

(==) :: TypeRep k a -> TypeRep k a -> Bool #

(/=) :: TypeRep k a -> TypeRep k a -> Bool #

(Eq a, Eq b) => Eq (a, b) 

Methods

(==) :: (a, b) -> (a, b) -> Bool #

(/=) :: (a, b) -> (a, b) -> Bool #

(Ix ix, Eq e, IArray UArray e) => Eq (UArray ix e) 

Methods

(==) :: UArray ix e -> UArray ix e -> Bool #

(/=) :: UArray ix e -> UArray ix e -> Bool #

(Ix i, Eq e) => Eq (Array i e)

Since: 2.1

Methods

(==) :: Array i e -> Array i e -> Bool #

(/=) :: Array i e -> Array i e -> Bool #

Eq (IOArray i e)

Since: 4.1.0.0

Methods

(==) :: IOArray i e -> IOArray i e -> Bool #

(/=) :: IOArray i e -> IOArray i e -> Bool #

Eq a => Eq (Arg a b)

Since: 4.9.0.0

Methods

(==) :: Arg a b -> Arg a b -> Bool #

(/=) :: Arg a b -> Arg a b -> Bool #

Eq (Proxy k s)

Since: 4.7.0.0

Methods

(==) :: Proxy k s -> Proxy k s -> Bool #

(/=) :: Proxy k s -> Proxy k s -> Bool #

Eq (STRef s a)

Since: 2.1

Methods

(==) :: STRef s a -> STRef s a -> Bool #

(/=) :: STRef s a -> STRef s a -> Bool #

(Eq k, Eq a) => Eq (Map k a) 

Methods

(==) :: Map k a -> Map k a -> Bool #

(/=) :: Map k a -> Map k a -> Bool #

(Eq a, Ord b) => Eq (Gr a b) 

Methods

(==) :: Gr a b -> Gr a b -> Bool #

(/=) :: Gr a b -> Gr a b -> Bool #

Eq (Bin k a) 

Methods

(==) :: Bin k a -> Bin k a -> Bool #

(/=) :: Bin k a -> Bin k a -> Bool #

(Eq e, Eq l) => Eq (GenLocated l e) 

Methods

(==) :: GenLocated l e -> GenLocated l e -> Bool #

(/=) :: GenLocated l e -> GenLocated l e -> Bool #

(Eq1 m, Eq a) => Eq (MaybeT m a) 

Methods

(==) :: MaybeT m a -> MaybeT m a -> Bool #

(/=) :: MaybeT m a -> MaybeT m a -> Bool #

(Eq1 m, Eq a) => Eq (ListT m a) 

Methods

(==) :: ListT m a -> ListT m a -> Bool #

(/=) :: ListT m a -> ListT m a -> Bool #

Eq (f p) => Eq (Rec1 k f p) 

Methods

(==) :: Rec1 k f p -> Rec1 k f p -> Bool #

(/=) :: Rec1 k f p -> Rec1 k f p -> Bool #

Eq (URec k (Ptr ()) p) 

Methods

(==) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

(/=) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

Eq (URec k Char p) 

Methods

(==) :: URec k Char p -> URec k Char p -> Bool #

(/=) :: URec k Char p -> URec k Char p -> Bool #

Eq (URec k Double p) 

Methods

(==) :: URec k Double p -> URec k Double p -> Bool #

(/=) :: URec k Double p -> URec k Double p -> Bool #

Eq (URec k Float p) 

Methods

(==) :: URec k Float p -> URec k Float p -> Bool #

(/=) :: URec k Float p -> URec k Float p -> Bool #

Eq (URec k Int p) 

Methods

(==) :: URec k Int p -> URec k Int p -> Bool #

(/=) :: URec k Int p -> URec k Int p -> Bool #

Eq (URec k Word p) 

Methods

(==) :: URec k Word p -> URec k Word p -> Bool #

(/=) :: URec k Word p -> URec k Word p -> Bool #

(Eq a, Eq b, Eq c) => Eq (a, b, c) 

Methods

(==) :: (a, b, c) -> (a, b, c) -> Bool #

(/=) :: (a, b, c) -> (a, b, c) -> Bool #

Eq (STUArray s i e) 

Methods

(==) :: STUArray s i e -> STUArray s i e -> Bool #

(/=) :: STUArray s i e -> STUArray s i e -> Bool #

Eq (STArray s i e)

Since: 2.1

Methods

(==) :: STArray s i e -> STArray s i e -> Bool #

(/=) :: STArray s i e -> STArray s i e -> Bool #

Eq a => Eq (Const k a b) 

Methods

(==) :: Const k a b -> Const k a b -> Bool #

(/=) :: Const k a b -> Const k a b -> Bool #

Eq (f a) => Eq (Alt k f a) 

Methods

(==) :: Alt k f a -> Alt k f a -> Bool #

(/=) :: Alt k f a -> Alt k f a -> Bool #

Eq (Coercion k a b) 

Methods

(==) :: Coercion k a b -> Coercion k a b -> Bool #

(/=) :: Coercion k a b -> Coercion k a b -> Bool #

Eq ((:~:) k a b) 

Methods

(==) :: (k :~: a) b -> (k :~: a) b -> Bool #

(/=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(Graph gr, Ord a, Ord b) => Eq (OrdGr gr a b) 

Methods

(==) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

(/=) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

(Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) 

Methods

(==) :: ErrorT e m a -> ErrorT e m a -> Bool #

(/=) :: ErrorT e m a -> ErrorT e m a -> Bool #

(Eq e, Eq1 m, Eq a) => Eq (ExceptT e m a) 

Methods

(==) :: ExceptT e m a -> ExceptT e m a -> Bool #

(/=) :: ExceptT e m a -> ExceptT e m a -> Bool #

(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) 

Methods

(==) :: WriterT w m a -> WriterT w m a -> Bool #

(/=) :: WriterT w m a -> WriterT w m a -> Bool #

(Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) 

Methods

(==) :: WriterT w m a -> WriterT w m a -> Bool #

(/=) :: WriterT w m a -> WriterT w m a -> Bool #

(Eq1 f, Eq a) => Eq (IdentityT * f a) 

Methods

(==) :: IdentityT * f a -> IdentityT * f a -> Bool #

(/=) :: IdentityT * f a -> IdentityT * f a -> Bool #

Eq c => Eq (K1 k i c p) 

Methods

(==) :: K1 k i c p -> K1 k i c p -> Bool #

(/=) :: K1 k i c p -> K1 k i c p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:+:) k f g p) 

Methods

(==) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(/=) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(Eq (g p), Eq (f p)) => Eq ((:*:) k f g p) 

Methods

(==) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(/=) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) 

Methods

(==) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(/=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Product * f g a)

Since: 4.9.0.0

Methods

(==) :: Product * f g a -> Product * f g a -> Bool #

(/=) :: Product * f g a -> Product * f g a -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Sum * f g a)

Since: 4.9.0.0

Methods

(==) :: Sum * f g a -> Sum * f g a -> Bool #

(/=) :: Sum * f g a -> Sum * f g a -> Bool #

Eq ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

(==) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(/=) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

Eq (f p) => Eq (M1 k i c f p) 

Methods

(==) :: M1 k i c f p -> M1 k i c f p -> Bool #

(/=) :: M1 k i c f p -> M1 k i c f p -> Bool #

Eq (f (g p)) => Eq ((:.:) k2 k1 f g p) 

Methods

(==) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(/=) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) 

Methods

(==) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(/=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(Eq1 f, Eq1 g, Eq a) => Eq (Compose * * f g a)

Since: 4.9.0.0

Methods

(==) :: Compose * * f g a -> Compose * * f g a -> Bool #

(/=) :: Compose * * f g a -> Compose * * f g a -> Bool #

(Eq modulename, Eq unitid) => Eq (DbModule instunitid compid unitid modulename mod) 

Methods

(==) :: DbModule instunitid compid unitid modulename mod -> DbModule instunitid compid unitid modulename mod -> Bool #

(/=) :: DbModule instunitid compid unitid modulename mod -> DbModule instunitid compid unitid modulename mod -> Bool #

(Eq instunitid, Eq mod, Eq modulename, Eq compid) => Eq (DbUnitId instunitid compid unitid modulename mod) 

Methods

(==) :: DbUnitId instunitid compid unitid modulename mod -> DbUnitId instunitid compid unitid modulename mod -> Bool #

(/=) :: DbUnitId instunitid compid unitid modulename mod -> DbUnitId instunitid compid unitid modulename mod -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) 

Methods

(==) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(/=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) 

Methods

(==) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(/=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(Eq srcpkgname, Eq srcpkgid, Eq mod, Eq modulename, Eq compid, Eq instunitid) => Eq (InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod) 

Methods

(==) :: InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> Bool #

(/=) :: InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) 

Methods

(==) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

(==) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(/=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

class Eq a => Ord a where #

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.

Minimal complete definition

compare | (<=)

Methods

compare :: a -> a -> Ordering #

(<) :: a -> a -> Bool infix 4 #

(<=) :: a -> a -> Bool infix 4 #

(>) :: a -> a -> Bool infix 4 #

(>=) :: a -> a -> Bool infix 4 #

max :: a -> a -> a #

min :: a -> a -> a #

Instances

Ord Bool 

Methods

compare :: Bool -> Bool -> Ordering #

(<) :: Bool -> Bool -> Bool #

(<=) :: Bool -> Bool -> Bool #

(>) :: Bool -> Bool -> Bool #

(>=) :: Bool -> Bool -> Bool #

max :: Bool -> Bool -> Bool #

min :: Bool -> Bool -> Bool #

Ord Char 

Methods

compare :: Char -> Char -> Ordering #

(<) :: Char -> Char -> Bool #

(<=) :: Char -> Char -> Bool #

(>) :: Char -> Char -> Bool #

(>=) :: Char -> Char -> Bool #

max :: Char -> Char -> Char #

min :: Char -> Char -> Char #

Ord Double 
Ord Float 

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Ord Int 

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Ord Int8

Since: 2.1

Methods

compare :: Int8 -> Int8 -> Ordering #

(<) :: Int8 -> Int8 -> Bool #

(<=) :: Int8 -> Int8 -> Bool #

(>) :: Int8 -> Int8 -> Bool #

(>=) :: Int8 -> Int8 -> Bool #

max :: Int8 -> Int8 -> Int8 #

min :: Int8 -> Int8 -> Int8 #

Ord Int16

Since: 2.1

Methods

compare :: Int16 -> Int16 -> Ordering #

(<) :: Int16 -> Int16 -> Bool #

(<=) :: Int16 -> Int16 -> Bool #

(>) :: Int16 -> Int16 -> Bool #

(>=) :: Int16 -> Int16 -> Bool #

max :: Int16 -> Int16 -> Int16 #

min :: Int16 -> Int16 -> Int16 #

Ord Int32

Since: 2.1

Methods

compare :: Int32 -> Int32 -> Ordering #

(<) :: Int32 -> Int32 -> Bool #

(<=) :: Int32 -> Int32 -> Bool #

(>) :: Int32 -> Int32 -> Bool #

(>=) :: Int32 -> Int32 -> Bool #

max :: Int32 -> Int32 -> Int32 #

min :: Int32 -> Int32 -> Int32 #

Ord Int64

Since: 2.1

Methods

compare :: Int64 -> Int64 -> Ordering #

(<) :: Int64 -> Int64 -> Bool #

(<=) :: Int64 -> Int64 -> Bool #

(>) :: Int64 -> Int64 -> Bool #

(>=) :: Int64 -> Int64 -> Bool #

max :: Int64 -> Int64 -> Int64 #

min :: Int64 -> Int64 -> Int64 #

Ord Integer 
Ord Natural 
Ord Ordering 
Ord Word 

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Ord Word8

Since: 2.1

Methods

compare :: Word8 -> Word8 -> Ordering #

(<) :: Word8 -> Word8 -> Bool #

(<=) :: Word8 -> Word8 -> Bool #

(>) :: Word8 -> Word8 -> Bool #

(>=) :: Word8 -> Word8 -> Bool #

max :: Word8 -> Word8 -> Word8 #

min :: Word8 -> Word8 -> Word8 #

Ord Word16

Since: 2.1

Ord Word32

Since: 2.1

Ord Word64

Since: 2.1

Ord SomeTypeRep 
Ord Exp 

Methods

compare :: Exp -> Exp -> Ordering #

(<) :: Exp -> Exp -> Bool #

(<=) :: Exp -> Exp -> Bool #

(>) :: Exp -> Exp -> Bool #

(>=) :: Exp -> Exp -> Bool #

max :: Exp -> Exp -> Exp #

min :: Exp -> Exp -> Exp #

Ord Match 

Methods

compare :: Match -> Match -> Ordering #

(<) :: Match -> Match -> Bool #

(<=) :: Match -> Match -> Bool #

(>) :: Match -> Match -> Bool #

(>=) :: Match -> Match -> Bool #

max :: Match -> Match -> Match #

min :: Match -> Match -> Match #

Ord Clause 
Ord Pat 

Methods

compare :: Pat -> Pat -> Ordering #

(<) :: Pat -> Pat -> Bool #

(<=) :: Pat -> Pat -> Bool #

(>) :: Pat -> Pat -> Bool #

(>=) :: Pat -> Pat -> Bool #

max :: Pat -> Pat -> Pat #

min :: Pat -> Pat -> Pat #

Ord Type 

Methods

compare :: Type -> Type -> Ordering #

(<) :: Type -> Type -> Bool #

(<=) :: Type -> Type -> Bool #

(>) :: Type -> Type -> Bool #

(>=) :: Type -> Type -> Bool #

max :: Type -> Type -> Type #

min :: Type -> Type -> Type #

Ord Dec 

Methods

compare :: Dec -> Dec -> Ordering #

(<) :: Dec -> Dec -> Bool #

(<=) :: Dec -> Dec -> Bool #

(>) :: Dec -> Dec -> Bool #

(>=) :: Dec -> Dec -> Bool #

max :: Dec -> Dec -> Dec #

min :: Dec -> Dec -> Dec #

Ord Name 

Methods

compare :: Name -> Name -> Ordering #

(<) :: Name -> Name -> Bool #

(<=) :: Name -> Name -> Bool #

(>) :: Name -> Name -> Bool #

(>=) :: Name -> Name -> Bool #

max :: Name -> Name -> Name #

min :: Name -> Name -> Name #

Ord FunDep 
Ord TyVarBndr 
Ord InjectivityAnn 
Ord Overlap 
Ord DerivStrategy 
Ord () 

Methods

compare :: () -> () -> Ordering #

(<) :: () -> () -> Bool #

(<=) :: () -> () -> Bool #

(>) :: () -> () -> Bool #

(>=) :: () -> () -> Bool #

max :: () -> () -> () #

min :: () -> () -> () #

Ord TyCon 

Methods

compare :: TyCon -> TyCon -> Ordering #

(<) :: TyCon -> TyCon -> Bool #

(<=) :: TyCon -> TyCon -> Bool #

(>) :: TyCon -> TyCon -> Bool #

(>=) :: TyCon -> TyCon -> Bool #

max :: TyCon -> TyCon -> TyCon #

min :: TyCon -> TyCon -> TyCon #

Ord BigNat 
Ord Void

Since: 4.8.0.0

Methods

compare :: Void -> Void -> Ordering #

(<) :: Void -> Void -> Bool #

(<=) :: Void -> Void -> Bool #

(>) :: Void -> Void -> Bool #

(>=) :: Void -> Void -> Bool #

max :: Void -> Void -> Void #

min :: Void -> Void -> Void #

Ord Unique 
Ord Version

Since: 2.1

Ord ThreadId

Since: 4.2.0.0

Ord BlockReason 
Ord ThreadStatus 
Ord AsyncException 
Ord ArrayException 
Ord ExitCode 
Ord ErrorCall 
Ord ArithException 
Ord All 

Methods

compare :: All -> All -> Ordering #

(<) :: All -> All -> Bool #

(<=) :: All -> All -> Bool #

(>) :: All -> All -> Bool #

(>=) :: All -> All -> Bool #

max :: All -> All -> All #

min :: All -> All -> All #

Ord Any 

Methods

compare :: Any -> Any -> Ordering #

(<) :: Any -> Any -> Bool #

(<=) :: Any -> Any -> Bool #

(>) :: Any -> Any -> Bool #

(>=) :: Any -> Any -> Bool #

max :: Any -> Any -> Any #

min :: Any -> Any -> Any #

Ord Fixity 
Ord Associativity 
Ord SourceUnpackedness 
Ord SourceStrictness 
Ord DecidedStrictness 
Ord SomeSymbol

Since: 4.7.0.0

Ord SomeNat

Since: 4.7.0.0

Ord CChar 

Methods

compare :: CChar -> CChar -> Ordering #

(<) :: CChar -> CChar -> Bool #

(<=) :: CChar -> CChar -> Bool #

(>) :: CChar -> CChar -> Bool #

(>=) :: CChar -> CChar -> Bool #

max :: CChar -> CChar -> CChar #

min :: CChar -> CChar -> CChar #

Ord CSChar 
Ord CUChar 
Ord CShort 
Ord CUShort 
Ord CInt 

Methods

compare :: CInt -> CInt -> Ordering #

(<) :: CInt -> CInt -> Bool #

(<=) :: CInt -> CInt -> Bool #

(>) :: CInt -> CInt -> Bool #

(>=) :: CInt -> CInt -> Bool #

max :: CInt -> CInt -> CInt #

min :: CInt -> CInt -> CInt #

Ord CUInt 

Methods

compare :: CUInt -> CUInt -> Ordering #

(<) :: CUInt -> CUInt -> Bool #

(<=) :: CUInt -> CUInt -> Bool #

(>) :: CUInt -> CUInt -> Bool #

(>=) :: CUInt -> CUInt -> Bool #

max :: CUInt -> CUInt -> CUInt #

min :: CUInt -> CUInt -> CUInt #

Ord CLong 

Methods

compare :: CLong -> CLong -> Ordering #

(<) :: CLong -> CLong -> Bool #

(<=) :: CLong -> CLong -> Bool #

(>) :: CLong -> CLong -> Bool #

(>=) :: CLong -> CLong -> Bool #

max :: CLong -> CLong -> CLong #

min :: CLong -> CLong -> CLong #

Ord CULong 
Ord CLLong 
Ord CULLong 
Ord CBool 

Methods

compare :: CBool -> CBool -> Ordering #

(<) :: CBool -> CBool -> Bool #

(<=) :: CBool -> CBool -> Bool #

(>) :: CBool -> CBool -> Bool #

(>=) :: CBool -> CBool -> Bool #

max :: CBool -> CBool -> CBool #

min :: CBool -> CBool -> CBool #

Ord CFloat 
Ord CDouble 
Ord CPtrdiff 
Ord CSize 

Methods

compare :: CSize -> CSize -> Ordering #

(<) :: CSize -> CSize -> Bool #

(<=) :: CSize -> CSize -> Bool #

(>) :: CSize -> CSize -> Bool #

(>=) :: CSize -> CSize -> Bool #

max :: CSize -> CSize -> CSize #

min :: CSize -> CSize -> CSize #

Ord CWchar 
Ord CSigAtomic 
Ord CClock 
Ord CTime 

Methods

compare :: CTime -> CTime -> Ordering #

(<) :: CTime -> CTime -> Bool #

(<=) :: CTime -> CTime -> Bool #

(>) :: CTime -> CTime -> Bool #

(>=) :: CTime -> CTime -> Bool #

max :: CTime -> CTime -> CTime #

min :: CTime -> CTime -> CTime #

Ord CUSeconds 
Ord CSUSeconds 
Ord CIntPtr 
Ord CUIntPtr 
Ord CIntMax 
Ord CUIntMax 
Ord Fingerprint 
Ord GeneralCategory 
Ord ShortByteString 
Ord ByteString 
Ord ByteString 
Ord IntSet 
Ord TypeOrdering 

Methods

compare :: TypeOrdering -> TypeOrdering -> Ordering #

(<) :: TypeOrdering -> TypeOrdering -> Bool #

(<=) :: TypeOrdering -> TypeOrdering -> Bool #

(>) :: TypeOrdering -> TypeOrdering -> Bool #

(>=) :: TypeOrdering -> TypeOrdering -> Bool #

max :: TypeOrdering -> TypeOrdering -> TypeOrdering #

min :: TypeOrdering -> TypeOrdering -> TypeOrdering #

Ord TyLit 

Methods

compare :: TyLit -> TyLit -> Ordering #

(<) :: TyLit -> TyLit -> Bool #

(<=) :: TyLit -> TyLit -> Bool #

(>) :: TyLit -> TyLit -> Bool #

(>=) :: TyLit -> TyLit -> Bool #

max :: TyLit -> TyLit -> TyLit #

min :: TyLit -> TyLit -> TyLit #

Ord Deprecation 

Methods

compare :: Deprecation -> Deprecation -> Ordering #

(<) :: Deprecation -> Deprecation -> Bool #

(<=) :: Deprecation -> Deprecation -> Bool #

(>) :: Deprecation -> Deprecation -> Bool #

(>=) :: Deprecation -> Deprecation -> Bool #

max :: Deprecation -> Deprecation -> Deprecation #

min :: Deprecation -> Deprecation -> Deprecation #

Ord SseVersion 

Methods

compare :: SseVersion -> SseVersion -> Ordering #

(<) :: SseVersion -> SseVersion -> Bool #

(<=) :: SseVersion -> SseVersion -> Bool #

(>) :: SseVersion -> SseVersion -> Bool #

(>=) :: SseVersion -> SseVersion -> Bool #

max :: SseVersion -> SseVersion -> SseVersion #

min :: SseVersion -> SseVersion -> SseVersion #

Ord NDModule 

Methods

compare :: NDModule -> NDModule -> Ordering #

(<) :: NDModule -> NDModule -> Bool #

(<=) :: NDModule -> NDModule -> Bool #

(>) :: NDModule -> NDModule -> Bool #

(>=) :: NDModule -> NDModule -> Bool #

max :: NDModule -> NDModule -> NDModule #

min :: NDModule -> NDModule -> NDModule #

Ord Tick 

Methods

compare :: Tick -> Tick -> Ordering #

(<) :: Tick -> Tick -> Bool #

(<=) :: Tick -> Tick -> Bool #

(>) :: Tick -> Tick -> Bool #

(>=) :: Tick -> Tick -> Bool #

max :: Tick -> Tick -> Tick #

min :: Tick -> Tick -> Tick #

Ord SubGoalDepth 
Ord TcLevel 
Ord EqRel 

Methods

compare :: EqRel -> EqRel -> Ordering #

(<) :: EqRel -> EqRel -> Bool #

(<=) :: EqRel -> EqRel -> Bool #

(>) :: EqRel -> EqRel -> Bool #

(>=) :: EqRel -> EqRel -> Bool #

max :: EqRel -> EqRel -> EqRel #

min :: EqRel -> EqRel -> EqRel #

Ord Role 

Methods

compare :: Role -> Role -> Ordering #

(<) :: Role -> Role -> Bool #

(<=) :: Role -> Role -> Bool #

(>) :: Role -> Role -> Bool #

(>=) :: Role -> Role -> Bool #

max :: Role -> Role -> Role #

min :: Role -> Role -> Role #

Ord CoAxiomRule 
Ord Var 

Methods

compare :: Var -> Var -> Ordering #

(<) :: Var -> Var -> Bool #

(<=) :: Var -> Var -> Bool #

(>) :: Var -> Var -> Bool #

(>=) :: Var -> Var -> Bool #

max :: Var -> Var -> Var #

min :: Var -> Var -> Var #

Ord RdrName 
Ord ImportSpec 
Ord ImpDeclSpec 
Ord ImpItemSpec 
Ord NameSpace 
Ord Way 

Methods

compare :: Way -> Way -> Ordering #

(<) :: Way -> Way -> Bool #

(<=) :: Way -> Way -> Bool #

(>) :: Way -> Way -> Bool #

(>=) :: Way -> Way -> Bool #

max :: Way -> Way -> Way #

min :: Way -> Way -> Way #

Ord IndefUnitId 
Ord IndefModule 
Ord InstalledModule 
Ord DefUnitId 
Ord FunctionOrData 
Ord TyPrec 
Ord FractionalLit 
Ord IntWithInf 
Ord RealSrcLoc 
Ord SrcLoc 
Ord RealSrcSpan 
Ord SrcSpan 
Ord Module 
Ord ModuleName 
Ord UnitId 
Ord InstalledUnitId 
Ord ComponentId 
Ord FastString 
Ord OccName 
Ord Name 

Methods

compare :: Name -> Name -> Ordering #

(<) :: Name -> Name -> Bool #

(<=) :: Name -> Name -> Bool #

(>) :: Name -> Name -> Bool #

(>=) :: Name -> Name -> Bool #

max :: Name -> Name -> Name #

min :: Name -> Name -> Name #

Ord ModName 
Ord PkgName 
Ord Module 
Ord OccName 
Ord NameFlavour 
Ord NameSpace 
Ord Loc 

Methods

compare :: Loc -> Loc -> Ordering #

(<) :: Loc -> Loc -> Bool #

(<=) :: Loc -> Loc -> Bool #

(>) :: Loc -> Loc -> Bool #

(>=) :: Loc -> Loc -> Bool #

max :: Loc -> Loc -> Loc #

min :: Loc -> Loc -> Loc #

Ord Info 

Methods

compare :: Info -> Info -> Ordering #

(<) :: Info -> Info -> Bool #

(<=) :: Info -> Info -> Bool #

(>) :: Info -> Info -> Bool #

(>=) :: Info -> Info -> Bool #

max :: Info -> Info -> Info #

min :: Info -> Info -> Info #

Ord ModuleInfo 
Ord Fixity 
Ord FixityDirection 
Ord Lit 

Methods

compare :: Lit -> Lit -> Ordering #

(<) :: Lit -> Lit -> Bool #

(<=) :: Lit -> Lit -> Bool #

(>) :: Lit -> Lit -> Bool #

(>=) :: Lit -> Lit -> Bool #

max :: Lit -> Lit -> Lit #

min :: Lit -> Lit -> Lit #

Ord Body 

Methods

compare :: Body -> Body -> Ordering #

(<) :: Body -> Body -> Bool #

(<=) :: Body -> Body -> Bool #

(>) :: Body -> Body -> Bool #

(>=) :: Body -> Body -> Bool #

max :: Body -> Body -> Body #

min :: Body -> Body -> Body #

Ord Guard 

Methods

compare :: Guard -> Guard -> Ordering #

(<) :: Guard -> Guard -> Bool #

(<=) :: Guard -> Guard -> Bool #

(>) :: Guard -> Guard -> Bool #

(>=) :: Guard -> Guard -> Bool #

max :: Guard -> Guard -> Guard #

min :: Guard -> Guard -> Guard #

Ord Stmt 

Methods

compare :: Stmt -> Stmt -> Ordering #

(<) :: Stmt -> Stmt -> Bool #

(<=) :: Stmt -> Stmt -> Bool #

(>) :: Stmt -> Stmt -> Bool #

(>=) :: Stmt -> Stmt -> Bool #

max :: Stmt -> Stmt -> Stmt #

min :: Stmt -> Stmt -> Stmt #

Ord Range 

Methods

compare :: Range -> Range -> Ordering #

(<) :: Range -> Range -> Bool #

(<=) :: Range -> Range -> Bool #

(>) :: Range -> Range -> Bool #

(>=) :: Range -> Range -> Bool #

max :: Range -> Range -> Range #

min :: Range -> Range -> Range #

Ord DerivClause 
Ord TypeFamilyHead 
Ord TySynEqn 
Ord FamFlavour 
Ord Foreign 
Ord Callconv 
Ord Safety 
Ord Pragma 
Ord Inline 
Ord RuleMatch 
Ord Phases 
Ord RuleBndr 
Ord AnnTarget 
Ord SourceUnpackedness 
Ord SourceStrictness 
Ord DecidedStrictness 
Ord Con 

Methods

compare :: Con -> Con -> Ordering #

(<) :: Con -> Con -> Bool #

(<=) :: Con -> Con -> Bool #

(>) :: Con -> Con -> Bool #

(>=) :: Con -> Con -> Bool #

max :: Con -> Con -> Con #

min :: Con -> Con -> Con #

Ord Bang 

Methods

compare :: Bang -> Bang -> Ordering #

(<) :: Bang -> Bang -> Bool #

(<=) :: Bang -> Bang -> Bool #

(>) :: Bang -> Bang -> Bool #

(>=) :: Bang -> Bang -> Bool #

max :: Bang -> Bang -> Bang #

min :: Bang -> Bang -> Bang #

Ord PatSynDir 
Ord PatSynArgs 
Ord FamilyResultSig 
Ord TyLit 

Methods

compare :: TyLit -> TyLit -> Ordering #

(<) :: TyLit -> TyLit -> Bool #

(<=) :: TyLit -> TyLit -> Bool #

(>) :: TyLit -> TyLit -> Bool #

(>=) :: TyLit -> TyLit -> Bool #

max :: TyLit -> TyLit -> TyLit #

min :: TyLit -> TyLit -> TyLit #

Ord Role 

Methods

compare :: Role -> Role -> Ordering #

(<) :: Role -> Role -> Bool #

(<=) :: Role -> Role -> Bool #

(>) :: Role -> Role -> Bool #

(>=) :: Role -> Role -> Bool #

max :: Role -> Role -> Role #

min :: Role -> Role -> Role #

Ord AnnLookup 
Ord LocalTime 
Ord TimeOfDay 
Ord TimeZone 
Ord UniversalTime 
Ord UTCTime 
Ord DiffTime 
Ord Day 

Methods

compare :: Day -> Day -> Ordering #

(<) :: Day -> Day -> Bool #

(<=) :: Day -> Day -> Bool #

(>) :: Day -> Day -> Bool #

(>=) :: Day -> Day -> Bool #

max :: Day -> Day -> Day #

min :: Day -> Day -> Day #

Ord a => Ord [a] 

Methods

compare :: [a] -> [a] -> Ordering #

(<) :: [a] -> [a] -> Bool #

(<=) :: [a] -> [a] -> Bool #

(>) :: [a] -> [a] -> Bool #

(>=) :: [a] -> [a] -> Bool #

max :: [a] -> [a] -> [a] #

min :: [a] -> [a] -> [a] #

Ord a => Ord (Maybe a) 

Methods

compare :: Maybe a -> Maybe a -> Ordering #

(<) :: Maybe a -> Maybe a -> Bool #

(<=) :: Maybe a -> Maybe a -> Bool #

(>) :: Maybe a -> Maybe a -> Bool #

(>=) :: Maybe a -> Maybe a -> Bool #

max :: Maybe a -> Maybe a -> Maybe a #

min :: Maybe a -> Maybe a -> Maybe a #

Integral a => Ord (Ratio a)

Since: 2.0.1

Methods

compare :: Ratio a -> Ratio a -> Ordering #

(<) :: Ratio a -> Ratio a -> Bool #

(<=) :: Ratio a -> Ratio a -> Bool #

(>) :: Ratio a -> Ratio a -> Bool #

(>=) :: Ratio a -> Ratio a -> Bool #

max :: Ratio a -> Ratio a -> Ratio a #

min :: Ratio a -> Ratio a -> Ratio a #

Ord (Ptr a) 

Methods

compare :: Ptr a -> Ptr a -> Ordering #

(<) :: Ptr a -> Ptr a -> Bool #

(<=) :: Ptr a -> Ptr a -> Bool #

(>) :: Ptr a -> Ptr a -> Bool #

(>=) :: Ptr a -> Ptr a -> Bool #

max :: Ptr a -> Ptr a -> Ptr a #

min :: Ptr a -> Ptr a -> Ptr a #

Ord (FunPtr a) 

Methods

compare :: FunPtr a -> FunPtr a -> Ordering #

(<) :: FunPtr a -> FunPtr a -> Bool #

(<=) :: FunPtr a -> FunPtr a -> Bool #

(>) :: FunPtr a -> FunPtr a -> Bool #

(>=) :: FunPtr a -> FunPtr a -> Bool #

max :: FunPtr a -> FunPtr a -> FunPtr a #

min :: FunPtr a -> FunPtr a -> FunPtr a #

Ord p => Ord (Par1 p) 

Methods

compare :: Par1 p -> Par1 p -> Ordering #

(<) :: Par1 p -> Par1 p -> Bool #

(<=) :: Par1 p -> Par1 p -> Bool #

(>) :: Par1 p -> Par1 p -> Bool #

(>=) :: Par1 p -> Par1 p -> Bool #

max :: Par1 p -> Par1 p -> Par1 p #

min :: Par1 p -> Par1 p -> Par1 p #

Ord (ForeignPtr a)

Since: 2.1

Ord (Fixed a) 

Methods

compare :: Fixed a -> Fixed a -> Ordering #

(<) :: Fixed a -> Fixed a -> Bool #

(<=) :: Fixed a -> Fixed a -> Bool #

(>) :: Fixed a -> Fixed a -> Bool #

(>=) :: Fixed a -> Fixed a -> Bool #

max :: Fixed a -> Fixed a -> Fixed a #

min :: Fixed a -> Fixed a -> Fixed a #

Ord a => Ord (Min a) 

Methods

compare :: Min a -> Min a -> Ordering #

(<) :: Min a -> Min a -> Bool #

(<=) :: Min a -> Min a -> Bool #

(>) :: Min a -> Min a -> Bool #

(>=) :: Min a -> Min a -> Bool #

max :: Min a -> Min a -> Min a #

min :: Min a -> Min a -> Min a #

Ord a => Ord (Max a) 

Methods

compare :: Max a -> Max a -> Ordering #

(<) :: Max a -> Max a -> Bool #

(<=) :: Max a -> Max a -> Bool #

(>) :: Max a -> Max a -> Bool #

(>=) :: Max a -> Max a -> Bool #

max :: Max a -> Max a -> Max a #

min :: Max a -> Max a -> Max a #

Ord a => Ord (First a) 

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Ord a => Ord (Last a) 

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Ord m => Ord (WrappedMonoid m) 
Ord a => Ord (Option a) 

Methods

compare :: Option a -> Option a -> Ordering #

(<) :: Option a -> Option a -> Bool #

(<=) :: Option a -> Option a -> Bool #

(>) :: Option a -> Option a -> Bool #

(>=) :: Option a -> Option a -> Bool #

max :: Option a -> Option a -> Option a #

min :: Option a -> Option a -> Option a #

Ord a => Ord (NonEmpty a) 

Methods

compare :: NonEmpty a -> NonEmpty a -> Ordering #

(<) :: NonEmpty a -> NonEmpty a -> Bool #

(<=) :: NonEmpty a -> NonEmpty a -> Bool #

(>) :: NonEmpty a -> NonEmpty a -> Bool #

(>=) :: NonEmpty a -> NonEmpty a -> Bool #

max :: NonEmpty a -> NonEmpty a -> NonEmpty a #

min :: NonEmpty a -> NonEmpty a -> NonEmpty a #

Ord a => Ord (ZipList a) 

Methods

compare :: ZipList a -> ZipList a -> Ordering #

(<) :: ZipList a -> ZipList a -> Bool #

(<=) :: ZipList a -> ZipList a -> Bool #

(>) :: ZipList a -> ZipList a -> Bool #

(>=) :: ZipList a -> ZipList a -> Bool #

max :: ZipList a -> ZipList a -> ZipList a #

min :: ZipList a -> ZipList a -> ZipList a #

Ord a => Ord (Identity a) 

Methods

compare :: Identity a -> Identity a -> Ordering #

(<) :: Identity a -> Identity a -> Bool #

(<=) :: Identity a -> Identity a -> Bool #

(>) :: Identity a -> Identity a -> Bool #

(>=) :: Identity a -> Identity a -> Bool #

max :: Identity a -> Identity a -> Identity a #

min :: Identity a -> Identity a -> Identity a #

Ord a => Ord (Dual a) 

Methods

compare :: Dual a -> Dual a -> Ordering #

(<) :: Dual a -> Dual a -> Bool #

(<=) :: Dual a -> Dual a -> Bool #

(>) :: Dual a -> Dual a -> Bool #

(>=) :: Dual a -> Dual a -> Bool #

max :: Dual a -> Dual a -> Dual a #

min :: Dual a -> Dual a -> Dual a #

Ord a => Ord (Sum a) 

Methods

compare :: Sum a -> Sum a -> Ordering #

(<) :: Sum a -> Sum a -> Bool #

(<=) :: Sum a -> Sum a -> Bool #

(>) :: Sum a -> Sum a -> Bool #

(>=) :: Sum a -> Sum a -> Bool #

max :: Sum a -> Sum a -> Sum a #

min :: Sum a -> Sum a -> Sum a #

Ord a => Ord (Product a) 

Methods

compare :: Product a -> Product a -> Ordering #

(<) :: Product a -> Product a -> Bool #

(<=) :: Product a -> Product a -> Bool #

(>) :: Product a -> Product a -> Bool #

(>=) :: Product a -> Product a -> Bool #

max :: Product a -> Product a -> Product a #

min :: Product a -> Product a -> Product a #

Ord a => Ord (First a) 

Methods

compare :: First a -> First a -> Ordering #

(<) :: First a -> First a -> Bool #

(<=) :: First a -> First a -> Bool #

(>) :: First a -> First a -> Bool #

(>=) :: First a -> First a -> Bool #

max :: First a -> First a -> First a #

min :: First a -> First a -> First a #

Ord a => Ord (Last a) 

Methods

compare :: Last a -> Last a -> Ordering #

(<) :: Last a -> Last a -> Bool #

(<=) :: Last a -> Last a -> Bool #

(>) :: Last a -> Last a -> Bool #

(>=) :: Last a -> Last a -> Bool #

max :: Last a -> Last a -> Last a #

min :: Last a -> Last a -> Last a #

Ord a => Ord (Down a)

Since: 4.6.0.0

Methods

compare :: Down a -> Down a -> Ordering #

(<) :: Down a -> Down a -> Bool #

(<=) :: Down a -> Down a -> Bool #

(>) :: Down a -> Down a -> Bool #

(>=) :: Down a -> Down a -> Bool #

max :: Down a -> Down a -> Down a #

min :: Down a -> Down a -> Down a #

Ord a => Ord (IntMap a) 

Methods

compare :: IntMap a -> IntMap a -> Ordering #

(<) :: IntMap a -> IntMap a -> Bool #

(<=) :: IntMap a -> IntMap a -> Bool #

(>) :: IntMap a -> IntMap a -> Bool #

(>=) :: IntMap a -> IntMap a -> Bool #

max :: IntMap a -> IntMap a -> IntMap a #

min :: IntMap a -> IntMap a -> IntMap a #

Ord a => Ord (Seq a) 

Methods

compare :: Seq a -> Seq a -> Ordering #

(<) :: Seq a -> Seq a -> Bool #

(<=) :: Seq a -> Seq a -> Bool #

(>) :: Seq a -> Seq a -> Bool #

(>=) :: Seq a -> Seq a -> Bool #

max :: Seq a -> Seq a -> Seq a #

min :: Seq a -> Seq a -> Seq a #

Ord a => Ord (ViewL a) 

Methods

compare :: ViewL a -> ViewL a -> Ordering #

(<) :: ViewL a -> ViewL a -> Bool #

(<=) :: ViewL a -> ViewL a -> Bool #

(>) :: ViewL a -> ViewL a -> Bool #

(>=) :: ViewL a -> ViewL a -> Bool #

max :: ViewL a -> ViewL a -> ViewL a #

min :: ViewL a -> ViewL a -> ViewL a #

Ord a => Ord (ViewR a) 

Methods

compare :: ViewR a -> ViewR a -> Ordering #

(<) :: ViewR a -> ViewR a -> Bool #

(<=) :: ViewR a -> ViewR a -> Bool #

(>) :: ViewR a -> ViewR a -> Bool #

(>=) :: ViewR a -> ViewR a -> Bool #

max :: ViewR a -> ViewR a -> ViewR a #

min :: ViewR a -> ViewR a -> ViewR a #

Ord a => Ord (Set a) 

Methods

compare :: Set a -> Set a -> Ordering #

(<) :: Set a -> Set a -> Bool #

(<=) :: Set a -> Set a -> Bool #

(>) :: Set a -> Set a -> Bool #

(>=) :: Set a -> Set a -> Bool #

max :: Set a -> Set a -> Set a #

min :: Set a -> Set a -> Set a #

Ord a => Ord (LPath a) 

Methods

compare :: LPath a -> LPath a -> Ordering #

(<) :: LPath a -> LPath a -> Bool #

(<=) :: LPath a -> LPath a -> Bool #

(>) :: LPath a -> LPath a -> Bool #

(>=) :: LPath a -> LPath a -> Bool #

max :: LPath a -> LPath a -> LPath a #

min :: LPath a -> LPath a -> LPath a #

Ord id => Ord (Tickish id) 

Methods

compare :: Tickish id -> Tickish id -> Ordering #

(<) :: Tickish id -> Tickish id -> Bool #

(<=) :: Tickish id -> Tickish id -> Bool #

(>) :: Tickish id -> Tickish id -> Bool #

(>=) :: Tickish id -> Tickish id -> Bool #

max :: Tickish id -> Tickish id -> Tickish id #

min :: Tickish id -> Tickish id -> Tickish id #

(Ord b, Ord a) => Ord (Either a b) 

Methods

compare :: Either a b -> Either a b -> Ordering #

(<) :: Either a b -> Either a b -> Bool #

(<=) :: Either a b -> Either a b -> Bool #

(>) :: Either a b -> Either a b -> Bool #

(>=) :: Either a b -> Either a b -> Bool #

max :: Either a b -> Either a b -> Either a b #

min :: Either a b -> Either a b -> Either a b #

Ord (V1 k p) 

Methods

compare :: V1 k p -> V1 k p -> Ordering #

(<) :: V1 k p -> V1 k p -> Bool #

(<=) :: V1 k p -> V1 k p -> Bool #

(>) :: V1 k p -> V1 k p -> Bool #

(>=) :: V1 k p -> V1 k p -> Bool #

max :: V1 k p -> V1 k p -> V1 k p #

min :: V1 k p -> V1 k p -> V1 k p #

Ord (U1 k p)

Since: 4.9.0.0

Methods

compare :: U1 k p -> U1 k p -> Ordering #

(<) :: U1 k p -> U1 k p -> Bool #

(<=) :: U1 k p -> U1 k p -> Bool #

(>) :: U1 k p -> U1 k p -> Bool #

(>=) :: U1 k p -> U1 k p -> Bool #

max :: U1 k p -> U1 k p -> U1 k p #

min :: U1 k p -> U1 k p -> U1 k p #

Ord (TypeRep k a)

Since: 4.4.0.0

Methods

compare :: TypeRep k a -> TypeRep k a -> Ordering #

(<) :: TypeRep k a -> TypeRep k a -> Bool #

(<=) :: TypeRep k a -> TypeRep k a -> Bool #

(>) :: TypeRep k a -> TypeRep k a -> Bool #

(>=) :: TypeRep k a -> TypeRep k a -> Bool #

max :: TypeRep k a -> TypeRep k a -> TypeRep k a #

min :: TypeRep k a -> TypeRep k a -> TypeRep k a #

(Ord a, Ord b) => Ord (a, b) 

Methods

compare :: (a, b) -> (a, b) -> Ordering #

(<) :: (a, b) -> (a, b) -> Bool #

(<=) :: (a, b) -> (a, b) -> Bool #

(>) :: (a, b) -> (a, b) -> Bool #

(>=) :: (a, b) -> (a, b) -> Bool #

max :: (a, b) -> (a, b) -> (a, b) #

min :: (a, b) -> (a, b) -> (a, b) #

(Ix ix, Ord e, IArray UArray e) => Ord (UArray ix e) 

Methods

compare :: UArray ix e -> UArray ix e -> Ordering #

(<) :: UArray ix e -> UArray ix e -> Bool #

(<=) :: UArray ix e -> UArray ix e -> Bool #

(>) :: UArray ix e -> UArray ix e -> Bool #

(>=) :: UArray ix e -> UArray ix e -> Bool #

max :: UArray ix e -> UArray ix e -> UArray ix e #

min :: UArray ix e -> UArray ix e -> UArray ix e #

(Ix i, Ord e) => Ord (Array i e)

Since: 2.1

Methods

compare :: Array i e -> Array i e -> Ordering #

(<) :: Array i e -> Array i e -> Bool #

(<=) :: Array i e -> Array i e -> Bool #

(>) :: Array i e -> Array i e -> Bool #

(>=) :: Array i e -> Array i e -> Bool #

max :: Array i e -> Array i e -> Array i e #

min :: Array i e -> Array i e -> Array i e #

Ord a => Ord (Arg a b)

Since: 4.9.0.0

Methods

compare :: Arg a b -> Arg a b -> Ordering #

(<) :: Arg a b -> Arg a b -> Bool #

(<=) :: Arg a b -> Arg a b -> Bool #

(>) :: Arg a b -> Arg a b -> Bool #

(>=) :: Arg a b -> Arg a b -> Bool #

max :: Arg a b -> Arg a b -> Arg a b #

min :: Arg a b -> Arg a b -> Arg a b #

Ord (Proxy k s)

Since: 4.7.0.0

Methods

compare :: Proxy k s -> Proxy k s -> Ordering #

(<) :: Proxy k s -> Proxy k s -> Bool #

(<=) :: Proxy k s -> Proxy k s -> Bool #

(>) :: Proxy k s -> Proxy k s -> Bool #

(>=) :: Proxy k s -> Proxy k s -> Bool #

max :: Proxy k s -> Proxy k s -> Proxy k s #

min :: Proxy k s -> Proxy k s -> Proxy k s #

(Ord k, Ord v) => Ord (Map k v) 

Methods

compare :: Map k v -> Map k v -> Ordering #

(<) :: Map k v -> Map k v -> Bool #

(<=) :: Map k v -> Map k v -> Bool #

(>) :: Map k v -> Map k v -> Bool #

(>=) :: Map k v -> Map k v -> Bool #

max :: Map k v -> Map k v -> Map k v #

min :: Map k v -> Map k v -> Map k v #

Ord (Bin k a) 

Methods

compare :: Bin k a -> Bin k a -> Ordering #

(<) :: Bin k a -> Bin k a -> Bool #

(<=) :: Bin k a -> Bin k a -> Bool #

(>) :: Bin k a -> Bin k a -> Bool #

(>=) :: Bin k a -> Bin k a -> Bool #

max :: Bin k a -> Bin k a -> Bin k a #

min :: Bin k a -> Bin k a -> Bin k a #

(Ord e, Ord l) => Ord (GenLocated l e) 

Methods

compare :: GenLocated l e -> GenLocated l e -> Ordering #

(<) :: GenLocated l e -> GenLocated l e -> Bool #

(<=) :: GenLocated l e -> GenLocated l e -> Bool #

(>) :: GenLocated l e -> GenLocated l e -> Bool #

(>=) :: GenLocated l e -> GenLocated l e -> Bool #

max :: GenLocated l e -> GenLocated l e -> GenLocated l e #

min :: GenLocated l e -> GenLocated l e -> GenLocated l e #

(Ord1 m, Ord a) => Ord (MaybeT m a) 

Methods

compare :: MaybeT m a -> MaybeT m a -> Ordering #

(<) :: MaybeT m a -> MaybeT m a -> Bool #

(<=) :: MaybeT m a -> MaybeT m a -> Bool #

(>) :: MaybeT m a -> MaybeT m a -> Bool #

(>=) :: MaybeT m a -> MaybeT m a -> Bool #

max :: MaybeT m a -> MaybeT m a -> MaybeT m a #

min :: MaybeT m a -> MaybeT m a -> MaybeT m a #

(Ord1 m, Ord a) => Ord (ListT m a) 

Methods

compare :: ListT m a -> ListT m a -> Ordering #

(<) :: ListT m a -> ListT m a -> Bool #

(<=) :: ListT m a -> ListT m a -> Bool #

(>) :: ListT m a -> ListT m a -> Bool #

(>=) :: ListT m a -> ListT m a -> Bool #

max :: ListT m a -> ListT m a -> ListT m a #

min :: ListT m a -> ListT m a -> ListT m a #

Ord (f p) => Ord (Rec1 k f p) 

Methods

compare :: Rec1 k f p -> Rec1 k f p -> Ordering #

(<) :: Rec1 k f p -> Rec1 k f p -> Bool #

(<=) :: Rec1 k f p -> Rec1 k f p -> Bool #

(>) :: Rec1 k f p -> Rec1 k f p -> Bool #

(>=) :: Rec1 k f p -> Rec1 k f p -> Bool #

max :: Rec1 k f p -> Rec1 k f p -> Rec1 k f p #

min :: Rec1 k f p -> Rec1 k f p -> Rec1 k f p #

Ord (URec k (Ptr ()) p) 

Methods

compare :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Ordering #

(<) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

(<=) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

(>) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

(>=) :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> Bool #

max :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> URec k (Ptr ()) p #

min :: URec k (Ptr ()) p -> URec k (Ptr ()) p -> URec k (Ptr ()) p #

Ord (URec k Char p) 

Methods

compare :: URec k Char p -> URec k Char p -> Ordering #

(<) :: URec k Char p -> URec k Char p -> Bool #

(<=) :: URec k Char p -> URec k Char p -> Bool #

(>) :: URec k Char p -> URec k Char p -> Bool #

(>=) :: URec k Char p -> URec k Char p -> Bool #

max :: URec k Char p -> URec k Char p -> URec k Char p #

min :: URec k Char p -> URec k Char p -> URec k Char p #

Ord (URec k Double p) 

Methods

compare :: URec k Double p -> URec k Double p -> Ordering #

(<) :: URec k Double p -> URec k Double p -> Bool #

(<=) :: URec k Double p -> URec k Double p -> Bool #

(>) :: URec k Double p -> URec k Double p -> Bool #

(>=) :: URec k Double p -> URec k Double p -> Bool #

max :: URec k Double p -> URec k Double p -> URec k Double p #

min :: URec k Double p -> URec k Double p -> URec k Double p #

Ord (URec k Float p) 

Methods

compare :: URec k Float p -> URec k Float p -> Ordering #

(<) :: URec k Float p -> URec k Float p -> Bool #

(<=) :: URec k Float p -> URec k Float p -> Bool #

(>) :: URec k Float p -> URec k Float p -> Bool #

(>=) :: URec k Float p -> URec k Float p -> Bool #

max :: URec k Float p -> URec k Float p -> URec k Float p #

min :: URec k Float p -> URec k Float p -> URec k Float p #

Ord (URec k Int p) 

Methods

compare :: URec k Int p -> URec k Int p -> Ordering #

(<) :: URec k Int p -> URec k Int p -> Bool #

(<=) :: URec k Int p -> URec k Int p -> Bool #

(>) :: URec k Int p -> URec k Int p -> Bool #

(>=) :: URec k Int p -> URec k Int p -> Bool #

max :: URec k Int p -> URec k Int p -> URec k Int p #

min :: URec k Int p -> URec k Int p -> URec k Int p #

Ord (URec k Word p) 

Methods

compare :: URec k Word p -> URec k Word p -> Ordering #

(<) :: URec k Word p -> URec k Word p -> Bool #

(<=) :: URec k Word p -> URec k Word p -> Bool #

(>) :: URec k Word p -> URec k Word p -> Bool #

(>=) :: URec k Word p -> URec k Word p -> Bool #

max :: URec k Word p -> URec k Word p -> URec k Word p #

min :: URec k Word p -> URec k Word p -> URec k Word p #

(Ord a, Ord b, Ord c) => Ord (a, b, c) 

Methods

compare :: (a, b, c) -> (a, b, c) -> Ordering #

(<) :: (a, b, c) -> (a, b, c) -> Bool #

(<=) :: (a, b, c) -> (a, b, c) -> Bool #

(>) :: (a, b, c) -> (a, b, c) -> Bool #

(>=) :: (a, b, c) -> (a, b, c) -> Bool #

max :: (a, b, c) -> (a, b, c) -> (a, b, c) #

min :: (a, b, c) -> (a, b, c) -> (a, b, c) #

Ord a => Ord (Const k a b) 

Methods

compare :: Const k a b -> Const k a b -> Ordering #

(<) :: Const k a b -> Const k a b -> Bool #

(<=) :: Const k a b -> Const k a b -> Bool #

(>) :: Const k a b -> Const k a b -> Bool #

(>=) :: Const k a b -> Const k a b -> Bool #

max :: Const k a b -> Const k a b -> Const k a b #

min :: Const k a b -> Const k a b -> Const k a b #

Ord (f a) => Ord (Alt k f a) 

Methods

compare :: Alt k f a -> Alt k f a -> Ordering #

(<) :: Alt k f a -> Alt k f a -> Bool #

(<=) :: Alt k f a -> Alt k f a -> Bool #

(>) :: Alt k f a -> Alt k f a -> Bool #

(>=) :: Alt k f a -> Alt k f a -> Bool #

max :: Alt k f a -> Alt k f a -> Alt k f a #

min :: Alt k f a -> Alt k f a -> Alt k f a #

Ord (Coercion k a b) 

Methods

compare :: Coercion k a b -> Coercion k a b -> Ordering #

(<) :: Coercion k a b -> Coercion k a b -> Bool #

(<=) :: Coercion k a b -> Coercion k a b -> Bool #

(>) :: Coercion k a b -> Coercion k a b -> Bool #

(>=) :: Coercion k a b -> Coercion k a b -> Bool #

max :: Coercion k a b -> Coercion k a b -> Coercion k a b #

min :: Coercion k a b -> Coercion k a b -> Coercion k a b #

Ord ((:~:) k a b) 

Methods

compare :: (k :~: a) b -> (k :~: a) b -> Ordering #

(<) :: (k :~: a) b -> (k :~: a) b -> Bool #

(<=) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>) :: (k :~: a) b -> (k :~: a) b -> Bool #

(>=) :: (k :~: a) b -> (k :~: a) b -> Bool #

max :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

min :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b #

(Graph gr, Ord a, Ord b) => Ord (OrdGr gr a b) 

Methods

compare :: OrdGr gr a b -> OrdGr gr a b -> Ordering #

(<) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

(<=) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

(>) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

(>=) :: OrdGr gr a b -> OrdGr gr a b -> Bool #

max :: OrdGr gr a b -> OrdGr gr a b -> OrdGr gr a b #

min :: OrdGr gr a b -> OrdGr gr a b -> OrdGr gr a b #

(Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) 

Methods

compare :: ErrorT e m a -> ErrorT e m a -> Ordering #

(<) :: ErrorT e m a -> ErrorT e m a -> Bool #

(<=) :: ErrorT e m a -> ErrorT e m a -> Bool #

(>) :: ErrorT e m a -> ErrorT e m a -> Bool #

(>=) :: ErrorT e m a -> ErrorT e m a -> Bool #

max :: ErrorT e m a -> ErrorT e m a -> ErrorT e m a #

min :: ErrorT e m a -> ErrorT e m a -> ErrorT e m a #

(Ord e, Ord1 m, Ord a) => Ord (ExceptT e m a) 

Methods

compare :: ExceptT e m a -> ExceptT e m a -> Ordering #

(<) :: ExceptT e m a -> ExceptT e m a -> Bool #

(<=) :: ExceptT e m a -> ExceptT e m a -> Bool #

(>) :: ExceptT e m a -> ExceptT e m a -> Bool #

(>=) :: ExceptT e m a -> ExceptT e m a -> Bool #

max :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

min :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) 

Methods

compare :: WriterT w m a -> WriterT w m a -> Ordering #

(<) :: WriterT w m a -> WriterT w m a -> Bool #

(<=) :: WriterT w m a -> WriterT w m a -> Bool #

(>) :: WriterT w m a -> WriterT w m a -> Bool #

(>=) :: WriterT w m a -> WriterT w m a -> Bool #

max :: WriterT w m a -> WriterT w m a -> WriterT w m a #

min :: WriterT w m a -> WriterT w m a -> WriterT w m a #

(Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) 

Methods

compare :: WriterT w m a -> WriterT w m a -> Ordering #

(<) :: WriterT w m a -> WriterT w m a -> Bool #

(<=) :: WriterT w m a -> WriterT w m a -> Bool #

(>) :: WriterT w m a -> WriterT w m a -> Bool #

(>=) :: WriterT w m a -> WriterT w m a -> Bool #

max :: WriterT w m a -> WriterT w m a -> WriterT w m a #

min :: WriterT w m a -> WriterT w m a -> WriterT w m a #

(Ord1 f, Ord a) => Ord (IdentityT * f a) 

Methods

compare :: IdentityT * f a -> IdentityT * f a -> Ordering #

(<) :: IdentityT * f a -> IdentityT * f a -> Bool #

(<=) :: IdentityT * f a -> IdentityT * f a -> Bool #

(>) :: IdentityT * f a -> IdentityT * f a -> Bool #

(>=) :: IdentityT * f a -> IdentityT * f a -> Bool #

max :: IdentityT * f a -> IdentityT * f a -> IdentityT * f a #

min :: IdentityT * f a -> IdentityT * f a -> IdentityT * f a #

Ord c => Ord (K1 k i c p) 

Methods

compare :: K1 k i c p -> K1 k i c p -> Ordering #

(<) :: K1 k i c p -> K1 k i c p -> Bool #

(<=) :: K1 k i c p -> K1 k i c p -> Bool #

(>) :: K1 k i c p -> K1 k i c p -> Bool #

(>=) :: K1 k i c p -> K1 k i c p -> Bool #

max :: K1 k i c p -> K1 k i c p -> K1 k i c p #

min :: K1 k i c p -> K1 k i c p -> K1 k i c p #

(Ord (g p), Ord (f p)) => Ord ((:+:) k f g p) 

Methods

compare :: (k :+: f) g p -> (k :+: f) g p -> Ordering #

(<) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(<=) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(>) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

(>=) :: (k :+: f) g p -> (k :+: f) g p -> Bool #

max :: (k :+: f) g p -> (k :+: f) g p -> (k :+: f) g p #

min :: (k :+: f) g p -> (k :+: f) g p -> (k :+: f) g p #

(Ord (g p), Ord (f p)) => Ord ((:*:) k f g p) 

Methods

compare :: (k :*: f) g p -> (k :*: f) g p -> Ordering #

(<) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(<=) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(>) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

(>=) :: (k :*: f) g p -> (k :*: f) g p -> Bool #

max :: (k :*: f) g p -> (k :*: f) g p -> (k :*: f) g p #

min :: (k :*: f) g p -> (k :*: f) g p -> (k :*: f) g p #

(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) 

Methods

compare :: (a, b, c, d) -> (a, b, c, d) -> Ordering #

(<) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(<=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

(>=) :: (a, b, c, d) -> (a, b, c, d) -> Bool #

max :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

min :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

(Ord1 f, Ord1 g, Ord a) => Ord (Product * f g a)

Since: 4.9.0.0

Methods

compare :: Product * f g a -> Product * f g a -> Ordering #

(<) :: Product * f g a -> Product * f g a -> Bool #

(<=) :: Product * f g a -> Product * f g a -> Bool #

(>) :: Product * f g a -> Product * f g a -> Bool #

(>=) :: Product * f g a -> Product * f g a -> Bool #

max :: Product * f g a -> Product * f g a -> Product * f g a #

min :: Product * f g a -> Product * f g a -> Product * f g a #

(Ord1 f, Ord1 g, Ord a) => Ord (Sum * f g a)

Since: 4.9.0.0

Methods

compare :: Sum * f g a -> Sum * f g a -> Ordering #

(<) :: Sum * f g a -> Sum * f g a -> Bool #

(<=) :: Sum * f g a -> Sum * f g a -> Bool #

(>) :: Sum * f g a -> Sum * f g a -> Bool #

(>=) :: Sum * f g a -> Sum * f g a -> Bool #

max :: Sum * f g a -> Sum * f g a -> Sum * f g a #

min :: Sum * f g a -> Sum * f g a -> Sum * f g a #

Ord ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

compare :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Ordering #

(<) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(<=) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(>) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

(>=) :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> Bool #

max :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

min :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

Ord (f p) => Ord (M1 k i c f p) 

Methods

compare :: M1 k i c f p -> M1 k i c f p -> Ordering #

(<) :: M1 k i c f p -> M1 k i c f p -> Bool #

(<=) :: M1 k i c f p -> M1 k i c f p -> Bool #

(>) :: M1 k i c f p -> M1 k i c f p -> Bool #

(>=) :: M1 k i c f p -> M1 k i c f p -> Bool #

max :: M1 k i c f p -> M1 k i c f p -> M1 k i c f p #

min :: M1 k i c f p -> M1 k i c f p -> M1 k i c f p #

Ord (f (g p)) => Ord ((:.:) k2 k1 f g p) 

Methods

compare :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Ordering #

(<) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(<=) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(>) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

(>=) :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> Bool #

max :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> (k2 :.: k1) f g p #

min :: (k2 :.: k1) f g p -> (k2 :.: k1) f g p -> (k2 :.: k1) f g p #

(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) 

Methods

compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering #

(<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

(>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool #

max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

(Ord1 f, Ord1 g, Ord a) => Ord (Compose * * f g a)

Since: 4.9.0.0

Methods

compare :: Compose * * f g a -> Compose * * f g a -> Ordering #

(<) :: Compose * * f g a -> Compose * * f g a -> Bool #

(<=) :: Compose * * f g a -> Compose * * f g a -> Bool #

(>) :: Compose * * f g a -> Compose * * f g a -> Bool #

(>=) :: Compose * * f g a -> Compose * * f g a -> Bool #

max :: Compose * * f g a -> Compose * * f g a -> Compose * * f g a #

min :: Compose * * f g a -> Compose * * f g a -> Compose * * f g a #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) 

Methods

compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering #

(<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

(>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool #

max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) 

Methods

compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering #

(<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

(>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool #

max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) 

Methods

compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool #

max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) 

Methods

compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool #

max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) 

Methods

compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering #

(<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

(>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool #

max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m].

Instances

Enum Bool

Since: 2.1

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: 2.1

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: 2.1

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8

Since: 2.1

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16

Since: 2.1

Enum Int32

Since: 2.1

Enum Int64

Since: 2.1

Enum Integer

Since: 2.1

Enum Natural

Since: 4.8.0.0

Enum Ordering

Since: 2.1

Enum Word

Since: 2.1

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8

Since: 2.1

Enum Word16

Since: 2.1

Enum Word32

Since: 2.1

Enum Word64

Since: 2.1

Enum VecCount

Since: 4.10.0.0

Enum VecElem

Since: 4.10.0.0

Enum ()

Since: 2.1

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Associativity 
Enum SourceUnpackedness 
Enum SourceStrictness 
Enum DecidedStrictness 
Enum CChar 
Enum CSChar 
Enum CUChar 
Enum CShort 
Enum CUShort 
Enum CInt 

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Enum CLong 
Enum CULong 
Enum CLLong 
Enum CULLong 
Enum CBool 
Enum CFloat 
Enum CDouble 
Enum CPtrdiff 
Enum CSize 
Enum CWchar 
Enum CSigAtomic 
Enum CClock 
Enum CTime 
Enum CUSeconds 
Enum CSUSeconds 
Enum CIntPtr 
Enum CUIntPtr 
Enum CIntMax 
Enum CUIntMax 
Enum GeneralCategory 
Enum TypeOrdering 

Methods

succ :: TypeOrdering -> TypeOrdering #

pred :: TypeOrdering -> TypeOrdering #

toEnum :: Int -> TypeOrdering #

fromEnum :: TypeOrdering -> Int #

enumFrom :: TypeOrdering -> [TypeOrdering] #

enumFromThen :: TypeOrdering -> TypeOrdering -> [TypeOrdering] #

enumFromTo :: TypeOrdering -> TypeOrdering -> [TypeOrdering] #

enumFromThenTo :: TypeOrdering -> TypeOrdering -> TypeOrdering -> [TypeOrdering] #

Enum Extension 
Enum GeneralFlag 
Enum WarningFlag 
Enum Language 
Enum ProfAuto 
Enum DumpFlag 
Enum THResultType 
Enum DiffTime 
Enum Day 

Methods

succ :: Day -> Day #

pred :: Day -> Day #

toEnum :: Int -> Day #

fromEnum :: Day -> Int #

enumFrom :: Day -> [Day] #

enumFromThen :: Day -> Day -> [Day] #

enumFromTo :: Day -> Day -> [Day] #

enumFromThenTo :: Day -> Day -> Day -> [Day] #

Integral a => Enum (Ratio a)

Since: 2.0.1

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum (Fixed a)

Since: 2.1

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum a => Enum (Min a)

Since: 4.9.0.0

Methods

succ :: Min a -> Min a #

pred :: Min a -> Min a #

toEnum :: Int -> Min a #

fromEnum :: Min a -> Int #

enumFrom :: Min a -> [Min a] #

enumFromThen :: Min a -> Min a -> [Min a] #

enumFromTo :: Min a -> Min a -> [Min a] #

enumFromThenTo :: Min a -> Min a -> Min a -> [Min a] #

Enum a => Enum (Max a)

Since: 4.9.0.0

Methods

succ :: Max a -> Max a #

pred :: Max a -> Max a #

toEnum :: Int -> Max a #

fromEnum :: Max a -> Int #

enumFrom :: Max a -> [Max a] #

enumFromThen :: Max a -> Max a -> [Max a] #

enumFromTo :: Max a -> Max a -> [Max a] #

enumFromThenTo :: Max a -> Max a -> Max a -> [Max a] #

Enum a => Enum (First a)

Since: 4.9.0.0

Methods

succ :: First a -> First a #

pred :: First a -> First a #

toEnum :: Int -> First a #

fromEnum :: First a -> Int #

enumFrom :: First a -> [First a] #

enumFromThen :: First a -> First a -> [First a] #

enumFromTo :: First a -> First a -> [First a] #

enumFromThenTo :: First a -> First a -> First a -> [First a] #

Enum a => Enum (Last a)

Since: 4.9.0.0

Methods

succ :: Last a -> Last a #

pred :: Last a -> Last a #

toEnum :: Int -> Last a #

fromEnum :: Last a -> Int #

enumFrom :: Last a -> [Last a] #

enumFromThen :: Last a -> Last a -> [Last a] #

enumFromTo :: Last a -> Last a -> [Last a] #

enumFromThenTo :: Last a -> Last a -> Last a -> [Last a] #

Enum a => Enum (WrappedMonoid a)

Since: 4.9.0.0

Enum a => Enum (Identity a) 
Enum (Proxy k s)

Since: 4.7.0.0

Methods

succ :: Proxy k s -> Proxy k s #

pred :: Proxy k s -> Proxy k s #

toEnum :: Int -> Proxy k s #

fromEnum :: Proxy k s -> Int #

enumFrom :: Proxy k s -> [Proxy k s] #

enumFromThen :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromTo :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromThenTo :: Proxy k s -> Proxy k s -> Proxy k s -> [Proxy k s] #

Enum a => Enum (Const k a b) 

Methods

succ :: Const k a b -> Const k a b #

pred :: Const k a b -> Const k a b #

toEnum :: Int -> Const k a b #

fromEnum :: Const k a b -> Int #

enumFrom :: Const k a b -> [Const k a b] #

enumFromThen :: Const k a b -> Const k a b -> [Const k a b] #

enumFromTo :: Const k a b -> Const k a b -> [Const k a b] #

enumFromThenTo :: Const k a b -> Const k a b -> Const k a b -> [Const k a b] #

Enum (f a) => Enum (Alt k f a) 

Methods

succ :: Alt k f a -> Alt k f a #

pred :: Alt k f a -> Alt k f a #

toEnum :: Int -> Alt k f a #

fromEnum :: Alt k f a -> Int #

enumFrom :: Alt k f a -> [Alt k f a] #

enumFromThen :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromTo :: Alt k f a -> Alt k f a -> [Alt k f a] #

enumFromThenTo :: Alt k f a -> Alt k f a -> Alt k f a -> [Alt k f a] #

Coercible k a b => Enum (Coercion k a b)

Since: 4.7.0.0

Methods

succ :: Coercion k a b -> Coercion k a b #

pred :: Coercion k a b -> Coercion k a b #

toEnum :: Int -> Coercion k a b #

fromEnum :: Coercion k a b -> Int #

enumFrom :: Coercion k a b -> [Coercion k a b] #

enumFromThen :: Coercion k a b -> Coercion k a b -> [Coercion k a b] #

enumFromTo :: Coercion k a b -> Coercion k a b -> [Coercion k a b] #

enumFromThenTo :: Coercion k a b -> Coercion k a b -> Coercion k a b -> [Coercion k a b] #

(~) k a b => Enum ((:~:) k a b)

Since: 4.7.0.0

Methods

succ :: (k :~: a) b -> (k :~: a) b #

pred :: (k :~: a) b -> (k :~: a) b #

toEnum :: Int -> (k :~: a) b #

fromEnum :: (k :~: a) b -> Int #

enumFrom :: (k :~: a) b -> [(k :~: a) b] #

enumFromThen :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromTo :: (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

enumFromThenTo :: (k :~: a) b -> (k :~: a) b -> (k :~: a) b -> [(k :~: a) b] #

(~~) k1 k2 a b => Enum ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

succ :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

pred :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b #

toEnum :: Int -> (k1 :~~: k2) a b #

fromEnum :: (k1 :~~: k2) a b -> Int #

enumFrom :: (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThen :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

enumFromThenTo :: (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> (k1 :~~: k2) a b -> [(k1 :~~: k2) a b] #

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Minimal complete definition

minBound, maxBound

Methods

minBound :: a #

maxBound :: a #

Instances

Bounded Bool

Since: 2.1

Bounded Char

Since: 2.1

Bounded Int

Since: 2.1

Methods

minBound :: Int #

maxBound :: Int #

Bounded Int8

Since: 2.1

Bounded Int16

Since: 2.1

Bounded Int32

Since: 2.1

Bounded Int64

Since: 2.1

Bounded Ordering

Since: 2.1

Bounded Word

Since: 2.1

Bounded Word8

Since: 2.1

Bounded Word16

Since: 2.1

Bounded Word32

Since: 2.1

Bounded Word64

Since: 2.1

Bounded VecCount

Since: 4.10.0.0

Bounded VecElem

Since: 4.10.0.0

Bounded ()

Since: 2.1

Methods

minBound :: () #

maxBound :: () #

Bounded All 

Methods

minBound :: All #

maxBound :: All #

Bounded Any 

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity 
Bounded SourceUnpackedness 
Bounded SourceStrictness 
Bounded DecidedStrictness 
Bounded CChar 
Bounded CSChar 
Bounded CUChar 
Bounded CShort 
Bounded CUShort 
Bounded CInt 
Bounded CUInt 
Bounded CLong 
Bounded CULong 
Bounded CLLong 
Bounded CULLong 
Bounded CBool 
Bounded CPtrdiff 
Bounded CSize 
Bounded CWchar 
Bounded CSigAtomic 
Bounded CIntPtr 
Bounded CUIntPtr 
Bounded CIntMax 
Bounded CUIntMax 
Bounded GeneralCategory 
Bounded TypeOrdering 

Methods

minBound :: TypeOrdering #

maxBound :: TypeOrdering #

Bounded a => Bounded (Min a) 

Methods

minBound :: Min a #

maxBound :: Min a #

Bounded a => Bounded (Max a) 

Methods

minBound :: Max a #

maxBound :: Max a #

Bounded a => Bounded (First a) 

Methods

minBound :: First a #

maxBound :: First a #

Bounded a => Bounded (Last a) 

Methods

minBound :: Last a #

maxBound :: Last a #

Bounded m => Bounded (WrappedMonoid m) 
Bounded a => Bounded (Identity a) 
Bounded a => Bounded (Dual a) 

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a) 

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a) 
(Bounded a, Bounded b) => Bounded (a, b)

Since: 2.1

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy k t) 

Methods

minBound :: Proxy k t #

maxBound :: Proxy k t #

Bounded (Bin k a) 

Methods

minBound :: Bin k a #

maxBound :: Bin k a #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: 2.1

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const k a b) 

Methods

minBound :: Const k a b #

maxBound :: Const k a b #

Coercible k a b => Bounded (Coercion k a b)

Since: 4.7.0.0

Methods

minBound :: Coercion k a b #

maxBound :: Coercion k a b #

(~) k a b => Bounded ((:~:) k a b)

Since: 4.7.0.0

Methods

minBound :: (k :~: a) b #

maxBound :: (k :~: a) b #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: 2.1

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

(~~) k1 k2 a b => Bounded ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

minBound :: (k1 :~~: k2) a b #

maxBound :: (k1 :~~: k2) a b #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: 2.1

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

Numbers

Numeric types

data Int :: * #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Instances

Bounded Int

Since: 2.1

Methods

minBound :: Int #

maxBound :: Int #

Enum Int

Since: 2.1

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Eq Int 

Methods

(==) :: Int -> Int -> Bool #

(/=) :: Int -> Int -> Bool #

Integral Int

Since: 2.0.1

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Data Int

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int #

toConstr :: Int -> Constr #

dataTypeOf :: Int -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Int) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int #

Num Int

Since: 2.1

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Ord Int 

Methods

compare :: Int -> Int -> Ordering #

(<) :: Int -> Int -> Bool #

(<=) :: Int -> Int -> Bool #

(>) :: Int -> Int -> Bool #

(>=) :: Int -> Int -> Bool #

max :: Int -> Int -> Int #

min :: Int -> Int -> Int #

Read Int

Since: 2.1

Real Int

Since: 2.0.1

Methods

toRational :: Int -> Rational #

Show Int

Since: 2.1

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Ix Int

Since: 2.1

Methods

range :: (Int, Int) -> [Int] #

index :: (Int, Int) -> Int -> Int #

unsafeIndex :: (Int, Int) -> Int -> Int

inRange :: (Int, Int) -> Int -> Bool #

rangeSize :: (Int, Int) -> Int #

unsafeRangeSize :: (Int, Int) -> Int

Lift Int 

Methods

lift :: Int -> Q Exp #

Storable Int

Since: 2.1

Methods

sizeOf :: Int -> Int #

alignment :: Int -> Int #

peekElemOff :: Ptr Int -> Int -> IO Int #

pokeElemOff :: Ptr Int -> Int -> Int -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int #

pokeByteOff :: Ptr b -> Int -> Int -> IO () #

peek :: Ptr Int -> IO Int #

poke :: Ptr Int -> Int -> IO () #

Bits Int

Since: 2.1

Methods

(.&.) :: Int -> Int -> Int #

(.|.) :: Int -> Int -> Int #

xor :: Int -> Int -> Int #

complement :: Int -> Int #

shift :: Int -> Int -> Int #

rotate :: Int -> Int -> Int #

zeroBits :: Int #

bit :: Int -> Int #

setBit :: Int -> Int -> Int #

clearBit :: Int -> Int -> Int #

complementBit :: Int -> Int -> Int #

testBit :: Int -> Int -> Bool #

bitSizeMaybe :: Int -> Maybe Int #

bitSize :: Int -> Int #

isSigned :: Int -> Bool #

shiftL :: Int -> Int -> Int #

unsafeShiftL :: Int -> Int -> Int #

shiftR :: Int -> Int -> Int #

unsafeShiftR :: Int -> Int -> Int #

rotateL :: Int -> Int -> Int #

rotateR :: Int -> Int -> Int #

popCount :: Int -> Int #

FiniteBits Int

Since: 4.6.0.0

Binary Int 

Methods

put :: Int -> Put #

get :: Get Int #

putList :: [Int] -> Put #

NFData Int 

Methods

rnf :: Int -> () #

Binary Int 

Methods

put_ :: BinHandle -> Int -> IO () #

put :: BinHandle -> Int -> IO (Bin * Int) #

get :: BinHandle -> IO Int #

Uniquable Int 

Methods

getUnique :: Int -> Unique #

Outputable Int 

Methods

ppr :: Int -> SDoc #

pprPrec :: Rational -> Int -> SDoc #

IArray UArray Int 

Methods

bounds :: Ix i => UArray i Int -> (i, i) #

numElements :: Ix i => UArray i Int -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Int)] -> UArray i Int

unsafeAt :: Ix i => UArray i Int -> Int -> Int

unsafeReplace :: Ix i => UArray i Int -> [(Int, Int)] -> UArray i Int

unsafeAccum :: Ix i => (Int -> e' -> Int) -> UArray i Int -> [(Int, e')] -> UArray i Int

unsafeAccumArray :: Ix i => (Int -> e' -> Int) -> Int -> (i, i) -> [(Int, e')] -> UArray i Int

Generic1 k (URec k Int) 

Associated Types

type Rep1 (URec k Int) (f :: URec k Int -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Int) f a #

to1 :: Rep1 (URec k Int) f a -> f a #

MArray (STUArray s) Int (ST s) 

Methods

getBounds :: Ix i => STUArray s i Int -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Int -> ST s Int

newArray :: Ix i => (i, i) -> Int -> ST s (STUArray s i Int) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Int)

unsafeRead :: Ix i => STUArray s i Int -> Int -> ST s Int

unsafeWrite :: Ix i => STUArray s i Int -> Int -> Int -> ST s ()

Functor (URec * Int) 

Methods

fmap :: (a -> b) -> URec * Int a -> URec * Int b #

(<$) :: a -> URec * Int b -> URec * Int a #

Foldable (URec * Int) 

Methods

fold :: Monoid m => URec * Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Int a -> m #

foldr :: (a -> b -> b) -> b -> URec * Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Int a -> b #

foldl :: (b -> a -> b) -> b -> URec * Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Int a -> b #

foldr1 :: (a -> a -> a) -> URec * Int a -> a #

foldl1 :: (a -> a -> a) -> URec * Int a -> a #

toList :: URec * Int a -> [a] #

null :: URec * Int a -> Bool #

length :: URec * Int a -> Int #

elem :: Eq a => a -> URec * Int a -> Bool #

maximum :: Ord a => URec * Int a -> a #

minimum :: Ord a => URec * Int a -> a #

sum :: Num a => URec * Int a -> a #

product :: Num a => URec * Int a -> a #

Traversable (URec * Int) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Int a -> f (URec * Int b) #

sequenceA :: Applicative f => URec * Int (f a) -> f (URec * Int a) #

mapM :: Monad m => (a -> m b) -> URec * Int a -> m (URec * Int b) #

sequence :: Monad m => URec * Int (m a) -> m (URec * Int a) #

Eq (URec k Int p) 

Methods

(==) :: URec k Int p -> URec k Int p -> Bool #

(/=) :: URec k Int p -> URec k Int p -> Bool #

Ord (URec k Int p) 

Methods

compare :: URec k Int p -> URec k Int p -> Ordering #

(<) :: URec k Int p -> URec k Int p -> Bool #

(<=) :: URec k Int p -> URec k Int p -> Bool #

(>) :: URec k Int p -> URec k Int p -> Bool #

(>=) :: URec k Int p -> URec k Int p -> Bool #

max :: URec k Int p -> URec k Int p -> URec k Int p #

min :: URec k Int p -> URec k Int p -> URec k Int p #

Show (URec k Int p) 

Methods

showsPrec :: Int -> URec k Int p -> ShowS #

show :: URec k Int p -> String #

showList :: [URec k Int p] -> ShowS #

Generic (URec k Int p) 

Associated Types

type Rep (URec k Int p) :: * -> * #

Methods

from :: URec k Int p -> Rep (URec k Int p) x #

to :: Rep (URec k Int p) x -> URec k Int p #

data URec k Int

Used for marking occurrences of Int#

Since: 4.9.0.0

data URec k Int = UInt {}
type Rep1 k (URec k Int) 
type Rep1 k (URec k Int) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UInt" PrefixI True) (S1 k (MetaSel (Just Symbol "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt k)))
type Rep (URec k Int p) 
type Rep (URec k Int p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UInt" PrefixI True) (S1 * (MetaSel (Just Symbol "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt *)))

data Integer :: * #

Invariant: Jn# and Jp# are used iff value doesn't fit in S#

Useful properties resulting from the invariants:

Instances

Enum Integer

Since: 2.1

Eq Integer 

Methods

(==) :: Integer -> Integer -> Bool #

(/=) :: Integer -> Integer -> Bool #

Integral Integer

Since: 2.0.1

Data Integer

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer #

toConstr :: Integer -> Constr #

dataTypeOf :: Integer -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Integer) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) #

gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r #

gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer #

Num Integer

Since: 2.1

Ord Integer 
Read Integer

Since: 2.1

Real Integer

Since: 2.0.1

Show Integer

Since: 2.1

Ix Integer

Since: 2.1

Lift Integer 

Methods

lift :: Integer -> Q Exp #

Bits Integer

Since: 2.1

Binary Integer 

Methods

put :: Integer -> Put #

get :: Get Integer #

putList :: [Integer] -> Put #

NFData Integer 

Methods

rnf :: Integer -> () #

Binary Integer 

data Float :: * #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

Eq Float 

Methods

(==) :: Float -> Float -> Bool #

(/=) :: Float -> Float -> Bool #

Floating Float

Since: 2.1

Data Float

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float #

toConstr :: Float -> Constr #

dataTypeOf :: Float -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Float) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float #

Ord Float 

Methods

compare :: Float -> Float -> Ordering #

(<) :: Float -> Float -> Bool #

(<=) :: Float -> Float -> Bool #

(>) :: Float -> Float -> Bool #

(>=) :: Float -> Float -> Bool #

max :: Float -> Float -> Float #

min :: Float -> Float -> Float #

Read Float

Since: 2.1

RealFloat Float

Since: 2.1

Lift Float 

Methods

lift :: Float -> Q Exp #

Storable Float

Since: 2.1

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

Binary Float 

Methods

put :: Float -> Put #

get :: Get Float #

putList :: [Float] -> Put #

NFData Float 

Methods

rnf :: Float -> () #

IArray UArray Float 

Methods

bounds :: Ix i => UArray i Float -> (i, i) #

numElements :: Ix i => UArray i Float -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Float)] -> UArray i Float

unsafeAt :: Ix i => UArray i Float -> Int -> Float

unsafeReplace :: Ix i => UArray i Float -> [(Int, Float)] -> UArray i Float

unsafeAccum :: Ix i => (Float -> e' -> Float) -> UArray i Float -> [(Int, e')] -> UArray i Float

unsafeAccumArray :: Ix i => (Float -> e' -> Float) -> Float -> (i, i) -> [(Int, e')] -> UArray i Float

Generic1 k (URec k Float) 

Associated Types

type Rep1 (URec k Float) (f :: URec k Float -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Float) f a #

to1 :: Rep1 (URec k Float) f a -> f a #

MArray (STUArray s) Float (ST s) 

Methods

getBounds :: Ix i => STUArray s i Float -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Float -> ST s Int

newArray :: Ix i => (i, i) -> Float -> ST s (STUArray s i Float) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Float)

unsafeRead :: Ix i => STUArray s i Float -> Int -> ST s Float

unsafeWrite :: Ix i => STUArray s i Float -> Int -> Float -> ST s ()

Functor (URec * Float) 

Methods

fmap :: (a -> b) -> URec * Float a -> URec * Float b #

(<$) :: a -> URec * Float b -> URec * Float a #

Foldable (URec * Float) 

Methods

fold :: Monoid m => URec * Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Float a -> m #

foldr :: (a -> b -> b) -> b -> URec * Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Float a -> b #

foldl :: (b -> a -> b) -> b -> URec * Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Float a -> b #

foldr1 :: (a -> a -> a) -> URec * Float a -> a #

foldl1 :: (a -> a -> a) -> URec * Float a -> a #

toList :: URec * Float a -> [a] #

null :: URec * Float a -> Bool #

length :: URec * Float a -> Int #

elem :: Eq a => a -> URec * Float a -> Bool #

maximum :: Ord a => URec * Float a -> a #

minimum :: Ord a => URec * Float a -> a #

sum :: Num a => URec * Float a -> a #

product :: Num a => URec * Float a -> a #

Traversable (URec * Float) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Float a -> f (URec * Float b) #

sequenceA :: Applicative f => URec * Float (f a) -> f (URec * Float a) #

mapM :: Monad m => (a -> m b) -> URec * Float a -> m (URec * Float b) #

sequence :: Monad m => URec * Float (m a) -> m (URec * Float a) #

Eq (URec k Float p) 

Methods

(==) :: URec k Float p -> URec k Float p -> Bool #

(/=) :: URec k Float p -> URec k Float p -> Bool #

Ord (URec k Float p) 

Methods

compare :: URec k Float p -> URec k Float p -> Ordering #

(<) :: URec k Float p -> URec k Float p -> Bool #

(<=) :: URec k Float p -> URec k Float p -> Bool #

(>) :: URec k Float p -> URec k Float p -> Bool #

(>=) :: URec k Float p -> URec k Float p -> Bool #

max :: URec k Float p -> URec k Float p -> URec k Float p #

min :: URec k Float p -> URec k Float p -> URec k Float p #

Show (URec k Float p) 

Methods

showsPrec :: Int -> URec k Float p -> ShowS #

show :: URec k Float p -> String #

showList :: [URec k Float p] -> ShowS #

Generic (URec k Float p) 

Associated Types

type Rep (URec k Float p) :: * -> * #

Methods

from :: URec k Float p -> Rep (URec k Float p) x #

to :: Rep (URec k Float p) x -> URec k Float p #

data URec k Float

Used for marking occurrences of Float#

Since: 4.9.0.0

type Rep1 k (URec k Float) 
type Rep1 k (URec k Float) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UFloat" PrefixI True) (S1 k (MetaSel (Just Symbol "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat k)))
type Rep (URec k Float p) 
type Rep (URec k Float p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UFloat" PrefixI True) (S1 * (MetaSel (Just Symbol "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat *)))

data Double :: * #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

Eq Double 

Methods

(==) :: Double -> Double -> Bool #

(/=) :: Double -> Double -> Bool #

Floating Double

Since: 2.1

Data Double

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double #

toConstr :: Double -> Constr #

dataTypeOf :: Double -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Double) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double #

Ord Double 
Read Double

Since: 2.1

RealFloat Double

Since: 2.1

Lift Double 

Methods

lift :: Double -> Q Exp #

Storable Double

Since: 2.1

Binary Double 

Methods

put :: Double -> Put #

get :: Get Double #

putList :: [Double] -> Put #

NFData Double 

Methods

rnf :: Double -> () #

IArray UArray Double 

Methods

bounds :: Ix i => UArray i Double -> (i, i) #

numElements :: Ix i => UArray i Double -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Double)] -> UArray i Double

unsafeAt :: Ix i => UArray i Double -> Int -> Double

unsafeReplace :: Ix i => UArray i Double -> [(Int, Double)] -> UArray i Double

unsafeAccum :: Ix i => (Double -> e' -> Double) -> UArray i Double -> [(Int, e')] -> UArray i Double

unsafeAccumArray :: Ix i => (Double -> e' -> Double) -> Double -> (i, i) -> [(Int, e')] -> UArray i Double

Generic1 k (URec k Double) 

Associated Types

type Rep1 (URec k Double) (f :: URec k Double -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Double) f a #

to1 :: Rep1 (URec k Double) f a -> f a #

MArray (STUArray s) Double (ST s) 

Methods

getBounds :: Ix i => STUArray s i Double -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Double -> ST s Int

newArray :: Ix i => (i, i) -> Double -> ST s (STUArray s i Double) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Double)

unsafeRead :: Ix i => STUArray s i Double -> Int -> ST s Double

unsafeWrite :: Ix i => STUArray s i Double -> Int -> Double -> ST s ()

Functor (URec * Double) 

Methods

fmap :: (a -> b) -> URec * Double a -> URec * Double b #

(<$) :: a -> URec * Double b -> URec * Double a #

Foldable (URec * Double) 

Methods

fold :: Monoid m => URec * Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Double a -> m #

foldr :: (a -> b -> b) -> b -> URec * Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Double a -> b #

foldl :: (b -> a -> b) -> b -> URec * Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Double a -> b #

foldr1 :: (a -> a -> a) -> URec * Double a -> a #

foldl1 :: (a -> a -> a) -> URec * Double a -> a #

toList :: URec * Double a -> [a] #

null :: URec * Double a -> Bool #

length :: URec * Double a -> Int #

elem :: Eq a => a -> URec * Double a -> Bool #

maximum :: Ord a => URec * Double a -> a #

minimum :: Ord a => URec * Double a -> a #

sum :: Num a => URec * Double a -> a #

product :: Num a => URec * Double a -> a #

Traversable (URec * Double) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Double a -> f (URec * Double b) #

sequenceA :: Applicative f => URec * Double (f a) -> f (URec * Double a) #

mapM :: Monad m => (a -> m b) -> URec * Double a -> m (URec * Double b) #

sequence :: Monad m => URec * Double (m a) -> m (URec * Double a) #

Eq (URec k Double p) 

Methods

(==) :: URec k Double p -> URec k Double p -> Bool #

(/=) :: URec k Double p -> URec k Double p -> Bool #

Ord (URec k Double p) 

Methods

compare :: URec k Double p -> URec k Double p -> Ordering #

(<) :: URec k Double p -> URec k Double p -> Bool #

(<=) :: URec k Double p -> URec k Double p -> Bool #

(>) :: URec k Double p -> URec k Double p -> Bool #

(>=) :: URec k Double p -> URec k Double p -> Bool #

max :: URec k Double p -> URec k Double p -> URec k Double p #

min :: URec k Double p -> URec k Double p -> URec k Double p #

Show (URec k Double p) 

Methods

showsPrec :: Int -> URec k Double p -> ShowS #

show :: URec k Double p -> String #

showList :: [URec k Double p] -> ShowS #

Generic (URec k Double p) 

Associated Types

type Rep (URec k Double p) :: * -> * #

Methods

from :: URec k Double p -> Rep (URec k Double p) x #

to :: Rep (URec k Double p) x -> URec k Double p #

data URec k Double

Used for marking occurrences of Double#

Since: 4.9.0.0

type Rep1 k (URec k Double) 
type Rep1 k (URec k Double) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UDouble" PrefixI True) (S1 k (MetaSel (Just Symbol "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble k)))
type Rep (URec k Double p) 
type Rep (URec k Double p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UDouble" PrefixI True) (S1 * (MetaSel (Just Symbol "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble *)))

type Rational = Ratio Integer #

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

data Word :: * #

A Word is an unsigned integral type, with the same size as Int.

Instances

Bounded Word

Since: 2.1

Enum Word

Since: 2.1

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Eq Word 

Methods

(==) :: Word -> Word -> Bool #

(/=) :: Word -> Word -> Bool #

Integral Word

Since: 2.1

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Data Word

Since: 4.0.0.0

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word #

toConstr :: Word -> Constr #

dataTypeOf :: Word -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c Word) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word #

Num Word

Since: 2.1

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Ord Word 

Methods

compare :: Word -> Word -> Ordering #

(<) :: Word -> Word -> Bool #

(<=) :: Word -> Word -> Bool #

(>) :: Word -> Word -> Bool #

(>=) :: Word -> Word -> Bool #

max :: Word -> Word -> Word #

min :: Word -> Word -> Word #

Read Word

Since: 4.5.0.0

Real Word

Since: 2.1

Methods

toRational :: Word -> Rational #

Show Word

Since: 2.1

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Ix Word

Since: 4.6.0.0

Methods

range :: (Word, Word) -> [Word] #

index :: (Word, Word) -> Word -> Int #

unsafeIndex :: (Word, Word) -> Word -> Int

inRange :: (Word, Word) -> Word -> Bool #

rangeSize :: (Word, Word) -> Int #

unsafeRangeSize :: (Word, Word) -> Int

Lift Word 

Methods

lift :: Word -> Q Exp #

Storable Word

Since: 2.1

Methods

sizeOf :: Word -> Int #

alignment :: Word -> Int #

peekElemOff :: Ptr Word -> Int -> IO Word #

pokeElemOff :: Ptr Word -> Int -> Word -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word #

pokeByteOff :: Ptr b -> Int -> Word -> IO () #

peek :: Ptr Word -> IO Word #

poke :: Ptr Word -> Word -> IO () #

Bits Word

Since: 2.1

FiniteBits Word

Since: 4.6.0.0

Binary Word 

Methods

put :: Word -> Put #

get :: Get Word #

putList :: [Word] -> Put #

NFData Word 

Methods

rnf :: Word -> () #

Outputable Word 

Methods

ppr :: Word -> SDoc #

pprPrec :: Rational -> Word -> SDoc #

IArray UArray Word 

Methods

bounds :: Ix i => UArray i Word -> (i, i) #

numElements :: Ix i => UArray i Word -> Int

unsafeArray :: Ix i => (i, i) -> [(Int, Word)] -> UArray i Word

unsafeAt :: Ix i => UArray i Word -> Int -> Word

unsafeReplace :: Ix i => UArray i Word -> [(Int, Word)] -> UArray i Word

unsafeAccum :: Ix i => (Word -> e' -> Word) -> UArray i Word -> [(Int, e')] -> UArray i Word

unsafeAccumArray :: Ix i => (Word -> e' -> Word) -> Word -> (i, i) -> [(Int, e')] -> UArray i Word

Generic1 k (URec k Word) 

Associated Types

type Rep1 (URec k Word) (f :: URec k Word -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (URec k Word) f a #

to1 :: Rep1 (URec k Word) f a -> f a #

MArray (STUArray s) Word (ST s) 

Methods

getBounds :: Ix i => STUArray s i Word -> ST s (i, i) #

getNumElements :: Ix i => STUArray s i Word -> ST s Int

newArray :: Ix i => (i, i) -> Word -> ST s (STUArray s i Word) #

newArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word) #

unsafeNewArray_ :: Ix i => (i, i) -> ST s (STUArray s i Word)

unsafeRead :: Ix i => STUArray s i Word -> Int -> ST s Word

unsafeWrite :: Ix i => STUArray s i Word -> Int -> Word -> ST s ()

Functor (URec * Word) 

Methods

fmap :: (a -> b) -> URec * Word a -> URec * Word b #

(<$) :: a -> URec * Word b -> URec * Word a #

Foldable (URec * Word) 

Methods

fold :: Monoid m => URec * Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Word a -> m #

foldr :: (a -> b -> b) -> b -> URec * Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Word a -> b #

foldl :: (b -> a -> b) -> b -> URec * Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Word a -> b #

foldr1 :: (a -> a -> a) -> URec * Word a -> a #

foldl1 :: (a -> a -> a) -> URec * Word a -> a #

toList :: URec * Word a -> [a] #

null :: URec * Word a -> Bool #

length :: URec * Word a -> Int #

elem :: Eq a => a -> URec * Word a -> Bool #

maximum :: Ord a => URec * Word a -> a #

minimum :: Ord a => URec * Word a -> a #

sum :: Num a => URec * Word a -> a #

product :: Num a => URec * Word a -> a #

Traversable (URec * Word) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Word a -> f (URec * Word b) #

sequenceA :: Applicative f => URec * Word (f a) -> f (URec * Word a) #

mapM :: Monad m => (a -> m b) -> URec * Word a -> m (URec * Word b) #

sequence :: Monad m => URec * Word (m a) -> m (URec * Word a) #

Eq (URec k Word p) 

Methods

(==) :: URec k Word p -> URec k Word p -> Bool #

(/=) :: URec k Word p -> URec k Word p -> Bool #

Ord (URec k Word p) 

Methods

compare :: URec k Word p -> URec k Word p -> Ordering #

(<) :: URec k Word p -> URec k Word p -> Bool #

(<=) :: URec k Word p -> URec k Word p -> Bool #

(>) :: URec k Word p -> URec k Word p -> Bool #

(>=) :: URec k Word p -> URec k Word p -> Bool #

max :: URec k Word p -> URec k Word p -> URec k Word p #

min :: URec k Word p -> URec k Word p -> URec k Word p #

Show (URec k Word p) 

Methods

showsPrec :: Int -> URec k Word p -> ShowS #

show :: URec k Word p -> String #

showList :: [URec k Word p] -> ShowS #

Generic (URec k Word p) 

Associated Types

type Rep (URec k Word p) :: * -> * #

Methods

from :: URec k Word p -> Rep (URec k Word p) x #

to :: Rep (URec k Word p) x -> URec k Word p #

data URec k Word

Used for marking occurrences of Word#

Since: 4.9.0.0

data URec k Word = UWord {}
type Rep1 k (URec k Word) 
type Rep1 k (URec k Word) = D1 k (MetaData "URec" "GHC.Generics" "base" False) (C1 k (MetaCons "UWord" PrefixI True) (S1 k (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord k)))
type Rep (URec k Word p) 
type Rep (URec k Word p) = D1 * (MetaData "URec" "GHC.Generics" "base" False) (C1 * (MetaCons "UWord" PrefixI True) (S1 * (MetaSel (Just Symbol "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord *)))

Numeric type classes

class Num a where #

Basic numeric class.

Minimal complete definition

(+), (*), abs, signum, fromInteger, (negate | (-))

Methods

(+) :: a -> a -> a infixl 6 #

(-) :: a -> a -> a infixl 6 #

(*) :: a -> a -> a infixl 7 #

negate :: a -> a #

Unary negation.

abs :: a -> a #

Absolute value.

signum :: a -> a #

Sign of a number. The functions abs and signum should satisfy the law:

abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> a #

Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (Num a) => a.

Instances

Num Int

Since: 2.1

Methods

(+) :: Int -> Int -> Int #

(-) :: Int -> Int -> Int #

(*) :: Int -> Int -> Int #

negate :: Int -> Int #

abs :: Int -> Int #

signum :: Int -> Int #

fromInteger :: Integer -> Int #

Num Int8

Since: 2.1

Methods

(+) :: Int8 -> Int8 -> Int8 #

(-) :: Int8 -> Int8 -> Int8 #

(*) :: Int8 -> Int8 -> Int8 #

negate :: Int8 -> Int8 #

abs :: Int8 -> Int8 #

signum :: Int8 -> Int8 #

fromInteger :: Integer -> Int8 #

Num Int16

Since: 2.1

Num Int32

Since: 2.1

Num Int64

Since: 2.1

Num Integer

Since: 2.1

Num Natural

Since: 4.8.0.0

Num Word

Since: 2.1

Methods

(+) :: Word -> Word -> Word #

(-) :: Word -> Word -> Word #

(*) :: Word -> Word -> Word #

negate :: Word -> Word #

abs :: Word -> Word #

signum :: Word -> Word #

fromInteger :: Integer -> Word #

Num Word8

Since: 2.1

Num Word16

Since: 2.1

Num Word32

Since: 2.1

Num Word64

Since: 2.1

Num CChar 
Num CSChar 
Num CUChar 
Num CShort 
Num CUShort 
Num CInt 

Methods

(+) :: CInt -> CInt -> CInt #

(-) :: CInt -> CInt -> CInt #

(*) :: CInt -> CInt -> CInt #

negate :: CInt -> CInt #

abs :: CInt -> CInt #

signum :: CInt -> CInt #

fromInteger :: Integer -> CInt #

Num CUInt 
Num CLong 
Num CULong 
Num CLLong 
Num CULLong 
Num CBool 
Num CFloat 
Num CDouble 
Num CPtrdiff 
Num CSize 
Num CWchar 
Num CSigAtomic 
Num CClock 
Num CTime 
Num CUSeconds 
Num CSUSeconds 
Num CIntPtr 
Num CUIntPtr 
Num CIntMax 
Num CUIntMax 
Num IntWithInf 
Num DiffTime 
Integral a => Num (Ratio a)

Since: 2.0.1

Methods

(+) :: Ratio a -> Ratio a -> Ratio a #

(-) :: Ratio a -> Ratio a -> Ratio a #

(*) :: Ratio a -> Ratio a -> Ratio a #

negate :: Ratio a -> Ratio a #

abs :: Ratio a -> Ratio a #

signum :: Ratio a -> Ratio a #

fromInteger :: Integer -> Ratio a #

RealFloat a => Num (Complex a)

Since: 2.1

Methods

(+) :: Complex a -> Complex a -> Complex a #

(-) :: Complex a -> Complex a -> Complex a #

(*) :: Complex a -> Complex a -> Complex a #

negate :: Complex a -> Complex a #

abs :: Complex a -> Complex a #

signum :: Complex a -> Complex a #

fromInteger :: Integer -> Complex a #

HasResolution a => Num (Fixed a)

Since: 2.1

Methods

(+) :: Fixed a -> Fixed a -> Fixed a #

(-) :: Fixed a -> Fixed a -> Fixed a #

(*) :: Fixed a -> Fixed a -> Fixed a #

negate :: Fixed a -> Fixed a #

abs :: Fixed a -> Fixed a #

signum :: Fixed a -> Fixed a #

fromInteger :: Integer -> Fixed a #

Num a => Num (Min a)

Since: 4.9.0.0

Methods

(+) :: Min a -> Min a -> Min a #

(-) :: Min a -> Min a -> Min a #

(*) :: Min a -> Min a -> Min a #

negate :: Min a -> Min a #

abs :: Min a -> Min a #

signum :: Min a -> Min a #

fromInteger :: Integer -> Min a #

Num a => Num (Max a)

Since: 4.9.0.0

Methods

(+) :: Max a -> Max a -> Max a #

(-) :: Max a -> Max a -> Max a #

(*) :: Max a -> Max a -> Max a #

negate :: Max a -> Max a #

abs :: Max a -> Max a #

signum :: Max a -> Max a #

fromInteger :: Integer -> Max a #

Num a => Num (Identity a) 
Num a => Num (Sum a) 

Methods

(+) :: Sum a -> Sum a -> Sum a #

(-) :: Sum a -> Sum a -> Sum a #

(*) :: Sum a -> Sum a -> Sum a #

negate :: Sum a -> Sum a #

abs :: Sum a -> Sum a #

signum :: Sum a -> Sum a #

fromInteger :: Integer -> Sum a #

Num a => Num (Product a) 

Methods

(+) :: Product a -> Product a -> Product a #

(-) :: Product a -> Product a -> Product a #

(*) :: Product a -> Product a -> Product a #

negate :: Product a -> Product a #

abs :: Product a -> Product a #

signum :: Product a -> Product a #

fromInteger :: Integer -> Product a #

Num a => Num (Const k a b) 

Methods

(+) :: Const k a b -> Const k a b -> Const k a b #

(-) :: Const k a b -> Const k a b -> Const k a b #

(*) :: Const k a b -> Const k a b -> Const k a b #

negate :: Const k a b -> Const k a b #

abs :: Const k a b -> Const k a b #

signum :: Const k a b -> Const k a b #

fromInteger :: Integer -> Const k a b #

Num (f a) => Num (Alt k f a) 

Methods

(+) :: Alt k f a -> Alt k f a -> Alt k f a #

(-) :: Alt k f a -> Alt k f a -> Alt k f a #

(*) :: Alt k f a -> Alt k f a -> Alt k f a #

negate :: Alt k f a -> Alt k f a #

abs :: Alt k f a -> Alt k f a #

signum :: Alt k f a -> Alt k f a #

fromInteger :: Integer -> Alt k f a #

class (Num a, Ord a) => Real a where #

Minimal complete definition

toRational

Methods

toRational :: a -> Rational #

the rational equivalent of its real argument with full precision

Instances

Real Int

Since: 2.0.1

Methods

toRational :: Int -> Rational #

Real Int8

Since: 2.1

Methods

toRational :: Int8 -> Rational #

Real Int16

Since: 2.1

Methods

toRational :: Int16 -> Rational #

Real Int32

Since: 2.1

Methods

toRational :: Int32 -> Rational #

Real Int64

Since: 2.1

Methods

toRational :: Int64 -> Rational #

Real Integer

Since: 2.0.1

Real Natural

Since: 4.8.0.0

Real Word

Since: 2.1

Methods

toRational :: Word -> Rational #

Real Word8

Since: 2.1

Methods

toRational :: Word8 -> Rational #

Real Word16

Since: 2.1

Real Word32

Since: 2.1

Real Word64

Since: 2.1

Real CChar 

Methods

toRational :: CChar -> Rational #

Real CSChar 
Real CUChar 
Real CShort 
Real CUShort 
Real CInt 

Methods

toRational :: CInt -> Rational #

Real CUInt 

Methods

toRational :: CUInt -> Rational #

Real CLong 

Methods

toRational :: CLong -> Rational #

Real CULong 
Real CLLong 
Real CULLong 
Real CBool 

Methods

toRational :: CBool -> Rational #

Real CFloat 
Real CDouble 
Real CPtrdiff 
Real CSize 

Methods

toRational :: CSize -> Rational #

Real CWchar 
Real CSigAtomic 
Real CClock 
Real CTime 

Methods

toRational :: CTime -> Rational #

Real CUSeconds 
Real CSUSeconds 
Real CIntPtr 
Real CUIntPtr 
Real CIntMax 
Real CUIntMax 
Real DiffTime 
Integral a => Real (Ratio a)

Since: 2.0.1

Methods

toRational :: Ratio a -> Rational #

HasResolution a => Real (Fixed a)

Since: 2.1

Methods

toRational :: Fixed a -> Rational #

Real a => Real (Identity a) 

Methods

toRational :: Identity a -> Rational #

Real a => Real (Const k a b) 

Methods

toRational :: Const k a b -> Rational #

class (Real a, Enum a) => Integral a where #

Integral numbers, supporting integer division.

Minimal complete definition

quotRem, toInteger

Methods

quot :: a -> a -> a infixl 7 #

integer division truncated toward zero

rem :: a -> a -> a infixl 7 #

integer remainder, satisfying

(x `quot` y)*y + (x `rem` y) == x

div :: a -> a -> a infixl 7 #

integer division truncated toward negative infinity

mod :: a -> a -> a infixl 7 #

integer modulus, satisfying

(x `div` y)*y + (x `mod` y) == x

quotRem :: a -> a -> (a, a) #

simultaneous quot and rem

divMod :: a -> a -> (a, a) #

simultaneous div and mod

toInteger :: a -> Integer #

conversion to Integer

Instances

Integral Int

Since: 2.0.1

Methods

quot :: Int -> Int -> Int #

rem :: Int -> Int -> Int #

div :: Int -> Int -> Int #

mod :: Int -> Int -> Int #

quotRem :: Int -> Int -> (Int, Int) #

divMod :: Int -> Int -> (Int, Int) #

toInteger :: Int -> Integer #

Integral Int8

Since: 2.1

Methods

quot :: Int8 -> Int8 -> Int8 #

rem :: Int8 -> Int8 -> Int8 #

div :: Int8 -> Int8 -> Int8 #

mod :: Int8 -> Int8 -> Int8 #

quotRem :: Int8 -> Int8 -> (Int8, Int8) #

divMod :: Int8 -> Int8 -> (Int8, Int8) #

toInteger :: Int8 -> Integer #

Integral Int16

Since: 2.1

Integral Int32

Since: 2.1

Integral Int64

Since: 2.1

Integral Integer

Since: 2.0.1

Integral Natural

Since: 4.8.0.0

Integral Word

Since: 2.1

Methods

quot :: Word -> Word -> Word #

rem :: Word -> Word -> Word #

div :: Word -> Word -> Word #

mod :: Word -> Word -> Word #

quotRem :: Word -> Word -> (Word, Word) #

divMod :: Word -> Word -> (Word, Word) #

toInteger :: Word -> Integer #

Integral Word8

Since: 2.1

Integral Word16

Since: 2.1

Integral Word32

Since: 2.1

Integral Word64

Since: 2.1

Integral CChar 
Integral CSChar 
Integral CUChar 
Integral CShort 
Integral CUShort 
Integral CInt 

Methods

quot :: CInt -> CInt -> CInt #

rem :: CInt -> CInt -> CInt #

div :: CInt -> CInt -> CInt #

mod :: CInt -> CInt -> CInt #

quotRem :: CInt -> CInt -> (CInt, CInt) #

divMod :: CInt -> CInt -> (CInt, CInt) #

toInteger :: CInt -> Integer #

Integral CUInt 
Integral CLong 
Integral CULong 
Integral CLLong 
Integral CULLong 
Integral CBool 
Integral CPtrdiff 
Integral CSize 
Integral CWchar 
Integral CSigAtomic 
Integral CIntPtr 
Integral CUIntPtr 
Integral CIntMax 
Integral CUIntMax 
Integral a => Integral (Identity a) 
Integral a => Integral (Const k a b) 

Methods

quot :: Const k a b -> Const k a b -> Const k a b #

rem :: Const k a b -> Const k a b -> Const k a b #

div :: Const k a b -> Const k a b -> Const k a b #

mod :: Const k a b -> Const k a b -> Const k a b #

quotRem :: Const k a b -> Const k a b -> (Const k a b, Const k a b) #

divMod :: Const k a b -> Const k a b -> (Const k a b, Const k a b) #

toInteger :: Const k a b -> Integer #

class Num a => Fractional a where #

Fractional numbers, supporting real division.

Minimal complete definition

fromRational, (recip | (/))

Methods

(/) :: a -> a -> a infixl 7 #

fractional division

recip :: a -> a #

reciprocal fraction

fromRational :: Rational -> a #

Conversion from a Rational (that is Ratio Integer). A floating literal stands for an application of fromRational to a value of type Rational, so such literals have type (Fractional a) => a.

Instances

Fractional CFloat 
Fractional CDouble 
Fractional DiffTime 
Integral a => Fractional (Ratio a)

Since: 2.0.1

Methods

(/) :: Ratio a -> Ratio a -> Ratio a #

recip :: Ratio a -> Ratio a #

fromRational :: Rational -> Ratio a #

RealFloat a => Fractional (Complex a)

Since: 2.1

Methods

(/) :: Complex a -> Complex a -> Complex a #

recip :: Complex a -> Complex a #

fromRational :: Rational -> Complex a #

HasResolution a => Fractional (Fixed a)

Since: 2.1

Methods

(/) :: Fixed a -> Fixed a -> Fixed a #

recip :: Fixed a -> Fixed a #

fromRational :: Rational -> Fixed a #

Fractional a => Fractional (Identity a) 
Fractional a => Fractional (Const k a b) 

Methods

(/) :: Const k a b -> Const k a b -> Const k a b #

recip :: Const k a b -> Const k a b #

fromRational :: Rational -> Const k a b #

class Fractional a => Floating a where #

Trigonometric and hyperbolic functions and related functions.

Minimal complete definition

pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh

Methods

pi :: a #

exp :: a -> a #

log :: a -> a #

sqrt :: a -> a #

(**) :: a -> a -> a infixr 8 #

logBase :: a -> a -> a #

sin :: a -> a #

cos :: a -> a #

tan :: a -> a #

asin :: a -> a #

acos :: a -> a #

atan :: a -> a #

sinh :: a -> a #

cosh :: a -> a #

tanh :: a -> a #

asinh :: a -> a #

acosh :: a -> a #

atanh :: a -> a #

Instances

Floating Double

Since: 2.1

Floating Float

Since: 2.1

Floating CFloat 
Floating CDouble 
RealFloat a => Floating (Complex a)

Since: 2.1

Methods

pi :: Complex a #

exp :: Complex a -> Complex a #

log :: Complex a -> Complex a #

sqrt :: Complex a -> Complex a #

(**) :: Complex a -> Complex a -> Complex a #

logBase :: Complex a -> Complex a -> Complex a #

sin :: Complex a -> Complex a #

cos :: Complex a -> Complex a #

tan :: Complex a -> Complex a #

asin :: Complex a -> Complex a #

acos :: Complex a -> Complex a #

atan :: Complex a -> Complex a #

sinh :: Complex a -> Complex a #

cosh :: Complex a -> Complex a #

tanh :: Complex a -> Complex a #

asinh :: Complex a -> Complex a #

acosh :: Complex a -> Complex a #

atanh :: Complex a -> Complex a #

log1p :: Complex a -> Complex a #

expm1 :: Complex a -> Complex a #

log1pexp :: Complex a -> Complex a #

log1mexp :: Complex a -> Complex a #

Floating a => Floating (Identity a) 
Floating a => Floating (Const k a b) 

Methods

pi :: Const k a b #

exp :: Const k a b -> Const k a b #

log :: Const k a b -> Const k a b #

sqrt :: Const k a b -> Const k a b #

(**) :: Const k a b -> Const k a b -> Const k a b #

logBase :: Const k a b -> Const k a b -> Const k a b #

sin :: Const k a b -> Const k a b #

cos :: Const k a b -> Const k a b #

tan :: Const k a b -> Const k a b #

asin :: Const k a b -> Const k a b #

acos :: Const k a b -> Const k a b #

atan :: Const k a b -> Const k a b #

sinh :: Const k a b -> Const k a b #

cosh :: Const k a b -> Const k a b #

tanh :: Const k a b -> Const k a b #

asinh :: Const k a b -> Const k a b #

acosh :: Const k a b -> Const k a b #

atanh :: Const k a b -> Const k a b #

log1p :: Const k a b -> Const k a b #

expm1 :: Const k a b -> Const k a b #

log1pexp :: Const k a b -> Const k a b #

log1mexp :: Const k a b -> Const k a b #

class (Real a, Fractional a) => RealFrac a where #

Extracting components of fractions.

Minimal complete definition

properFraction

Methods

properFraction :: Integral b => a -> (b, a) #

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.

truncate :: Integral b => a -> b #

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> b #

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> b #

ceiling x returns the least integer not less than x

floor :: Integral b => a -> b #

floor x returns the greatest integer not greater than x

Instances

RealFrac CFloat 

Methods

properFraction :: Integral b => CFloat -> (b, CFloat) #

truncate :: Integral b => CFloat -> b #

round :: Integral b => CFloat -> b #

ceiling :: Integral b => CFloat -> b #

floor :: Integral b => CFloat -> b #

RealFrac CDouble 

Methods

properFraction :: Integral b => CDouble -> (b, CDouble) #

truncate :: Integral b => CDouble -> b #

round :: Integral b => CDouble -> b #

ceiling :: Integral b => CDouble -> b #

floor :: Integral b => CDouble -> b #

RealFrac DiffTime 

Methods

properFraction :: Integral b => DiffTime -> (b, DiffTime) #

truncate :: Integral b => DiffTime -> b #

round :: Integral b => DiffTime -> b #

ceiling :: Integral b => DiffTime -> b #

floor :: Integral b => DiffTime -> b #

Integral a => RealFrac (Ratio a)

Since: 2.0.1

Methods

properFraction :: Integral b => Ratio a -> (b, Ratio a) #

truncate :: Integral b => Ratio a -> b #

round :: Integral b => Ratio a -> b #

ceiling :: Integral b => Ratio a -> b #

floor :: Integral b => Ratio a -> b #

HasResolution a => RealFrac (Fixed a)

Since: 2.1

Methods

properFraction :: Integral b => Fixed a -> (b, Fixed a) #

truncate :: Integral b => Fixed a -> b #

round :: Integral b => Fixed a -> b #

ceiling :: Integral b => Fixed a -> b #

floor :: Integral b => Fixed a -> b #

RealFrac a => RealFrac (Identity a) 

Methods

properFraction :: Integral b => Identity a -> (b, Identity a) #

truncate :: Integral b => Identity a -> b #

round :: Integral b => Identity a -> b #

ceiling :: Integral b => Identity a -> b #

floor :: Integral b => Identity a -> b #

RealFrac a => RealFrac (Const k a b) 

Methods

properFraction :: Integral b => Const k a b -> (b, Const k a b) #

truncate :: Integral b => Const k a b -> b #

round :: Integral b => Const k a b -> b #

ceiling :: Integral b => Const k a b -> b #

floor :: Integral b => Const k a b -> b #

class (RealFrac a, Floating a) => RealFloat a where #

Efficient, machine-independent access to the components of a floating-point number.

Methods

floatRadix :: a -> Integer #

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int #

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int) #

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int) #

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= abs m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0). If the type contains a negative zero, also decodeFloat (-0.0) = (0,0). The result of decodeFloat x is unspecified if either of isNaN x or isInfinite x is True.

encodeFloat :: Integer -> Int -> a #

encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, uncurry encodeFloat (decodeFloat x) = x. encodeFloat m n is one of the two closest representable floating-point numbers to m*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.

exponent :: a -> Int #

exponent corresponds to the second component of decodeFloat. exponent 0 = 0 and for finite nonzero x, exponent x = snd (decodeFloat x) + floatDigits x. If x is a finite floating-point number, it is equal in value to significand x * b ^^ exponent x, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

significand :: a -> a #

The first component of decodeFloat, scaled to lie in the open interval (-1,1), either 0.0 or of absolute value >= 1/b, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.

scaleFloat :: Int -> a -> a #

multiplies a floating-point number by an integer power of the radix

isNaN :: a -> Bool #

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool #

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool #

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool #

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool #

True if the argument is an IEEE floating point number

atan2 :: a -> a -> a #

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat, should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances

RealFloat Double

Since: 2.1

RealFloat Float

Since: 2.1

RealFloat CFloat 
RealFloat CDouble 
RealFloat a => RealFloat (Identity a) 
RealFloat a => RealFloat (Const k a b) 

Methods

floatRadix :: Const k a b -> Integer #

floatDigits :: Const k a b -> Int #

floatRange :: Const k a b -> (Int, Int) #

decodeFloat :: Const k a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const k a b #

exponent :: Const k a b -> Int #

significand :: Const k a b -> Const k a b #

scaleFloat :: Int -> Const k a b -> Const k a b #

isNaN :: Const k a b -> Bool #

isInfinite :: Const k a b -> Bool #

isDenormalized :: Const k a b -> Bool #

isNegativeZero :: Const k a b -> Bool #

isIEEE :: Const k a b -> Bool #

atan2 :: Const k a b -> Const k a b -> Const k a b #

Numeric functions

subtract :: Num a => a -> a -> a #

the same as flip (-).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

even :: Integral a => a -> Bool #

odd :: Integral a => a -> Bool #

gcd :: Integral a => a -> a -> a #

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound) for such types.

lcm :: Integral a => a -> a -> a #

lcm x y is the smallest positive integer that both x and y divide.

(^) :: (Num a, Integral b) => a -> b -> a infixr 8 #

raise a number to a non-negative integral power

(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #

raise a number to an integral power

fromIntegral :: (Integral a, Num b) => a -> b #

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b #

general coercion to fractional types

Monoids

class Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

  • mappend mempty x = x
  • mappend x mempty = x
  • mappend x (mappend y z) = mappend (mappend x y) z
  • mconcat = foldr mappend mempty

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

Minimal complete definition

mempty, mappend

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

mconcat :: [a] -> a #

Fold a list using the monoid. For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances

Monoid Ordering

Since: 2.1

Monoid ()

Since: 2.1

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid EventLifetime

Since: 4.8.0.0

Methods

mempty :: EventLifetime #

mappend :: EventLifetime -> EventLifetime -> EventLifetime #

mconcat :: [EventLifetime] -> EventLifetime #

Monoid Event

Since: 4.3.1.0

Methods

mempty :: Event #

mappend :: Event -> Event -> Event #

mconcat :: [Event] -> Event #

Monoid Lifetime

mappend takes the longer of two lifetimes.

Since: 4.8.0.0

Monoid All

Since: 2.1

Methods

mempty :: All #

mappend :: All -> All -> All #

mconcat :: [All] -> All #

Monoid Any

Since: 2.1

Methods

mempty :: Any #

mappend :: Any -> Any -> Any #

mconcat :: [Any] -> Any #

Monoid ShortByteString 
Monoid ByteString 
Monoid ByteString 
Monoid Builder 
Monoid IntSet 
Monoid CandidatesQTvs 
Monoid FastString 
Monoid Doc 

Methods

mempty :: Doc #

mappend :: Doc -> Doc -> Doc #

mconcat :: [Doc] -> Doc #

Monoid [a]

Since: 2.1

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S." Since there used to be no "Semigroup" typeclass providing just mappend, we use Monoid instead.

Since: 2.1

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a)

Since: 4.9.0.0

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

(Ord a, Bounded a) => Monoid (Min a)

Since: 4.9.0.0

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a)

Since: 4.9.0.0

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m)

Since: 4.9.0.0

Semigroup a => Monoid (Option a)

Since: 4.9.0.0

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid a => Monoid (Identity a) 

Methods

mempty :: Identity a #

mappend :: Identity a -> Identity a -> Identity a #

mconcat :: [Identity a] -> Identity a #

Monoid a => Monoid (Dual a)

Since: 2.1

Methods

mempty :: Dual a #

mappend :: Dual a -> Dual a -> Dual a #

mconcat :: [Dual a] -> Dual a #

Monoid (Endo a)

Since: 2.1

Methods

mempty :: Endo a #

mappend :: Endo a -> Endo a -> Endo a #

mconcat :: [Endo a] -> Endo a #

Num a => Monoid (Sum a)

Since: 2.1

Methods

mempty :: Sum a #

mappend :: Sum a -> Sum a -> Sum a #

mconcat :: [Sum a] -> Sum a #

Num a => Monoid (Product a)

Since: 2.1

Methods

mempty :: Product a #

mappend :: Product a -> Product a -> Product a #

mconcat :: [Product a] -> Product a #

Monoid (First a)

Since: 2.1

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: 2.1

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Monoid (IntMap a) 

Methods

mempty :: IntMap a #

mappend :: IntMap a -> IntMap a -> IntMap a #

mconcat :: [IntMap a] -> IntMap a #

Monoid (Seq a) 

Methods

mempty :: Seq a #

mappend :: Seq a -> Seq a -> Seq a #

mconcat :: [Seq a] -> Seq a #

Ord a => Monoid (Set a) 

Methods

mempty :: Set a #

mappend :: Set a -> Set a -> Set a #

mconcat :: [Set a] -> Set a #

Monoid (UniqDFM a) 

Methods

mempty :: UniqDFM a #

mappend :: UniqDFM a -> UniqDFM a -> UniqDFM a #

mconcat :: [UniqDFM a] -> UniqDFM a #

Monoid (UniqSet a) 

Methods

mempty :: UniqSet a #

mappend :: UniqSet a -> UniqSet a -> UniqSet a #

mconcat :: [UniqSet a] -> UniqSet a #

Monoid (UniqFM a) 

Methods

mempty :: UniqFM a #

mappend :: UniqFM a -> UniqFM a -> UniqFM a #

mconcat :: [UniqFM a] -> UniqFM a #

Monoid (Doc a) 

Methods

mempty :: Doc a #

mappend :: Doc a -> Doc a -> Doc a #

mconcat :: [Doc a] -> Doc a #

Monoid b => Monoid (a -> b)

Since: 2.1

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b)

Since: 2.1

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid (Proxy k s)

Since: 4.7.0.0

Methods

mempty :: Proxy k s #

mappend :: Proxy k s -> Proxy k s -> Proxy k s #

mconcat :: [Proxy k s] -> Proxy k s #

Ord k => Monoid (Map k v) 

Methods

mempty :: Map k v #

mappend :: Map k v -> Map k v -> Map k v #

mconcat :: [Map k v] -> Map k v #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: 2.1

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

Monoid a => Monoid (Const k a b) 

Methods

mempty :: Const k a b #

mappend :: Const k a b -> Const k a b -> Const k a b #

mconcat :: [Const k a b] -> Const k a b #

Alternative f => Monoid (Alt * f a)

Since: 4.8.0.0

Methods

mempty :: Alt * f a #

mappend :: Alt * f a -> Alt * f a -> Alt * f a #

mconcat :: [Alt * f a] -> Alt * f a #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: 2.1

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: 2.1

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

(Monads and) functors

class Functor (f :: * -> *) where #

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

fmap id  ==  id
fmap (f . g)  ==  fmap f . fmap g

The instances of Functor for lists, Maybe and IO satisfy these laws.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Instances

Functor []

Since: 2.1

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe

Since: 2.1

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO

Since: 2.1

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1 

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor Q 

Methods

fmap :: (a -> b) -> Q a -> Q b #

(<$) :: a -> Q b -> Q a #

Functor P 

Methods

fmap :: (a -> b) -> P a -> P b #

(<$) :: a -> P b -> P a #

Functor Complex 

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Functor Min

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Min a -> Min b #

(<$) :: a -> Min b -> Min a #

Functor Max

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Max a -> Max b #

(<$) :: a -> Max b -> Max a #

Functor First

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Option

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Option a -> Option b #

(<$) :: a -> Option b -> Option a #

Functor NonEmpty

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor ZipList 

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor Identity

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor STM

Since: 4.3.0.0

Methods

fmap :: (a -> b) -> STM a -> STM b #

(<$) :: a -> STM b -> STM a #

Functor Dual

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product

Since: 4.8.0.0

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor First 

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last 

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor ReadPrec

Since: 2.1

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b #

(<$) :: a -> ReadPrec b -> ReadPrec a #

Functor ReadP

Since: 2.1

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor Put 

Methods

fmap :: (a -> b) -> Put a -> Put b #

(<$) :: a -> Put b -> Put a #

Functor IntMap 

Methods

fmap :: (a -> b) -> IntMap a -> IntMap b #

(<$) :: a -> IntMap b -> IntMap a #

Functor SCC 

Methods

fmap :: (a -> b) -> SCC a -> SCC b #

(<$) :: a -> SCC b -> SCC a #

Functor Tree 

Methods

fmap :: (a -> b) -> Tree a -> Tree b #

(<$) :: a -> Tree b -> Tree a #

Functor Seq 

Methods

fmap :: (a -> b) -> Seq a -> Seq b #

(<$) :: a -> Seq b -> Seq a #

Functor FingerTree 

Methods

fmap :: (a -> b) -> FingerTree a -> FingerTree b #

(<$) :: a -> FingerTree b -> FingerTree a #

Functor Digit 

Methods

fmap :: (a -> b) -> Digit a -> Digit b #

(<$) :: a -> Digit b -> Digit a #

Functor Node 

Methods

fmap :: (a -> b) -> Node a -> Node b #

(<$) :: a -> Node b -> Node a #

Functor Elem 

Methods

fmap :: (a -> b) -> Elem a -> Elem b #

(<$) :: a -> Elem b -> Elem a #

Functor ViewL 

Methods

fmap :: (a -> b) -> ViewL a -> ViewL b #

(<$) :: a -> ViewL b -> ViewL a #

Functor ViewR 

Methods

fmap :: (a -> b) -> ViewR a -> ViewR b #

(<$) :: a -> ViewR b -> ViewR a #

Functor NormM 

Methods

fmap :: (a -> b) -> NormM a -> NormM b #

(<$) :: a -> NormM b -> NormM a #

Functor UM 

Methods

fmap :: (a -> b) -> UM a -> UM b #

(<$) :: a -> UM b -> UM a #

Functor TaggedVal 

Methods

fmap :: (a -> b) -> TaggedVal a -> TaggedVal b #

(<$) :: a -> TaggedVal b -> TaggedVal a #

Functor CoreM 

Methods

fmap :: (a -> b) -> CoreM a -> CoreM b #

(<$) :: a -> CoreM b -> CoreM a #

Functor TcPluginM 

Methods

fmap :: (a -> b) -> TcPluginM a -> TcPluginM b #

(<$) :: a -> TcPluginM b -> TcPluginM a #

Functor Hsc 

Methods

fmap :: (a -> b) -> Hsc a -> Hsc b #

(<$) :: a -> Hsc b -> Hsc a #

Functor UnifyResultM 

Methods

fmap :: (a -> b) -> UnifyResultM a -> UnifyResultM b #

(<$) :: a -> UnifyResultM b -> UnifyResultM a #

Functor UniqDFM 

Methods

fmap :: (a -> b) -> UniqDFM a -> UniqDFM b #

(<$) :: a -> UniqDFM b -> UniqDFM a #

Functor UniqFM 

Methods

fmap :: (a -> b) -> UniqFM a -> UniqFM b #

(<$) :: a -> UniqFM b -> UniqFM a #

Functor UniqSM 

Methods

fmap :: (a -> b) -> UniqSM a -> UniqSM b #

(<$) :: a -> UniqSM b -> UniqSM a #

Functor SizedSeq 

Methods

fmap :: (a -> b) -> SizedSeq a -> SizedSeq b #

(<$) :: a -> SizedSeq b -> SizedSeq a #

Functor Doc 

Methods

fmap :: (a -> b) -> Doc a -> Doc b #

(<$) :: a -> Doc b -> Doc a #

Functor AnnotDetails 

Methods

fmap :: (a -> b) -> AnnotDetails a -> AnnotDetails b #

(<$) :: a -> AnnotDetails b -> AnnotDetails a #

Functor Span 

Methods

fmap :: (a -> b) -> Span a -> Span b #

(<$) :: a -> Span b -> Span a #

Functor (Either a)

Since: 3.0

Methods

fmap :: (a -> b) -> Either a a -> Either a b #

(<$) :: a -> Either a b -> Either a a #

Functor (V1 *) 

Methods

fmap :: (a -> b) -> V1 * a -> V1 * b #

(<$) :: a -> V1 * b -> V1 * a #

Functor (U1 *)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> U1 * a -> U1 * b #

(<$) :: a -> U1 * b -> U1 * a #

Functor ((,) a)

Since: 2.1

Methods

fmap :: (a -> b) -> (a, a) -> (a, b) #

(<$) :: a -> (a, b) -> (a, a) #

Functor (ST s)

Since: 2.1

Methods

fmap :: (a -> b) -> ST s a -> ST s b #

(<$) :: a -> ST s b -> ST s a #

Functor (Array i)

Since: 2.1

Methods

fmap :: (a -> b) -> Array i a -> Array i b #

(<$) :: a -> Array i b -> Array i a #

Functor (Arg a)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Arg a a -> Arg a b #

(<$) :: a -> Arg a b -> Arg a a #

Functor (ST s)

Since: 2.1

Methods

fmap :: (a -> b) -> ST s a -> ST s b #

(<$) :: a -> ST s b -> ST s a #

Monad m => Functor (WrappedMonad m)

Since: 2.1

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Arrow a => Functor (ArrowMonad a)

Since: 4.6.0.0

Methods

fmap :: (a -> b) -> ArrowMonad a a -> ArrowMonad a b #

(<$) :: a -> ArrowMonad a b -> ArrowMonad a a #

Functor (Proxy *)

Since: 4.7.0.0

Methods

fmap :: (a -> b) -> Proxy * a -> Proxy * b #

(<$) :: a -> Proxy * b -> Proxy * a #

Functor (SetM s) 

Methods

fmap :: (a -> b) -> SetM s a -> SetM s b #

(<$) :: a -> SetM s b -> SetM s a #

Functor (State s) 

Methods

fmap :: (a -> b) -> State s a -> State s b #

(<$) :: a -> State s b -> State s a #

Functor (Map k) 

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Functor (IOEnv m) 

Methods

fmap :: (a -> b) -> IOEnv m a -> IOEnv m b #

(<$) :: a -> IOEnv m b -> IOEnv m a #

Functor (GenLocated l) 

Methods

fmap :: (a -> b) -> GenLocated l a -> GenLocated l b #

(<$) :: a -> GenLocated l b -> GenLocated l a #

Functor m => Functor (MaybeT m) 

Methods

fmap :: (a -> b) -> MaybeT m a -> MaybeT m b #

(<$) :: a -> MaybeT m b -> MaybeT m a #

Functor (DbOpenMode mode) 

Methods

fmap :: (a -> b) -> DbOpenMode mode a -> DbOpenMode mode b #

(<$) :: a -> DbOpenMode mode b -> DbOpenMode mode a #

Functor m => Functor (ListT m) 

Methods

fmap :: (a -> b) -> ListT m a -> ListT m b #

(<$) :: a -> ListT m b -> ListT m a #

Functor f => Functor (Rec1 * f) 

Methods

fmap :: (a -> b) -> Rec1 * f a -> Rec1 * f b #

(<$) :: a -> Rec1 * f b -> Rec1 * f a #

Functor (URec * Char) 

Methods

fmap :: (a -> b) -> URec * Char a -> URec * Char b #

(<$) :: a -> URec * Char b -> URec * Char a #

Functor (URec * Double) 

Methods

fmap :: (a -> b) -> URec * Double a -> URec * Double b #

(<$) :: a -> URec * Double b -> URec * Double a #

Functor (URec * Float) 

Methods

fmap :: (a -> b) -> URec * Float a -> URec * Float b #

(<$) :: a -> URec * Float b -> URec * Float a #

Functor (URec * Int) 

Methods

fmap :: (a -> b) -> URec * Int a -> URec * Int b #

(<$) :: a -> URec * Int b -> URec * Int a #

Functor (URec * Word) 

Methods

fmap :: (a -> b) -> URec * Word a -> URec * Word b #

(<$) :: a -> URec * Word b -> URec * Word a #

Functor (URec * (Ptr ())) 

Methods

fmap :: (a -> b) -> URec * (Ptr ()) a -> URec * (Ptr ()) b #

(<$) :: a -> URec * (Ptr ()) b -> URec * (Ptr ()) a #

Arrow a => Functor (WrappedArrow a b)

Since: 2.1

Methods

fmap :: (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b #

(<$) :: a -> WrappedArrow a b b -> WrappedArrow a b a #

Functor (Const * m)

Since: 2.1

Methods

fmap :: (a -> b) -> Const * m a -> Const * m b #

(<$) :: a -> Const * m b -> Const * m a #

Functor f => Functor (Alt * f) 

Methods

fmap :: (a -> b) -> Alt * f a -> Alt * f b #

(<$) :: a -> Alt * f b -> Alt * f a #

(Applicative f, Monad f) => Functor (WhenMissing f x) 

Methods

fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b #

(<$) :: a -> WhenMissing f x b -> WhenMissing f x a #

Functor m => Functor (ErrorT e m) 

Methods

fmap :: (a -> b) -> ErrorT e m a -> ErrorT e m b #

(<$) :: a -> ErrorT e m b -> ErrorT e m a #

Functor m => Functor (ExceptT e m) 

Methods

fmap :: (a -> b) -> ExceptT e m a -> ExceptT e m b #

(<$) :: a -> ExceptT e m b -> ExceptT e m a #

Functor m => Functor (StateT s m) 

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b #

(<$) :: a -> StateT s m b -> StateT s m a #

Functor m => Functor (StateT s m) 

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b #

(<$) :: a -> StateT s m b -> StateT s m a #

Functor m => Functor (WriterT w m) 

Methods

fmap :: (a -> b) -> WriterT w m a -> WriterT w m b #

(<$) :: a -> WriterT w m b -> WriterT w m a #

Functor m => Functor (WriterT w m) 

Methods

fmap :: (a -> b) -> WriterT w m a -> WriterT w m b #

(<$) :: a -> WriterT w m b -> WriterT w m a #

Functor m => Functor (IdentityT * m) 

Methods

fmap :: (a -> b) -> IdentityT * m a -> IdentityT * m b #

(<$) :: a -> IdentityT * m b -> IdentityT * m a #

Functor ((->) LiftedRep LiftedRep r)

Since: 2.1

Methods

fmap :: (a -> b) -> (LiftedRep -> LiftedRep) r a -> (LiftedRep -> LiftedRep) r b #

(<$) :: a -> (LiftedRep -> LiftedRep) r b -> (LiftedRep -> LiftedRep) r a #

Functor (K1 * i c) 

Methods

fmap :: (a -> b) -> K1 * i c a -> K1 * i c b #

(<$) :: a -> K1 * i c b -> K1 * i c a #

(Functor g, Functor f) => Functor ((:+:) * f g) 

Methods

fmap :: (a -> b) -> (* :+: f) g a -> (* :+: f) g b #

(<$) :: a -> (* :+: f) g b -> (* :+: f) g a #

(Functor g, Functor f) => Functor ((:*:) * f g) 

Methods

fmap :: (a -> b) -> (* :*: f) g a -> (* :*: f) g b #

(<$) :: a -> (* :*: f) g b -> (* :*: f) g a #

(Functor f, Functor g) => Functor (Product * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Product * f g a -> Product * f g b #

(<$) :: a -> Product * f g b -> Product * f g a #

(Functor f, Functor g) => Functor (Sum * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Sum * f g a -> Sum * f g b #

(<$) :: a -> Sum * f g b -> Sum * f g a #

Functor f => Functor (WhenMatched f x y) 

Methods

fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b #

(<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a #

(Applicative f, Monad f) => Functor (WhenMissing f k x) 

Methods

fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b #

(<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a #

Functor (ContT k r m) 

Methods

fmap :: (a -> b) -> ContT k r m a -> ContT k r m b #

(<$) :: a -> ContT k r m b -> ContT k r m a #

Functor m => Functor (ReaderT * r m) 

Methods

fmap :: (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

(<$) :: a -> ReaderT * r m b -> ReaderT * r m a #

Functor f => Functor (M1 * i c f) 

Methods

fmap :: (a -> b) -> M1 * i c f a -> M1 * i c f b #

(<$) :: a -> M1 * i c f b -> M1 * i c f a #

(Functor g, Functor f) => Functor ((:.:) * * f g) 

Methods

fmap :: (a -> b) -> (* :.: *) f g a -> (* :.: *) f g b #

(<$) :: a -> (* :.: *) f g b -> (* :.: *) f g a #

(Functor f, Functor g) => Functor (Compose * * f g)

Since: 4.9.0.0

Methods

fmap :: (a -> b) -> Compose * * f g a -> Compose * * f g b #

(<$) :: a -> Compose * * f g b -> Compose * * f g a #

Functor f => Functor (WhenMatched f k x y) 

Methods

fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b #

(<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a #

Functor m => Functor (RWST r w s m) 

Methods

fmap :: (a -> b) -> RWST r w s m a -> RWST r w s m b #

(<$) :: a -> RWST r w s m b -> RWST r w s m a #

Functor m => Functor (RWST r w s m) 

Methods

fmap :: (a -> b) -> RWST r w s m a -> RWST r w s m b #

(<$) :: a -> RWST r w s m b -> RWST r w s m a #

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #

An infix synonym for fmap.

The name of this operator is an allusion to $. Note the similarities between their types:

 ($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Convert from a Maybe Int to a Maybe String using show:

>>> show <$> Nothing
Nothing
>>> show <$> Just 3
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> show <$> Left 17
Left 17
>>> show <$> Right 17
Right "17"

Double each element of a list:

>>> (*2) <$> [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> even <$> (2,2)
(2,True)

Folds and traversals

class Foldable (t :: * -> *) where #

Data structures that can be folded.

For example, given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Foldable Tree where
   foldMap f Empty = mempty
   foldMap f (Leaf x) = f x
   foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r

This is suitable even for abstract types, as the monoid is assumed to satisfy the monoid laws. Alternatively, one could define foldr:

instance Foldable Tree where
   foldr f z Empty = z
   foldr f z (Leaf x) = f x z
   foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l

Foldable instances are expected to satisfy the following laws:

foldr f z t = appEndo (foldMap (Endo . f) t ) z
foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z
fold = foldMap id

sum, product, maximum, and minimum should all be essentially equivalent to foldMap forms, such as

sum = getSum . foldMap Sum

but may be less defined.

If the type is also a Functor instance, it should satisfy

foldMap f = fold . fmap f

which implies that

foldMap f . fmap g = foldMap (f . g)

Minimal complete definition

foldMap | foldr

Methods

foldMap :: Monoid m => (a -> m) -> t a -> m #

Map each element of the structure to a monoid, and combine the results.

foldr :: (a -> b -> b) -> b -> t a -> b #

Right-associative fold of a structure.

In the case of lists, foldr, when applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

Note that, since the head of the resulting expression is produced by an application of the operator to the first element of the list, foldr can produce a terminating expression from an infinite list.

For a general Foldable structure this should be semantically identical to,

foldr f z = foldr f z . toList

foldl :: (b -> a -> b) -> b -> t a -> b #

Left-associative fold of a structure.

In the case of lists, foldl, when applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:

foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

Note that to produce the outermost application of the operator the entire input list must be traversed. This means that foldl' will diverge if given an infinite list.

Also note that if you want an efficient left-fold, you probably want to use foldl' instead of foldl. The reason for this is that latter does not force the "inner" results (e.g. z f x1 in the above example) before applying them to the operator (e.g. to (f x2)). This results in a thunk chain O(n) elements long, which then must be evaluated from the outside-in.

For a general Foldable structure this should be semantically identical to,

foldl f z = foldl f z . toList

foldr1 :: (a -> a -> a) -> t a -> a #

A variant of foldr that has no base case, and thus may only be applied to non-empty structures.

foldr1 f = foldr1 f . toList

foldl1 :: (a -> a -> a) -> t a -> a #

A variant of foldl that has no base case, and thus may only be applied to non-empty structures.

foldl1 f = foldl1 f . toList

null :: t a -> Bool #

Test whether the structure is empty. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

length :: t a -> Int #

Returns the size/length of a finite structure as an Int. The default implementation is optimized for structures that are similar to cons-lists, because there is no general way to do better.

elem :: Eq a => a -> t a -> Bool infix 4 #

Does the element occur in the structure?

maximum :: Ord a => t a -> a #

The largest element of a non-empty structure.

minimum :: Ord a => t a -> a #

The least element of a non-empty structure.

sum :: Num a => t a -> a #

The sum function computes the sum of the numbers of a structure.

product :: Num a => t a -> a #

The product function computes the product of the numbers of a structure.

Instances

Foldable []

Since: 2.1

Methods

fold :: Monoid m => [m] -> m #

foldMap :: Monoid m => (a -> m) -> [a] -> m #

foldr :: (a -> b -> b) -> b -> [a] -> b #

foldr' :: (a -> b -> b) -> b -> [a] -> b #

foldl :: (b -> a -> b) -> b -> [a] -> b #

foldl' :: (b -> a -> b) -> b -> [a] -> b #

foldr1 :: (a -> a -> a) -> [a] -> a #

foldl1 :: (a -> a -> a) -> [a] -> a #

toList :: [a] -> [a] #

null :: [a] -> Bool #

length :: [a] -> Int #

elem :: Eq a => a -> [a] -> Bool #

maximum :: Ord a => [a] -> a #

minimum :: Ord a => [a] -> a #

sum :: Num a => [a] -> a #

product :: Num a => [a] -> a #

Foldable Maybe

Since: 2.1

Methods

fold :: Monoid m => Maybe m -> m #

foldMap :: Monoid m => (a -> m) -> Maybe a -> m #

foldr :: (a -> b -> b) -> b -> Maybe a -> b #

foldr' :: (a -> b -> b) -> b -> Maybe a -> b #

foldl :: (b -> a -> b) -> b -> Maybe a -> b #

foldl' :: (b -> a -> b) -> b -> Maybe a -> b #

foldr1 :: (a -> a -> a) -> Maybe a -> a #

foldl1 :: (a -> a -> a) -> Maybe a -> a #

toList :: Maybe a -> [a] #

null :: Maybe a -> Bool #

length :: Maybe a -> Int #

elem :: Eq a => a -> Maybe a -> Bool #

maximum :: Ord a => Maybe a -> a #

minimum :: Ord a => Maybe a -> a #

sum :: Num a => Maybe a -> a #

product :: Num a => Maybe a -> a #

Foldable Par1 

Methods

fold :: Monoid m => Par1 m -> m #

foldMap :: Monoid m => (a -> m) -> Par1 a -> m #

foldr :: (a -> b -> b) -> b -> Par1 a -> b #

foldr' :: (a -> b -> b) -> b -> Par1 a -> b #

foldl :: (b -> a -> b) -> b -> Par1 a -> b #

foldl' :: (b -> a -> b) -> b -> Par1 a -> b #

foldr1 :: (a -> a -> a) -> Par1 a -> a #

foldl1 :: (a -> a -> a) -> Par1 a -> a #

toList :: Par1 a -> [a] #

null :: Par1 a -> Bool #

length :: Par1 a -> Int #

elem :: Eq a => a -> Par1 a -> Bool #

maximum :: Ord a => Par1 a -> a #

minimum :: Ord a => Par1 a -> a #

sum :: Num a => Par1 a -> a #

product :: Num a => Par1 a -> a #

Foldable Complex 

Methods

fold :: Monoid m => Complex m -> m #

foldMap :: Monoid m => (a -> m) -> Complex a -> m #

foldr :: (a -> b -> b) -> b -> Complex a -> b #

foldr' :: (a -> b -> b) -> b -> Complex a -> b #

foldl :: (b -> a -> b) -> b -> Complex a -> b #

foldl' :: (b -> a -> b) -> b -> Complex a -> b #

foldr1 :: (a -> a -> a) -> Complex a -> a #

foldl1 :: (a -> a -> a) -> Complex a -> a #

toList :: Complex a -> [a] #

null :: Complex a -> Bool #

length :: Complex a -> Int #

elem :: Eq a => a -> Complex a -> Bool #

maximum :: Ord a => Complex a -> a #

minimum :: Ord a => Complex a -> a #

sum :: Num a => Complex a -> a #

product :: Num a => Complex a -> a #

Foldable Min

Since: 4.9.0.0

Methods

fold :: Monoid m => Min m -> m #

foldMap :: Monoid m => (a -> m) -> Min a -> m #

foldr :: (a -> b -> b) -> b -> Min a -> b #

foldr' :: (a -> b -> b) -> b -> Min a -> b #

foldl :: (b -> a -> b) -> b -> Min a -> b #

foldl' :: (b -> a -> b) -> b -> Min a -> b #

foldr1 :: (a -> a -> a) -> Min a -> a #

foldl1 :: (a -> a -> a) -> Min a -> a #

toList :: Min a -> [a] #

null :: Min a -> Bool #

length :: Min a -> Int #

elem :: Eq a => a -> Min a -> Bool #

maximum :: Ord a => Min a -> a #

minimum :: Ord a => Min a -> a #

sum :: Num a => Min a -> a #

product :: Num a => Min a -> a #

Foldable Max

Since: 4.9.0.0

Methods

fold :: Monoid m => Max m -> m #

foldMap :: Monoid m => (a -> m) -> Max a -> m #

foldr :: (a -> b -> b) -> b -> Max a -> b #

foldr' :: (a -> b -> b) -> b -> Max a -> b #

foldl :: (b -> a -> b) -> b -> Max a -> b #

foldl' :: (b -> a -> b) -> b -> Max a -> b #

foldr1 :: (a -> a -> a) -> Max a -> a #

foldl1 :: (a -> a -> a) -> Max a -> a #

toList :: Max a -> [a] #

null :: Max a -> Bool #

length :: Max a -> Int #

elem :: Eq a => a -> Max a -> Bool #

maximum :: Ord a => Max a -> a #

minimum :: Ord a => Max a -> a #

sum :: Num a => Max a -> a #

product :: Num a => Max a -> a #

Foldable First

Since: 4.9.0.0

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: 4.9.0.0

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable Option

Since: 4.9.0.0

Methods

fold :: Monoid m => Option m -> m #

foldMap :: Monoid m => (a -> m) -> Option a -> m #

foldr :: (a -> b -> b) -> b -> Option a -> b #

foldr' :: (a -> b -> b) -> b -> Option a -> b #

foldl :: (b -> a -> b) -> b -> Option a -> b #

foldl' :: (b -> a -> b) -> b -> Option a -> b #

foldr1 :: (a -> a -> a) -> Option a -> a #

foldl1 :: (a -> a -> a) -> Option a -> a #

toList :: Option a -> [a] #

null :: Option a -> Bool #

length :: Option a -> Int #

elem :: Eq a => a -> Option a -> Bool #

maximum :: Ord a => Option a -> a #

minimum :: Ord a => Option a -> a #

sum :: Num a => Option a -> a #

product :: Num a => Option a -> a #

Foldable NonEmpty

Since: 4.9.0.0

Methods

fold :: Monoid m => NonEmpty m -> m #

foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m #

foldr :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b #

foldl :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b #

foldr1 :: (a -> a -> a) -> NonEmpty a -> a #

foldl1 :: (a -> a -> a) -> NonEmpty a -> a #

toList :: NonEmpty a -> [a] #

null :: NonEmpty a -> Bool #

length :: NonEmpty a -> Int #

elem :: Eq a => a -> NonEmpty a -> Bool #

maximum :: Ord a => NonEmpty a -> a #

minimum :: Ord a => NonEmpty a -> a #

sum :: Num a => NonEmpty a -> a #

product :: Num a => NonEmpty a -> a #

Foldable ZipList 

Methods

fold :: Monoid m => ZipList m -> m #

foldMap :: Monoid m => (a -> m) -> ZipList a -> m #

foldr :: (a -> b -> b) -> b -> ZipList a -> b #

foldr' :: (a -> b -> b) -> b -> ZipList a -> b #

foldl :: (b -> a -> b) -> b -> ZipList a -> b #

foldl' :: (b -> a -> b) -> b -> ZipList a -> b #

foldr1 :: (a -> a -> a) -> ZipList a -> a #

foldl1 :: (a -> a -> a) -> ZipList a -> a #

toList :: ZipList a -> [a] #

null :: ZipList a -> Bool #

length :: ZipList a -> Int #

elem :: Eq a => a -> ZipList a -> Bool #

maximum :: Ord a => ZipList a -> a #

minimum :: Ord a => ZipList a -> a #

sum :: Num a => ZipList a -> a #

product :: Num a => ZipList a -> a #

Foldable Identity

Since: 4.8.0.0

Methods

fold :: Monoid m => Identity m -> m #

foldMap :: Monoid m => (a -> m) -> Identity a -> m #

foldr :: (a -> b -> b) -> b -> Identity a -> b #

foldr' :: (a -> b -> b) -> b -> Identity a -> b #

foldl :: (b -> a -> b) -> b -> Identity a -> b #

foldl' :: (b -> a -> b) -> b -> Identity a -> b #

foldr1 :: (a -> a -> a) -> Identity a -> a #

foldl1 :: (a -> a -> a) -> Identity a -> a #

toList :: Identity a -> [a] #

null :: Identity a -> Bool #

length :: Identity a -> Int #

elem :: Eq a => a -> Identity a -> Bool #

maximum :: Ord a => Identity a -> a #

minimum :: Ord a => Identity a -> a #

sum :: Num a => Identity a -> a #

product :: Num a => Identity a -> a #

Foldable Dual

Since: 4.8.0.0

Methods

fold :: Monoid m => Dual m -> m #

foldMap :: Monoid m => (a -> m) -> Dual a -> m #

foldr :: (a -> b -> b) -> b -> Dual a -> b #

foldr' :: (a -> b -> b) -> b -> Dual a -> b #

foldl :: (b -> a -> b) -> b -> Dual a -> b #

foldl' :: (b -> a -> b) -> b -> Dual a -> b #

foldr1 :: (a -> a -> a) -> Dual a -> a #

foldl1 :: (a -> a -> a) -> Dual a -> a #

toList :: Dual a -> [a] #

null :: Dual a -> Bool #

length :: Dual a -> Int #

elem :: Eq a => a -> Dual a -> Bool #

maximum :: Ord a => Dual a -> a #

minimum :: Ord a => Dual a -> a #

sum :: Num a => Dual a -> a #

product :: Num a => Dual a -> a #

Foldable Sum

Since: 4.8.0.0

Methods

fold :: Monoid m => Sum m -> m #

foldMap :: Monoid m => (a -> m) -> Sum a -> m #

foldr :: (a -> b -> b) -> b -> Sum a -> b #

foldr' :: (a -> b -> b) -> b -> Sum a -> b #

foldl :: (b -> a -> b) -> b -> Sum a -> b #

foldl' :: (b -> a -> b) -> b -> Sum a -> b #

foldr1 :: (a -> a -> a) -> Sum a -> a #

foldl1 :: (a -> a -> a) -> Sum a -> a #

toList :: Sum a -> [a] #

null :: Sum a -> Bool #

length :: Sum a -> Int #

elem :: Eq a => a -> Sum a -> Bool #

maximum :: Ord a => Sum a -> a #

minimum :: Ord a => Sum a -> a #

sum :: Num a => Sum a -> a #

product :: Num a => Sum a -> a #

Foldable Product

Since: 4.8.0.0

Methods

fold :: Monoid m => Product m -> m #

foldMap :: Monoid m => (a -> m) -> Product a -> m #

foldr :: (a -> b -> b) -> b -> Product a -> b #

foldr' :: (a -> b -> b) -> b -> Product a -> b #

foldl :: (b -> a -> b) -> b -> Product a -> b #

foldl' :: (b -> a -> b) -> b -> Product a -> b #

foldr1 :: (a -> a -> a) -> Product a -> a #

foldl1 :: (a -> a -> a) -> Product a -> a #

toList :: Product a -> [a] #

null :: Product a -> Bool #

length :: Product a -> Int #

elem :: Eq a => a -> Product a -> Bool #

maximum :: Ord a => Product a -> a #

minimum :: Ord a => Product a -> a #

sum :: Num a => Product a -> a #

product :: Num a => Product a -> a #

Foldable First

Since: 4.8.0.0

Methods

fold :: Monoid m => First m -> m #

foldMap :: Monoid m => (a -> m) -> First a -> m #

foldr :: (a -> b -> b) -> b -> First a -> b #

foldr' :: (a -> b -> b) -> b -> First a -> b #

foldl :: (b -> a -> b) -> b -> First a -> b #

foldl' :: (b -> a -> b) -> b -> First a -> b #

foldr1 :: (a -> a -> a) -> First a -> a #

foldl1 :: (a -> a -> a) -> First a -> a #

toList :: First a -> [a] #

null :: First a -> Bool #

length :: First a -> Int #

elem :: Eq a => a -> First a -> Bool #

maximum :: Ord a => First a -> a #

minimum :: Ord a => First a -> a #

sum :: Num a => First a -> a #

product :: Num a => First a -> a #

Foldable Last

Since: 4.8.0.0

Methods

fold :: Monoid m => Last m -> m #

foldMap :: Monoid m => (a -> m) -> Last a -> m #

foldr :: (a -> b -> b) -> b -> Last a -> b #

foldr' :: (a -> b -> b) -> b -> Last a -> b #

foldl :: (b -> a -> b) -> b -> Last a -> b #

foldl' :: (b -> a -> b) -> b -> Last a -> b #

foldr1 :: (a -> a -> a) -> Last a -> a #

foldl1 :: (a -> a -> a) -> Last a -> a #

toList :: Last a -> [a] #

null :: Last a -> Bool #

length :: Last a -> Int #

elem :: Eq a => a -> Last a -> Bool #

maximum :: Ord a => Last a -> a #

minimum :: Ord a => Last a -> a #

sum :: Num a => Last a -> a #

product :: Num a => Last a -> a #

Foldable IntMap 

Methods

fold :: Monoid m => IntMap m -> m #

foldMap :: Monoid m => (a -> m) -> IntMap a -> m #

foldr :: (a -> b -> b) -> b -> IntMap a -> b #

foldr' :: (a -> b -> b) -> b -> IntMap a -> b #

foldl :: (b -> a -> b) -> b -> IntMap a -> b #

foldl' :: (b -> a -> b) -> b -> IntMap a -> b #

foldr1 :: (a -> a -> a) -> IntMap a -> a #

foldl1 :: (a -> a -> a) -> IntMap a -> a #

toList :: IntMap a -> [a] #

null :: IntMap a -> Bool #

length :: IntMap a -> Int #

elem :: Eq a => a -> IntMap a -> Bool #

maximum :: Ord a => IntMap a -> a #

minimum :: Ord a => IntMap a -> a #

sum :: Num a => IntMap a -> a #

product :: Num a => IntMap a -> a #

Foldable SCC 

Methods

fold :: Monoid m => SCC m -> m #

foldMap :: Monoid m => (a -> m) -> SCC a -> m #

foldr :: (a -> b -> b) -> b -> SCC a -> b #

foldr' :: (a -> b -> b) -> b -> SCC a -> b #

foldl :: (b -> a -> b) -> b -> SCC a -> b #

foldl' :: (b -> a -> b) -> b -> SCC a -> b #

foldr1 :: (a -> a -> a) -> SCC a -> a #

foldl1 :: (a -> a -> a) -> SCC a -> a #

toList :: SCC a -> [a] #

null :: SCC a -> Bool #

length :: SCC a -> Int #

elem :: Eq a => a -> SCC a -> Bool #

maximum :: Ord a => SCC a -> a #

minimum :: Ord a => SCC a -> a #

sum :: Num a => SCC a -> a #

product :: Num a => SCC a -> a #

Foldable Tree 

Methods

fold :: Monoid m => Tree m -> m #

foldMap :: Monoid m => (a -> m) -> Tree a -> m #

foldr :: (a -> b -> b) -> b -> Tree a -> b #

foldr' :: (a -> b -> b) -> b -> Tree a -> b #

foldl :: (b -> a -> b) -> b -> Tree a -> b #

foldl' :: (b -> a -> b) -> b -> Tree a -> b #

foldr1 :: (a -> a -> a) -> Tree a -> a #

foldl1 :: (a -> a -> a) -> Tree a -> a #

toList :: Tree a -> [a] #

null :: Tree a -> Bool #

length :: Tree a -> Int #

elem :: Eq a => a -> Tree a -> Bool #

maximum :: Ord a => Tree a -> a #

minimum :: Ord a => Tree a -> a #

sum :: Num a => Tree a -> a #

product :: Num a => Tree a -> a #

Foldable Seq 

Methods

fold :: Monoid m => Seq m -> m #

foldMap :: Monoid m => (a -> m) -> Seq a -> m #

foldr :: (a -> b -> b) -> b -> Seq a -> b #

foldr' :: (a -> b -> b) -> b -> Seq a -> b #

foldl :: (b -> a -> b) -> b -> Seq a -> b #

foldl' :: (b -> a -> b) -> b -> Seq a -> b #

foldr1 :: (a -> a -> a) -> Seq a -> a #

foldl1 :: (a -> a -> a) -> Seq a -> a #

toList :: Seq a -> [a] #

null :: Seq a -> Bool #

length :: Seq a -> Int #

elem :: Eq a => a -> Seq a -> Bool #

maximum :: Ord a => Seq a -> a #

minimum :: Ord a => Seq a -> a #

sum :: Num a => Seq a -> a #

product :: Num a => Seq a -> a #

Foldable FingerTree 

Methods

fold :: Monoid m => FingerTree m -> m #

foldMap :: Monoid m => (a -> m) -> FingerTree a -> m #

foldr :: (a -> b -> b) -> b -> FingerTree a -> b #

foldr' :: (a -> b -> b) -> b -> FingerTree a -> b #

foldl :: (b -> a -> b) -> b -> FingerTree a -> b #

foldl' :: (b -> a -> b) -> b -> FingerTree a -> b #

foldr1 :: (a -> a -> a) -> FingerTree a -> a #

foldl1 :: (a -> a -> a) -> FingerTree a -> a #

toList :: FingerTree a -> [a] #

null :: FingerTree a -> Bool #

length :: FingerTree a -> Int #

elem :: Eq a => a -> FingerTree a -> Bool #

maximum :: Ord a => FingerTree a -> a #

minimum :: Ord a => FingerTree a -> a #

sum :: Num a => FingerTree a -> a #

product :: Num a => FingerTree a -> a #

Foldable Digit 

Methods

fold :: Monoid m => Digit m -> m #

foldMap :: Monoid m => (a -> m) -> Digit a -> m #

foldr :: (a -> b -> b) -> b -> Digit a -> b #

foldr' :: (a -> b -> b) -> b -> Digit a -> b #

foldl :: (b -> a -> b) -> b -> Digit a -> b #

foldl' :: (b -> a -> b) -> b -> Digit a -> b #

foldr1 :: (a -> a -> a) -> Digit a -> a #

foldl1 :: (a -> a -> a) -> Digit a -> a #

toList :: Digit a -> [a] #

null :: Digit a -> Bool #

length :: Digit a -> Int #

elem :: Eq a => a -> Digit a -> Bool #

maximum :: Ord a => Digit a -> a #

minimum :: Ord a => Digit a -> a #

sum :: Num a => Digit a -> a #

product :: Num a => Digit a -> a #

Foldable Node 

Methods

fold :: Monoid m => Node m -> m #

foldMap :: Monoid m => (a -> m) -> Node a -> m #

foldr :: (a -> b -> b) -> b -> Node a -> b #

foldr' :: (a -> b -> b) -> b -> Node a -> b #

foldl :: (b -> a -> b) -> b -> Node a -> b #

foldl' :: (b -> a -> b) -> b -> Node a -> b #

foldr1 :: (a -> a -> a) -> Node a -> a #

foldl1 :: (a -> a -> a) -> Node a -> a #

toList :: Node a -> [a] #

null :: Node a -> Bool #

length :: Node a -> Int #

elem :: Eq a => a -> Node a -> Bool #

maximum :: Ord a => Node a -> a #

minimum :: Ord a => Node a -> a #

sum :: Num a => Node a -> a #

product :: Num a => Node a -> a #

Foldable Elem 

Methods

fold :: Monoid m => Elem m -> m #

foldMap :: Monoid m => (a -> m) -> Elem a -> m #

foldr :: (a -> b -> b) -> b -> Elem a -> b #

foldr' :: (a -> b -> b) -> b -> Elem a -> b #

foldl :: (b -> a -> b) -> b -> Elem a -> b #

foldl' :: (b -> a -> b) -> b -> Elem a -> b #

foldr1 :: (a -> a -> a) -> Elem a -> a #

foldl1 :: (a -> a -> a) -> Elem a -> a #

toList :: Elem a -> [a] #

null :: Elem a -> Bool #

length :: Elem a -> Int #

elem :: Eq a => a -> Elem a -> Bool #

maximum :: Ord a => Elem a -> a #

minimum :: Ord a => Elem a -> a #

sum :: Num a => Elem a -> a #

product :: Num a => Elem a -> a #

Foldable ViewL 

Methods

fold :: Monoid m => ViewL m -> m #

foldMap :: Monoid m => (a -> m) -> ViewL a -> m #

foldr :: (a -> b -> b) -> b -> ViewL a -> b #

foldr' :: (a -> b -> b) -> b -> ViewL a -> b #

foldl :: (b -> a -> b) -> b -> ViewL a -> b #

foldl' :: (b -> a -> b) -> b -> ViewL a -> b #

foldr1 :: (a -> a -> a) -> ViewL a -> a #

foldl1 :: (a -> a -> a) -> ViewL a -> a #

toList :: ViewL a -> [a] #

null :: ViewL a -> Bool #

length :: ViewL a -> Int #

elem :: Eq a => a -> ViewL a -> Bool #

maximum :: Ord a => ViewL a -> a #

minimum :: Ord a => ViewL a -> a #

sum :: Num a => ViewL a -> a #

product :: Num a => ViewL a -> a #

Foldable ViewR 

Methods

fold :: Monoid m => ViewR m -> m #

foldMap :: Monoid m => (a -> m) -> ViewR a -> m #

foldr :: (a -> b -> b) -> b -> ViewR a -> b #

foldr' :: (a -> b -> b) -> b -> ViewR a -> b #

foldl :: (b -> a -> b) -> b -> ViewR a -> b #

foldl' :: (b -> a -> b) -> b -> ViewR a -> b #

foldr1 :: (a -> a -> a) -> ViewR a -> a #

foldl1 :: (a -> a -> a) -> ViewR a -> a #

toList :: ViewR a -> [a] #

null :: ViewR a -> Bool #

length :: ViewR a -> Int #

elem :: Eq a => a -> ViewR a -> Bool #

maximum :: Ord a => ViewR a -> a #

minimum :: Ord a => ViewR a -> a #

sum :: Num a => ViewR a -> a #

product :: Num a => ViewR a -> a #

Foldable Set 

Methods

fold :: Monoid m => Set m -> m #

foldMap :: Monoid m => (a -> m) -> Set a -> m #

foldr :: (a -> b -> b) -> b -> Set a -> b #

foldr' :: (a -> b -> b) -> b -> Set a -> b #

foldl :: (b -> a -> b) -> b -> Set a -> b #

foldl' :: (b -> a -> b) -> b -> Set a -> b #

foldr1 :: (a -> a -> a) -> Set a -> a #

foldl1 :: (a -> a -> a) -> Set a -> a #

toList :: Set a -> [a] #

null :: Set a -> Bool #

length :: Set a -> Int #

elem :: Eq a => a -> Set a -> Bool #

maximum :: Ord a => Set a -> a #

minimum :: Ord a => Set a -> a #

sum :: Num a => Set a -> a #

product :: Num a => Set a -> a #

Foldable SizedSeq 

Methods

fold :: Monoid m => SizedSeq m -> m #

foldMap :: Monoid m => (a -> m) -> SizedSeq a -> m #

foldr :: (a -> b -> b) -> b -> SizedSeq a -> b #

foldr' :: (a -> b -> b) -> b -> SizedSeq a -> b #

foldl :: (b -> a -> b) -> b -> SizedSeq a -> b #

foldl' :: (b -> a -> b) -> b -> SizedSeq a -> b #

foldr1 :: (a -> a -> a) -> SizedSeq a -> a #

foldl1 :: (a -> a -> a) -> SizedSeq a -> a #

toList :: SizedSeq a -> [a] #

null :: SizedSeq a -> Bool #

length :: SizedSeq a -> Int #

elem :: Eq a => a -> SizedSeq a -> Bool #

maximum :: Ord a => SizedSeq a -> a #

minimum :: Ord a => SizedSeq a -> a #

sum :: Num a => SizedSeq a -> a #

product :: Num a => SizedSeq a -> a #

Foldable (Either a)

Since: 4.7.0.0

Methods

fold :: Monoid m => Either a m -> m #

foldMap :: Monoid m => (a -> m) -> Either a a -> m #

foldr :: (a -> b -> b) -> b -> Either a a -> b #

foldr' :: (a -> b -> b) -> b -> Either a a -> b #

foldl :: (b -> a -> b) -> b -> Either a a -> b #

foldl' :: (b -> a -> b) -> b -> Either a a -> b #

foldr1 :: (a -> a -> a) -> Either a a -> a #

foldl1 :: (a -> a -> a) -> Either a a -> a #

toList :: Either a a -> [a] #

null :: Either a a -> Bool #

length :: Either a a -> Int #

elem :: Eq a => a -> Either a a -> Bool #

maximum :: Ord a => Either a a -> a #

minimum :: Ord a => Either a a -> a #

sum :: Num a => Either a a -> a #

product :: Num a => Either a a -> a #

Foldable (V1 *) 

Methods

fold :: Monoid m => V1 * m -> m #

foldMap :: Monoid m => (a -> m) -> V1 * a -> m #

foldr :: (a -> b -> b) -> b -> V1 * a -> b #

foldr' :: (a -> b -> b) -> b -> V1 * a -> b #

foldl :: (b -> a -> b) -> b -> V1 * a -> b #

foldl' :: (b -> a -> b) -> b -> V1 * a -> b #

foldr1 :: (a -> a -> a) -> V1 * a -> a #

foldl1 :: (a -> a -> a) -> V1 * a -> a #

toList :: V1 * a -> [a] #

null :: V1 * a -> Bool #

length :: V1 * a -> Int #

elem :: Eq a => a -> V1 * a -> Bool #

maximum :: Ord a => V1 * a -> a #

minimum :: Ord a => V1 * a -> a #

sum :: Num a => V1 * a -> a #

product :: Num a => V1 * a -> a #

Foldable (U1 *)

Since: 4.9.0.0

Methods

fold :: Monoid m => U1 * m -> m #

foldMap :: Monoid m => (a -> m) -> U1 * a -> m #

foldr :: (a -> b -> b) -> b -> U1 * a -> b #

foldr' :: (a -> b -> b) -> b -> U1 * a -> b #

foldl :: (b -> a -> b) -> b -> U1 * a -> b #

foldl' :: (b -> a -> b) -> b -> U1 * a -> b #

foldr1 :: (a -> a -> a) -> U1 * a -> a #

foldl1 :: (a -> a -> a) -> U1 * a -> a #

toList :: U1 * a -> [a] #

null :: U1 * a -> Bool #

length :: U1 * a -> Int #

elem :: Eq a => a -> U1 * a -> Bool #

maximum :: Ord a => U1 * a -> a #

minimum :: Ord a => U1 * a -> a #

sum :: Num a => U1 * a -> a #

product :: Num a => U1 * a -> a #

Foldable ((,) a)

Since: 4.7.0.0

Methods

fold :: Monoid m => (a, m) -> m #

foldMap :: Monoid m => (a -> m) -> (a, a) -> m #

foldr :: (a -> b -> b) -> b -> (a, a) -> b #

foldr' :: (a -> b -> b) -> b -> (a, a) -> b #

foldl :: (b -> a -> b) -> b -> (a, a) -> b #

foldl' :: (b -> a -> b) -> b -> (a, a) -> b #

foldr1 :: (a -> a -> a) -> (a, a) -> a #

foldl1 :: (a -> a -> a) -> (a, a) -> a #

toList :: (a, a) -> [a] #

null :: (a, a) -> Bool #

length :: (a, a) -> Int #

elem :: Eq a => a -> (a, a) -> Bool #

maximum :: Ord a => (a, a) -> a #

minimum :: Ord a => (a, a) -> a #

sum :: Num a => (a, a) -> a #

product :: Num a => (a, a) -> a #

Foldable (Array i)

Since: 4.8.0.0

Methods

fold :: Monoid m => Array i m -> m #

foldMap :: Monoid m => (a -> m) -> Array i a -> m #

foldr :: (a -> b -> b) -> b -> Array i a -> b #

foldr' :: (a -> b -> b) -> b -> Array i a -> b #

foldl :: (b -> a -> b) -> b -> Array i a -> b #

foldl' :: (b -> a -> b) -> b -> Array i a -> b #

foldr1 :: (a -> a -> a) -> Array i a -> a #

foldl1 :: (a -> a -> a) -> Array i a -> a #

toList :: Array i a -> [a] #

null :: Array i a -> Bool #

length :: Array i a -> Int #

elem :: Eq a => a -> Array i a -> Bool #

maximum :: Ord a => Array i a -> a #

minimum :: Ord a => Array i a -> a #

sum :: Num a => Array i a -> a #

product :: Num a => Array i a -> a #

Foldable (Arg a)

Since: 4.9.0.0

Methods

fold :: Monoid m => Arg a m -> m #

foldMap :: Monoid m => (a -> m) -> Arg a a -> m #

foldr :: (a -> b -> b) -> b -> Arg a a -> b #

foldr' :: (a -> b -> b) -> b -> Arg a a -> b #

foldl :: (b -> a -> b) -> b -> Arg a a -> b #

foldl' :: (b -> a -> b) -> b -> Arg a a -> b #

foldr1 :: (a -> a -> a) -> Arg a a -> a #

foldl1 :: (a -> a -> a) -> Arg a a -> a #

toList :: Arg a a -> [a] #

null :: Arg a a -> Bool #

length :: Arg a a -> Int #

elem :: Eq a => a -> Arg a a -> Bool #

maximum :: Ord a => Arg a a -> a #

minimum :: Ord a => Arg a a -> a #

sum :: Num a => Arg a a -> a #

product :: Num a => Arg a a -> a #

Foldable (Proxy *)

Since: 4.7.0.0

Methods

fold :: Monoid m => Proxy * m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy * a -> m #

foldr :: (a -> b -> b) -> b -> Proxy * a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy * a -> b #

foldl :: (b -> a -> b) -> b -> Proxy * a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy * a -> b #

foldr1 :: (a -> a -> a) -> Proxy * a -> a #

foldl1 :: (a -> a -> a) -> Proxy * a -> a #

toList :: Proxy * a -> [a] #

null :: Proxy * a -> Bool #

length :: Proxy * a -> Int #

elem :: Eq a => a -> Proxy * a -> Bool #

maximum :: Ord a => Proxy * a -> a #

minimum :: Ord a => Proxy * a -> a #

sum :: Num a => Proxy * a -> a #

product :: Num a => Proxy * a -> a #

Foldable (Map k) 

Methods

fold :: Monoid m => Map k m -> m #

foldMap :: Monoid m => (a -> m) -> Map k a -> m #

foldr :: (a -> b -> b) -> b -> Map k a -> b #

foldr' :: (a -> b -> b) -> b -> Map k a -> b #

foldl :: (b -> a -> b) -> b -> Map k a -> b #

foldl' :: (b -> a -> b) -> b -> Map k a -> b #

foldr1 :: (a -> a -> a) -> Map k a -> a #

foldl1 :: (a -> a -> a) -> Map k a -> a #

toList :: Map k a -> [a] #

null :: Map k a -> Bool #

length :: Map k a -> Int #

elem :: Eq a => a -> Map k a -> Bool #

maximum :: Ord a => Map k a -> a #

minimum :: Ord a => Map k a -> a #

sum :: Num a => Map k a -> a #

product :: Num a => Map k a -> a #

Foldable (GenLocated l) 

Methods

fold :: Monoid m => GenLocated l m -> m #

foldMap :: Monoid m => (a -> m) -> GenLocated l a -> m #

foldr :: (a -> b -> b) -> b -> GenLocated l a -> b #

foldr' :: (a -> b -> b) -> b -> GenLocated l a -> b #

foldl :: (b -> a -> b) -> b -> GenLocated l a -> b #

foldl' :: (b -> a -> b) -> b -> GenLocated l a -> b #

foldr1 :: (a -> a -> a) -> GenLocated l a -> a #

foldl1 :: (a -> a -> a) -> GenLocated l a -> a #

toList :: GenLocated l a -> [a] #

null :: GenLocated l a -> Bool #

length :: GenLocated l a -> Int #

elem :: Eq a => a -> GenLocated l a -> Bool #

maximum :: Ord a => GenLocated l a -> a #

minimum :: Ord a => GenLocated l a -> a #

sum :: Num a => GenLocated l a -> a #

product :: Num a => GenLocated l a -> a #

Foldable f => Foldable (MaybeT f) 

Methods

fold :: Monoid m => MaybeT f m -> m #

foldMap :: Monoid m => (a -> m) -> MaybeT f a -> m #

foldr :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldr' :: (a -> b -> b) -> b -> MaybeT f a -> b #

foldl :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldl' :: (b -> a -> b) -> b -> MaybeT f a -> b #

foldr1 :: (a -> a -> a) -> MaybeT f a -> a #

foldl1 :: (a -> a -> a) -> MaybeT f a -> a #

toList :: MaybeT f a -> [a] #

null :: MaybeT f a -> Bool #

length :: MaybeT f a -> Int #

elem :: Eq a => a -> MaybeT f a -> Bool #

maximum :: Ord a => MaybeT f a -> a #

minimum :: Ord a => MaybeT f a -> a #

sum :: Num a => MaybeT f a -> a #

product :: Num a => MaybeT f a -> a #

Foldable (DbOpenMode mode) 

Methods

fold :: Monoid m => DbOpenMode mode m -> m #

foldMap :: Monoid m => (a -> m) -> DbOpenMode mode a -> m #

foldr :: (a -> b -> b) -> b -> DbOpenMode mode a -> b #

foldr' :: (a -> b -> b) -> b -> DbOpenMode mode a -> b #

foldl :: (b -> a -> b) -> b -> DbOpenMode mode a -> b #

foldl' :: (b -> a -> b) -> b -> DbOpenMode mode a -> b #

foldr1 :: (a -> a -> a) -> DbOpenMode mode a -> a #

foldl1 :: (a -> a -> a) -> DbOpenMode mode a -> a #

toList :: DbOpenMode mode a -> [a] #

null :: DbOpenMode mode a -> Bool #

length :: DbOpenMode mode a -> Int #

elem :: Eq a => a -> DbOpenMode mode a -> Bool #

maximum :: Ord a => DbOpenMode mode a -> a #

minimum :: Ord a => DbOpenMode mode a -> a #

sum :: Num a => DbOpenMode mode a -> a #

product :: Num a => DbOpenMode mode a -> a #

Foldable f => Foldable (ListT f) 

Methods

fold :: Monoid m => ListT f m -> m #

foldMap :: Monoid m => (a -> m) -> ListT f a -> m #

foldr :: (a -> b -> b) -> b -> ListT f a -> b #

foldr' :: (a -> b -> b) -> b -> ListT f a -> b #

foldl :: (b -> a -> b) -> b -> ListT f a -> b #

foldl' :: (b -> a -> b) -> b -> ListT f a -> b #

foldr1 :: (a -> a -> a) -> ListT f a -> a #

foldl1 :: (a -> a -> a) -> ListT f a -> a #

toList :: ListT f a -> [a] #

null :: ListT f a -> Bool #

length :: ListT f a -> Int #

elem :: Eq a => a -> ListT f a -> Bool #

maximum :: Ord a => ListT f a -> a #

minimum :: Ord a => ListT f a -> a #

sum :: Num a => ListT f a -> a #

product :: Num a => ListT f a -> a #

Foldable f => Foldable (Rec1 * f) 

Methods

fold :: Monoid m => Rec1 * f m -> m #

foldMap :: Monoid m => (a -> m) -> Rec1 * f a -> m #

foldr :: (a -> b -> b) -> b -> Rec1 * f a -> b #

foldr' :: (a -> b -> b) -> b -> Rec1 * f a -> b #

foldl :: (b -> a -> b) -> b -> Rec1 * f a -> b #

foldl' :: (b -> a -> b) -> b -> Rec1 * f a -> b #

foldr1 :: (a -> a -> a) -> Rec1 * f a -> a #

foldl1 :: (a -> a -> a) -> Rec1 * f a -> a #

toList :: Rec1 * f a -> [a] #

null :: Rec1 * f a -> Bool #

length :: Rec1 * f a -> Int #

elem :: Eq a => a -> Rec1 * f a -> Bool #

maximum :: Ord a => Rec1 * f a -> a #

minimum :: Ord a => Rec1 * f a -> a #

sum :: Num a => Rec1 * f a -> a #

product :: Num a => Rec1 * f a -> a #

Foldable (URec * Char) 

Methods

fold :: Monoid m => URec * Char m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Char a -> m #

foldr :: (a -> b -> b) -> b -> URec * Char a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Char a -> b #

foldl :: (b -> a -> b) -> b -> URec * Char a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Char a -> b #

foldr1 :: (a -> a -> a) -> URec * Char a -> a #

foldl1 :: (a -> a -> a) -> URec * Char a -> a #

toList :: URec * Char a -> [a] #

null :: URec * Char a -> Bool #

length :: URec * Char a -> Int #

elem :: Eq a => a -> URec * Char a -> Bool #

maximum :: Ord a => URec * Char a -> a #

minimum :: Ord a => URec * Char a -> a #

sum :: Num a => URec * Char a -> a #

product :: Num a => URec * Char a -> a #

Foldable (URec * Double) 

Methods

fold :: Monoid m => URec * Double m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Double a -> m #

foldr :: (a -> b -> b) -> b -> URec * Double a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Double a -> b #

foldl :: (b -> a -> b) -> b -> URec * Double a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Double a -> b #

foldr1 :: (a -> a -> a) -> URec * Double a -> a #

foldl1 :: (a -> a -> a) -> URec * Double a -> a #

toList :: URec * Double a -> [a] #

null :: URec * Double a -> Bool #

length :: URec * Double a -> Int #

elem :: Eq a => a -> URec * Double a -> Bool #

maximum :: Ord a => URec * Double a -> a #

minimum :: Ord a => URec * Double a -> a #

sum :: Num a => URec * Double a -> a #

product :: Num a => URec * Double a -> a #

Foldable (URec * Float) 

Methods

fold :: Monoid m => URec * Float m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Float a -> m #

foldr :: (a -> b -> b) -> b -> URec * Float a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Float a -> b #

foldl :: (b -> a -> b) -> b -> URec * Float a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Float a -> b #

foldr1 :: (a -> a -> a) -> URec * Float a -> a #

foldl1 :: (a -> a -> a) -> URec * Float a -> a #

toList :: URec * Float a -> [a] #

null :: URec * Float a -> Bool #

length :: URec * Float a -> Int #

elem :: Eq a => a -> URec * Float a -> Bool #

maximum :: Ord a => URec * Float a -> a #

minimum :: Ord a => URec * Float a -> a #

sum :: Num a => URec * Float a -> a #

product :: Num a => URec * Float a -> a #

Foldable (URec * Int) 

Methods

fold :: Monoid m => URec * Int m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Int a -> m #

foldr :: (a -> b -> b) -> b -> URec * Int a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Int a -> b #

foldl :: (b -> a -> b) -> b -> URec * Int a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Int a -> b #

foldr1 :: (a -> a -> a) -> URec * Int a -> a #

foldl1 :: (a -> a -> a) -> URec * Int a -> a #

toList :: URec * Int a -> [a] #

null :: URec * Int a -> Bool #

length :: URec * Int a -> Int #

elem :: Eq a => a -> URec * Int a -> Bool #

maximum :: Ord a => URec * Int a -> a #

minimum :: Ord a => URec * Int a -> a #

sum :: Num a => URec * Int a -> a #

product :: Num a => URec * Int a -> a #

Foldable (URec * Word) 

Methods

fold :: Monoid m => URec * Word m -> m #

foldMap :: Monoid m => (a -> m) -> URec * Word a -> m #

foldr :: (a -> b -> b) -> b -> URec * Word a -> b #

foldr' :: (a -> b -> b) -> b -> URec * Word a -> b #

foldl :: (b -> a -> b) -> b -> URec * Word a -> b #

foldl' :: (b -> a -> b) -> b -> URec * Word a -> b #

foldr1 :: (a -> a -> a) -> URec * Word a -> a #

foldl1 :: (a -> a -> a) -> URec * Word a -> a #

toList :: URec * Word a -> [a] #

null :: URec * Word a -> Bool #

length :: URec * Word a -> Int #

elem :: Eq a => a -> URec * Word a -> Bool #

maximum :: Ord a => URec * Word a -> a #

minimum :: Ord a => URec * Word a -> a #

sum :: Num a => URec * Word a -> a #

product :: Num a => URec * Word a -> a #

Foldable (URec * (Ptr ())) 

Methods

fold :: Monoid m => URec * (Ptr ()) m -> m #

foldMap :: Monoid m => (a -> m) -> URec * (Ptr ()) a -> m #

foldr :: (a -> b -> b) -> b -> URec * (Ptr ()) a -> b #

foldr' :: (a -> b -> b) -> b -> URec * (Ptr ()) a -> b #

foldl :: (b -> a -> b) -> b -> URec * (Ptr ()) a -> b #

foldl' :: (b -> a -> b) -> b -> URec * (Ptr ()) a -> b #

foldr1 :: (a -> a -> a) -> URec * (Ptr ()) a -> a #

foldl1 :: (a -> a -> a) -> URec * (Ptr ()) a -> a #

toList :: URec * (Ptr ()) a -> [a] #

null :: URec * (Ptr ()) a -> Bool #

length :: URec * (Ptr ()) a -> Int #

elem :: Eq a => a -> URec * (Ptr ()) a -> Bool #

maximum :: Ord a => URec * (Ptr ()) a -> a #

minimum :: Ord a => URec * (Ptr ()) a -> a #

sum :: Num a => URec * (Ptr ()) a -> a #

product :: Num a => URec * (Ptr ()) a -> a #

Foldable (Const * m)

Since: 4.7.0.0

Methods

fold :: Monoid m => Const * m m -> m #

foldMap :: Monoid m => (a -> m) -> Const * m a -> m #

foldr :: (a -> b -> b) -> b -> Const * m a -> b #

foldr' :: (a -> b -> b) -> b -> Const * m a -> b #

foldl :: (b -> a -> b) -> b -> Const * m a -> b #

foldl' :: (b -> a -> b) -> b -> Const * m a -> b #

foldr1 :: (a -> a -> a) -> Const * m a -> a #

foldl1 :: (a -> a -> a) -> Const * m a -> a #

toList :: Const * m a -> [a] #

null :: Const * m a -> Bool #

length :: Const * m a -> Int #

elem :: Eq a => a -> Const * m a -> Bool #

maximum :: Ord a => Const * m a -> a #

minimum :: Ord a => Const * m a -> a #

sum :: Num a => Const * m a -> a #

product :: Num a => Const * m a -> a #

Foldable f => Foldable (ErrorT e f) 

Methods

fold :: Monoid m => ErrorT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m #

foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b #

foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b #

foldr1 :: (a -> a -> a) -> ErrorT e f a -> a #

foldl1 :: (a -> a -> a) -> ErrorT e f a -> a #

toList :: ErrorT e f a -> [a] #

null :: ErrorT e f a -> Bool #

length :: ErrorT e f a -> Int #

elem :: Eq a => a -> ErrorT e f a -> Bool #

maximum :: Ord a => ErrorT e f a -> a #

minimum :: Ord a => ErrorT e f a -> a #

sum :: Num a => ErrorT e f a -> a #

product :: Num a => ErrorT e f a -> a #

Foldable f => Foldable (ExceptT e f) 

Methods

fold :: Monoid m => ExceptT e f m -> m #

foldMap :: Monoid m => (a -> m) -> ExceptT e f a -> m #

foldr :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldr' :: (a -> b -> b) -> b -> ExceptT e f a -> b #

foldl :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldl' :: (b -> a -> b) -> b -> ExceptT e f a -> b #

foldr1 :: (a -> a -> a) -> ExceptT e f a -> a #

foldl1 :: (a -> a -> a) -> ExceptT e f a -> a #

toList :: ExceptT e f a -> [a] #

null :: ExceptT e f a -> Bool #

length :: ExceptT e f a -> Int #

elem :: Eq a => a -> ExceptT e f a -> Bool #

maximum :: Ord a => ExceptT e f a -> a #

minimum :: Ord a => ExceptT e f a -> a #

sum :: Num a => ExceptT e f a -> a #

product :: Num a => ExceptT e f a -> a #

Foldable f => Foldable (WriterT w f) 

Methods

fold :: Monoid m => WriterT w f m -> m #

foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m #

foldr :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldl :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldr1 :: (a -> a -> a) -> WriterT w f a -> a #

foldl1 :: (a -> a -> a) -> WriterT w f a -> a #

toList :: WriterT w f a -> [a] #

null :: WriterT w f a -> Bool #

length :: WriterT w f a -> Int #

elem :: Eq a => a -> WriterT w f a -> Bool #

maximum :: Ord a => WriterT w f a -> a #

minimum :: Ord a => WriterT w f a -> a #

sum :: Num a => WriterT w f a -> a #

product :: Num a => WriterT w f a -> a #

Foldable f => Foldable (WriterT w f) 

Methods

fold :: Monoid m => WriterT w f m -> m #

foldMap :: Monoid m => (a -> m) -> WriterT w f a -> m #

foldr :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldr' :: (a -> b -> b) -> b -> WriterT w f a -> b #

foldl :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldl' :: (b -> a -> b) -> b -> WriterT w f a -> b #

foldr1 :: (a -> a -> a) -> WriterT w f a -> a #

foldl1 :: (a -> a -> a) -> WriterT w f a -> a #

toList :: WriterT w f a -> [a] #

null :: WriterT w f a -> Bool #

length :: WriterT w f a -> Int #

elem :: Eq a => a -> WriterT w f a -> Bool #

maximum :: Ord a => WriterT w f a -> a #

minimum :: Ord a => WriterT w f a -> a #

sum :: Num a => WriterT w f a -> a #

product :: Num a => WriterT w f a -> a #

Foldable f => Foldable (IdentityT * f) 

Methods

fold :: Monoid m => IdentityT * f m -> m #

foldMap :: Monoid m => (a -> m) -> IdentityT * f a -> m #

foldr :: (a -> b -> b) -> b -> IdentityT * f a -> b #

foldr' :: (a -> b -> b) -> b -> IdentityT * f a -> b #

foldl :: (b -> a -> b) -> b -> IdentityT * f a -> b #

foldl' :: (b -> a -> b) -> b -> IdentityT * f a -> b #

foldr1 :: (a -> a -> a) -> IdentityT * f a -> a #

foldl1 :: (a -> a -> a) -> IdentityT * f a -> a #

toList :: IdentityT * f a -> [a] #

null :: IdentityT * f a -> Bool #

length :: IdentityT * f a -> Int #

elem :: Eq a => a -> IdentityT * f a -> Bool #

maximum :: Ord a => IdentityT * f a -> a #

minimum :: Ord a => IdentityT * f a -> a #

sum :: Num a => IdentityT * f a -> a #

product :: Num a => IdentityT * f a -> a #

Foldable (K1 * i c) 

Methods

fold :: Monoid m => K1 * i c m -> m #

foldMap :: Monoid m => (a -> m) -> K1 * i c a -> m #

foldr :: (a -> b -> b) -> b -> K1 * i c a -> b #

foldr' :: (a -> b -> b) -> b -> K1 * i c a -> b #

foldl :: (b -> a -> b) -> b -> K1 * i c a -> b #

foldl' :: (b -> a -> b) -> b -> K1 * i c a -> b #

foldr1 :: (a -> a -> a) -> K1 * i c a -> a #

foldl1 :: (a -> a -> a) -> K1 * i c a -> a #

toList :: K1 * i c a -> [a] #

null :: K1 * i c a -> Bool #

length :: K1 * i c a -> Int #

elem :: Eq a => a -> K1 * i c a -> Bool #

maximum :: Ord a => K1 * i c a -> a #

minimum :: Ord a => K1 * i c a -> a #

sum :: Num a => K1 * i c a -> a #

product :: Num a => K1 * i c a -> a #

(Foldable f, Foldable g) => Foldable ((:+:) * f g) 

Methods

fold :: Monoid m => (* :+: f) g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :+: f) g a -> m #

foldr :: (a -> b -> b) -> b -> (* :+: f) g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :+: f) g a -> b #

foldl :: (b -> a -> b) -> b -> (* :+: f) g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :+: f) g a -> b #

foldr1 :: (a -> a -> a) -> (* :+: f) g a -> a #

foldl1 :: (a -> a -> a) -> (* :+: f) g a -> a #

toList :: (* :+: f) g a -> [a] #

null :: (* :+: f) g a -> Bool #

length :: (* :+: f) g a -> Int #

elem :: Eq a => a -> (* :+: f) g a -> Bool #

maximum :: Ord a => (* :+: f) g a -> a #

minimum :: Ord a => (* :+: f) g a -> a #

sum :: Num a => (* :+: f) g a -> a #

product :: Num a => (* :+: f) g a -> a #

(Foldable f, Foldable g) => Foldable ((:*:) * f g) 

Methods

fold :: Monoid m => (* :*: f) g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :*: f) g a -> m #

foldr :: (a -> b -> b) -> b -> (* :*: f) g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :*: f) g a -> b #

foldl :: (b -> a -> b) -> b -> (* :*: f) g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :*: f) g a -> b #

foldr1 :: (a -> a -> a) -> (* :*: f) g a -> a #

foldl1 :: (a -> a -> a) -> (* :*: f) g a -> a #

toList :: (* :*: f) g a -> [a] #

null :: (* :*: f) g a -> Bool #

length :: (* :*: f) g a -> Int #

elem :: Eq a => a -> (* :*: f) g a -> Bool #

maximum :: Ord a => (* :*: f) g a -> a #

minimum :: Ord a => (* :*: f) g a -> a #

sum :: Num a => (* :*: f) g a -> a #

product :: Num a => (* :*: f) g a -> a #

(Foldable f, Foldable g) => Foldable (Product * f g)

Since: 4.9.0.0

Methods

fold :: Monoid m => Product * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Product * f g a -> m #

foldr :: (a -> b -> b) -> b -> Product * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Product * f g a -> b #

foldl :: (b -> a -> b) -> b -> Product * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Product * f g a -> b #

foldr1 :: (a -> a -> a) -> Product * f g a -> a #

foldl1 :: (a -> a -> a) -> Product * f g a -> a #

toList :: Product * f g a -> [a] #

null :: Product * f g a -> Bool #

length :: Product * f g a -> Int #

elem :: Eq a => a -> Product * f g a -> Bool #

maximum :: Ord a => Product * f g a -> a #

minimum :: Ord a => Product * f g a -> a #

sum :: Num a => Product * f g a -> a #

product :: Num a => Product * f g a -> a #

(Foldable f, Foldable g) => Foldable (Sum * f g)

Since: 4.9.0.0

Methods

fold :: Monoid m => Sum * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Sum * f g a -> m #

foldr :: (a -> b -> b) -> b -> Sum * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Sum * f g a -> b #

foldl :: (b -> a -> b) -> b -> Sum * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Sum * f g a -> b #

foldr1 :: (a -> a -> a) -> Sum * f g a -> a #

foldl1 :: (a -> a -> a) -> Sum * f g a -> a #

toList :: Sum * f g a -> [a] #

null :: Sum * f g a -> Bool #

length :: Sum * f g a -> Int #

elem :: Eq a => a -> Sum * f g a -> Bool #

maximum :: Ord a => Sum * f g a -> a #

minimum :: Ord a => Sum * f g a -> a #

sum :: Num a => Sum * f g a -> a #

product :: Num a => Sum * f g a -> a #

Foldable f => Foldable (M1 * i c f) 

Methods

fold :: Monoid m => M1 * i c f m -> m #

foldMap :: Monoid m => (a -> m) -> M1 * i c f a -> m #

foldr :: (a -> b -> b) -> b -> M1 * i c f a -> b #

foldr' :: (a -> b -> b) -> b -> M1 * i c f a -> b #

foldl :: (b -> a -> b) -> b -> M1 * i c f a -> b #

foldl' :: (b -> a -> b) -> b -> M1 * i c f a -> b #

foldr1 :: (a -> a -> a) -> M1 * i c f a -> a #

foldl1 :: (a -> a -> a) -> M1 * i c f a -> a #

toList :: M1 * i c f a -> [a] #

null :: M1 * i c f a -> Bool #

length :: M1 * i c f a -> Int #

elem :: Eq a => a -> M1 * i c f a -> Bool #

maximum :: Ord a => M1 * i c f a -> a #

minimum :: Ord a => M1 * i c f a -> a #

sum :: Num a => M1 * i c f a -> a #

product :: Num a => M1 * i c f a -> a #

(Foldable f, Foldable g) => Foldable ((:.:) * * f g) 

Methods

fold :: Monoid m => (* :.: *) f g m -> m #

foldMap :: Monoid m => (a -> m) -> (* :.: *) f g a -> m #

foldr :: (a -> b -> b) -> b -> (* :.: *) f g a -> b #

foldr' :: (a -> b -> b) -> b -> (* :.: *) f g a -> b #

foldl :: (b -> a -> b) -> b -> (* :.: *) f g a -> b #

foldl' :: (b -> a -> b) -> b -> (* :.: *) f g a -> b #

foldr1 :: (a -> a -> a) -> (* :.: *) f g a -> a #

foldl1 :: (a -> a -> a) -> (* :.: *) f g a -> a #

toList :: (* :.: *) f g a -> [a] #

null :: (* :.: *) f g a -> Bool #

length :: (* :.: *) f g a -> Int #

elem :: Eq a => a -> (* :.: *) f g a -> Bool #

maximum :: Ord a => (* :.: *) f g a -> a #

minimum :: Ord a => (* :.: *) f g a -> a #

sum :: Num a => (* :.: *) f g a -> a #

product :: Num a => (* :.: *) f g a -> a #

(Foldable f, Foldable g) => Foldable (Compose * * f g)

Since: 4.9.0.0

Methods

fold :: Monoid m => Compose * * f g m -> m #

foldMap :: Monoid m => (a -> m) -> Compose * * f g a -> m #

foldr :: (a -> b -> b) -> b -> Compose * * f g a -> b #

foldr' :: (a -> b -> b) -> b -> Compose * * f g a -> b #

foldl :: (b -> a -> b) -> b -> Compose * * f g a -> b #

foldl' :: (b -> a -> b) -> b -> Compose * * f g a -> b #

foldr1 :: (a -> a -> a) -> Compose * * f g a -> a #

foldl1 :: (a -> a -> a) -> Compose * * f g a -> a #

toList :: Compose * * f g a -> [a] #

null :: Compose * * f g a -> Bool #

length :: Compose * * f g a -> Int #

elem :: Eq a => a -> Compose * * f g a -> Bool #

maximum :: Ord a => Compose * * f g a -> a #

minimum :: Ord a => Compose * * f g a -> a #

sum :: Num a => Compose * * f g a -> a #

product :: Num a => Compose * * f g a -> a #

class (Functor t, Foldable t) => Traversable (t :: * -> *) where #

Functors representing data structures that can be traversed from left to right.

A definition of traverse must satisfy the following laws:

naturality
t . traverse f = traverse (t . f) for every applicative transformation t
identity
traverse Identity = Identity
composition
traverse (Compose . fmap g . f) = Compose . fmap (traverse g) . traverse f

A definition of sequenceA must satisfy the following laws:

naturality
t . sequenceA = sequenceA . fmap t for every applicative transformation t
identity
sequenceA . fmap Identity = Identity
composition
sequenceA . fmap Compose = Compose . fmap sequenceA . sequenceA

where an applicative transformation is a function

t :: (Applicative f, Applicative g) => f a -> g a

preserving the Applicative operations, i.e.

and the identity functor Identity and composition of functors Compose are defined as

  newtype Identity a = Identity a

  instance Functor Identity where
    fmap f (Identity x) = Identity (f x)

  instance Applicative Identity where
    pure x = Identity x
    Identity f <*> Identity x = Identity (f x)

  newtype Compose f g a = Compose (f (g a))

  instance (Functor f, Functor g) => Functor (Compose f g) where
    fmap f (Compose x) = Compose (fmap (fmap f) x)

  instance (Applicative f, Applicative g) => Applicative (Compose f g) where
    pure x = Compose (pure (pure x))
    Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)

(The naturality law is implied by parametricity.)

Instances are similar to Functor, e.g. given a data type

data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)

a suitable instance would be

instance Traversable Tree where
   traverse f Empty = pure Empty
   traverse f (Leaf x) = Leaf <$> f x
   traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r

This is suitable even for abstract types, as the laws for <*> imply a form of associativity.

The superclass instances should satisfy the following:

Minimal complete definition

traverse | sequenceA

Methods

traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #

Map each element of a structure to an action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see traverse_.

sequenceA :: Applicative f => t (f a) -> f (t a) #

Evaluate each action in the structure from left to right, and and collect the results. For a version that ignores the results see sequenceA_.

Instances

Traversable []

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> [a] -> f [b] #

sequenceA :: Applicative f => [f a] -> f [a] #

mapM :: Monad m => (a -> m b) -> [a] -> m [b] #

sequence :: Monad m => [m a] -> m [a] #

Traversable Maybe

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> Maybe a -> f (Maybe b) #

sequenceA :: Applicative f => Maybe (f a) -> f (Maybe a) #

mapM :: Monad m => (a -> m b) -> Maybe a -> m (Maybe b) #

sequence :: Monad m => Maybe (m a) -> m (Maybe a) #

Traversable Par1 

Methods

traverse :: Applicative f => (a -> f b) -> Par1 a -> f (Par1 b) #

sequenceA :: Applicative f => Par1 (f a) -> f (Par1 a) #

mapM :: Monad m => (a -> m b) -> Par1 a -> m (Par1 b) #

sequence :: Monad m => Par1 (m a) -> m (Par1 a) #

Traversable Complex 

Methods

traverse :: Applicative f => (a -> f b) -> Complex a -> f (Complex b) #

sequenceA :: Applicative f => Complex (f a) -> f (Complex a) #

mapM :: Monad m => (a -> m b) -> Complex a -> m (Complex b) #

sequence :: Monad m => Complex (m a) -> m (Complex a) #

Traversable Min

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Min a -> f (Min b) #

sequenceA :: Applicative f => Min (f a) -> f (Min a) #

mapM :: Monad m => (a -> m b) -> Min a -> m (Min b) #

sequence :: Monad m => Min (m a) -> m (Min a) #

Traversable Max

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Max a -> f (Max b) #

sequenceA :: Applicative f => Max (f a) -> f (Max a) #

mapM :: Monad m => (a -> m b) -> Max a -> m (Max b) #

sequence :: Monad m => Max (m a) -> m (Max a) #

Traversable First

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable Option

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Option a -> f (Option b) #

sequenceA :: Applicative f => Option (f a) -> f (Option a) #

mapM :: Monad m => (a -> m b) -> Option a -> m (Option b) #

sequence :: Monad m => Option (m a) -> m (Option a) #

Traversable NonEmpty

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> NonEmpty a -> f (NonEmpty b) #

sequenceA :: Applicative f => NonEmpty (f a) -> f (NonEmpty a) #

mapM :: Monad m => (a -> m b) -> NonEmpty a -> m (NonEmpty b) #

sequence :: Monad m => NonEmpty (m a) -> m (NonEmpty a) #

Traversable ZipList

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> ZipList a -> f (ZipList b) #

sequenceA :: Applicative f => ZipList (f a) -> f (ZipList a) #

mapM :: Monad m => (a -> m b) -> ZipList a -> m (ZipList b) #

sequence :: Monad m => ZipList (m a) -> m (ZipList a) #

Traversable Identity 

Methods

traverse :: Applicative f => (a -> f b) -> Identity a -> f (Identity b) #

sequenceA :: Applicative f => Identity (f a) -> f (Identity a) #

mapM :: Monad m => (a -> m b) -> Identity a -> m (Identity b) #

sequence :: Monad m => Identity (m a) -> m (Identity a) #

Traversable Dual

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Dual a -> f (Dual b) #

sequenceA :: Applicative f => Dual (f a) -> f (Dual a) #

mapM :: Monad m => (a -> m b) -> Dual a -> m (Dual b) #

sequence :: Monad m => Dual (m a) -> m (Dual a) #

Traversable Sum

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Sum a -> f (Sum b) #

sequenceA :: Applicative f => Sum (f a) -> f (Sum a) #

mapM :: Monad m => (a -> m b) -> Sum a -> m (Sum b) #

sequence :: Monad m => Sum (m a) -> m (Sum a) #

Traversable Product

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Product a -> f (Product b) #

sequenceA :: Applicative f => Product (f a) -> f (Product a) #

mapM :: Monad m => (a -> m b) -> Product a -> m (Product b) #

sequence :: Monad m => Product (m a) -> m (Product a) #

Traversable First

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> First a -> f (First b) #

sequenceA :: Applicative f => First (f a) -> f (First a) #

mapM :: Monad m => (a -> m b) -> First a -> m (First b) #

sequence :: Monad m => First (m a) -> m (First a) #

Traversable Last

Since: 4.8.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Last a -> f (Last b) #

sequenceA :: Applicative f => Last (f a) -> f (Last a) #

mapM :: Monad m => (a -> m b) -> Last a -> m (Last b) #

sequence :: Monad m => Last (m a) -> m (Last a) #

Traversable IntMap 

Methods

traverse :: Applicative f => (a -> f b) -> IntMap a -> f (IntMap b) #

sequenceA :: Applicative f => IntMap (f a) -> f (IntMap a) #

mapM :: Monad m => (a -> m b) -> IntMap a -> m (IntMap b) #

sequence :: Monad m => IntMap (m a) -> m (IntMap a) #

Traversable SCC 

Methods

traverse :: Applicative f => (a -> f b) -> SCC a -> f (SCC b) #

sequenceA :: Applicative f => SCC (f a) -> f (SCC a) #

mapM :: Monad m => (a -> m b) -> SCC a -> m (SCC b) #

sequence :: Monad m => SCC (m a) -> m (SCC a) #

Traversable Tree 

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) #

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) #

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) #

sequence :: Monad m => Tree (m a) -> m (Tree a) #

Traversable Seq 

Methods

traverse :: Applicative f => (a -> f b) -> Seq a -> f (Seq b) #

sequenceA :: Applicative f => Seq (f a) -> f (Seq a) #

mapM :: Monad m => (a -> m b) -> Seq a -> m (Seq b) #

sequence :: Monad m => Seq (m a) -> m (Seq a) #

Traversable FingerTree 

Methods

traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) #

sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) #

mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) #

sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) #

Traversable Digit 

Methods

traverse :: Applicative f => (a -> f b) -> Digit a -> f (Digit b) #

sequenceA :: Applicative f => Digit (f a) -> f (Digit a) #

mapM :: Monad m => (a -> m b) -> Digit a -> m (Digit b) #

sequence :: Monad m => Digit (m a) -> m (Digit a) #

Traversable Node 

Methods

traverse :: Applicative f => (a -> f b) -> Node a -> f (Node b) #

sequenceA :: Applicative f => Node (f a) -> f (Node a) #

mapM :: Monad m => (a -> m b) -> Node a -> m (Node b) #

sequence :: Monad m => Node (m a) -> m (Node a) #

Traversable Elem 

Methods

traverse :: Applicative f => (a -> f b) -> Elem a -> f (Elem b) #

sequenceA :: Applicative f => Elem (f a) -> f (Elem a) #

mapM :: Monad m => (a -> m b) -> Elem a -> m (Elem b) #

sequence :: Monad m => Elem (m a) -> m (Elem a) #

Traversable ViewL 

Methods

traverse :: Applicative f => (a -> f b) -> ViewL a -> f (ViewL b) #

sequenceA :: Applicative f => ViewL (f a) -> f (ViewL a) #

mapM :: Monad m => (a -> m b) -> ViewL a -> m (ViewL b) #

sequence :: Monad m => ViewL (m a) -> m (ViewL a) #

Traversable ViewR 

Methods

traverse :: Applicative f => (a -> f b) -> ViewR a -> f (ViewR b) #

sequenceA :: Applicative f => ViewR (f a) -> f (ViewR a) #

mapM :: Monad m => (a -> m b) -> ViewR a -> m (ViewR b) #

sequence :: Monad m => ViewR (m a) -> m (ViewR a) #

Traversable SizedSeq 

Methods

traverse :: Applicative f => (a -> f b) -> SizedSeq a -> f (SizedSeq b) #

sequenceA :: Applicative f => SizedSeq (f a) -> f (SizedSeq a) #

mapM :: Monad m => (a -> m b) -> SizedSeq a -> m (SizedSeq b) #

sequence :: Monad m => SizedSeq (m a) -> m (SizedSeq a) #

Traversable (Either a)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Either a a -> f (Either a b) #

sequenceA :: Applicative f => Either a (f a) -> f (Either a a) #

mapM :: Monad m => (a -> m b) -> Either a a -> m (Either a b) #

sequence :: Monad m => Either a (m a) -> m (Either a a) #

Traversable (V1 *) 

Methods

traverse :: Applicative f => (a -> f b) -> V1 * a -> f (V1 * b) #

sequenceA :: Applicative f => V1 * (f a) -> f (V1 * a) #

mapM :: Monad m => (a -> m b) -> V1 * a -> m (V1 * b) #

sequence :: Monad m => V1 * (m a) -> m (V1 * a) #

Traversable (U1 *)

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> U1 * a -> f (U1 * b) #

sequenceA :: Applicative f => U1 * (f a) -> f (U1 * a) #

mapM :: Monad m => (a -> m b) -> U1 * a -> m (U1 * b) #

sequence :: Monad m => U1 * (m a) -> m (U1 * a) #

Traversable ((,) a)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> (a, a) -> f (a, b) #

sequenceA :: Applicative f => (a, f a) -> f (a, a) #

mapM :: Monad m => (a -> m b) -> (a, a) -> m (a, b) #

sequence :: Monad m => (a, m a) -> m (a, a) #

Ix i => Traversable (Array i)

Since: 2.1

Methods

traverse :: Applicative f => (a -> f b) -> Array i a -> f (Array i b) #

sequenceA :: Applicative f => Array i (f a) -> f (Array i a) #

mapM :: Monad m => (a -> m b) -> Array i a -> m (Array i b) #

sequence :: Monad m => Array i (m a) -> m (Array i a) #

Traversable (Arg a)

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Arg a a -> f (Arg a b) #

sequenceA :: Applicative f => Arg a (f a) -> f (Arg a a) #

mapM :: Monad m => (a -> m b) -> Arg a a -> m (Arg a b) #

sequence :: Monad m => Arg a (m a) -> m (Arg a a) #

Traversable (Proxy *)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Proxy * a -> f (Proxy * b) #

sequenceA :: Applicative f => Proxy * (f a) -> f (Proxy * a) #

mapM :: Monad m => (a -> m b) -> Proxy * a -> m (Proxy * b) #

sequence :: Monad m => Proxy * (m a) -> m (Proxy * a) #

Traversable (Map k) 

Methods

traverse :: Applicative f => (a -> f b) -> Map k a -> f (Map k b) #

sequenceA :: Applicative f => Map k (f a) -> f (Map k a) #

mapM :: Monad m => (a -> m b) -> Map k a -> m (Map k b) #

sequence :: Monad m => Map k (m a) -> m (Map k a) #

Traversable (GenLocated l) 

Methods

traverse :: Applicative f => (a -> f b) -> GenLocated l a -> f (GenLocated l b) #

sequenceA :: Applicative f => GenLocated l (f a) -> f (GenLocated l a) #

mapM :: Monad m => (a -> m b) -> GenLocated l a -> m (GenLocated l b) #

sequence :: Monad m => GenLocated l (m a) -> m (GenLocated l a) #

Traversable f => Traversable (MaybeT f) 

Methods

traverse :: Applicative f => (a -> f b) -> MaybeT f a -> f (MaybeT f b) #

sequenceA :: Applicative f => MaybeT f (f a) -> f (MaybeT f a) #

mapM :: Monad m => (a -> m b) -> MaybeT f a -> m (MaybeT f b) #

sequence :: Monad m => MaybeT f (m a) -> m (MaybeT f a) #

Traversable (DbOpenMode mode) 

Methods

traverse :: Applicative f => (a -> f b) -> DbOpenMode mode a -> f (DbOpenMode mode b) #

sequenceA :: Applicative f => DbOpenMode mode (f a) -> f (DbOpenMode mode a) #

mapM :: Monad m => (a -> m b) -> DbOpenMode mode a -> m (DbOpenMode mode b) #

sequence :: Monad m => DbOpenMode mode (m a) -> m (DbOpenMode mode a) #

Traversable f => Traversable (ListT f) 

Methods

traverse :: Applicative f => (a -> f b) -> ListT f a -> f (ListT f b) #

sequenceA :: Applicative f => ListT f (f a) -> f (ListT f a) #

mapM :: Monad m => (a -> m b) -> ListT f a -> m (ListT f b) #

sequence :: Monad m => ListT f (m a) -> m (ListT f a) #

Traversable f => Traversable (Rec1 * f) 

Methods

traverse :: Applicative f => (a -> f b) -> Rec1 * f a -> f (Rec1 * f b) #

sequenceA :: Applicative f => Rec1 * f (f a) -> f (Rec1 * f a) #

mapM :: Monad m => (a -> m b) -> Rec1 * f a -> m (Rec1 * f b) #

sequence :: Monad m => Rec1 * f (m a) -> m (Rec1 * f a) #

Traversable (URec * Char) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Char a -> f (URec * Char b) #

sequenceA :: Applicative f => URec * Char (f a) -> f (URec * Char a) #

mapM :: Monad m => (a -> m b) -> URec * Char a -> m (URec * Char b) #

sequence :: Monad m => URec * Char (m a) -> m (URec * Char a) #

Traversable (URec * Double) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Double a -> f (URec * Double b) #

sequenceA :: Applicative f => URec * Double (f a) -> f (URec * Double a) #

mapM :: Monad m => (a -> m b) -> URec * Double a -> m (URec * Double b) #

sequence :: Monad m => URec * Double (m a) -> m (URec * Double a) #

Traversable (URec * Float) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Float a -> f (URec * Float b) #

sequenceA :: Applicative f => URec * Float (f a) -> f (URec * Float a) #

mapM :: Monad m => (a -> m b) -> URec * Float a -> m (URec * Float b) #

sequence :: Monad m => URec * Float (m a) -> m (URec * Float a) #

Traversable (URec * Int) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Int a -> f (URec * Int b) #

sequenceA :: Applicative f => URec * Int (f a) -> f (URec * Int a) #

mapM :: Monad m => (a -> m b) -> URec * Int a -> m (URec * Int b) #

sequence :: Monad m => URec * Int (m a) -> m (URec * Int a) #

Traversable (URec * Word) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * Word a -> f (URec * Word b) #

sequenceA :: Applicative f => URec * Word (f a) -> f (URec * Word a) #

mapM :: Monad m => (a -> m b) -> URec * Word a -> m (URec * Word b) #

sequence :: Monad m => URec * Word (m a) -> m (URec * Word a) #

Traversable (URec * (Ptr ())) 

Methods

traverse :: Applicative f => (a -> f b) -> URec * (Ptr ()) a -> f (URec * (Ptr ()) b) #

sequenceA :: Applicative f => URec * (Ptr ()) (f a) -> f (URec * (Ptr ()) a) #

mapM :: Monad m => (a -> m b) -> URec * (Ptr ()) a -> m (URec * (Ptr ()) b) #

sequence :: Monad m => URec * (Ptr ()) (m a) -> m (URec * (Ptr ()) a) #

Traversable (Const * m)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Const * m a -> f (Const * m b) #

sequenceA :: Applicative f => Const * m (f a) -> f (Const * m a) #

mapM :: Monad m => (a -> m b) -> Const * m a -> m (Const * m b) #

sequence :: Monad m => Const * m (m a) -> m (Const * m a) #

Traversable f => Traversable (ErrorT e f) 

Methods

traverse :: Applicative f => (a -> f b) -> ErrorT e f a -> f (ErrorT e f b) #

sequenceA :: Applicative f => ErrorT e f (f a) -> f (ErrorT e f a) #

mapM :: Monad m => (a -> m b) -> ErrorT e f a -> m (ErrorT e f b) #

sequence :: Monad m => ErrorT e f (m a) -> m (ErrorT e f a) #

Traversable f => Traversable (ExceptT e f) 

Methods

traverse :: Applicative f => (a -> f b) -> ExceptT e f a -> f (ExceptT e f b) #

sequenceA :: Applicative f => ExceptT e f (f a) -> f (ExceptT e f a) #

mapM :: Monad m => (a -> m b) -> ExceptT e f a -> m (ExceptT e f b) #

sequence :: Monad m => ExceptT e f (m a) -> m (ExceptT e f a) #

Traversable f => Traversable (WriterT w f) 

Methods

traverse :: Applicative f => (a -> f b) -> WriterT w f a -> f (WriterT w f b) #

sequenceA :: Applicative f => WriterT w f (f a) -> f (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable f => Traversable (WriterT w f) 

Methods

traverse :: Applicative f => (a -> f b) -> WriterT w f a -> f (WriterT w f b) #

sequenceA :: Applicative f => WriterT w f (f a) -> f (WriterT w f a) #

mapM :: Monad m => (a -> m b) -> WriterT w f a -> m (WriterT w f b) #

sequence :: Monad m => WriterT w f (m a) -> m (WriterT w f a) #

Traversable f => Traversable (IdentityT * f) 

Methods

traverse :: Applicative f => (a -> f b) -> IdentityT * f a -> f (IdentityT * f b) #

sequenceA :: Applicative f => IdentityT * f (f a) -> f (IdentityT * f a) #

mapM :: Monad m => (a -> m b) -> IdentityT * f a -> m (IdentityT * f b) #

sequence :: Monad m => IdentityT * f (m a) -> m (IdentityT * f a) #

Traversable (K1 * i c) 

Methods

traverse :: Applicative f => (a -> f b) -> K1 * i c a -> f (K1 * i c b) #

sequenceA :: Applicative f => K1 * i c (f a) -> f (K1 * i c a) #

mapM :: Monad m => (a -> m b) -> K1 * i c a -> m (K1 * i c b) #

sequence :: Monad m => K1 * i c (m a) -> m (K1 * i c a) #

(Traversable f, Traversable g) => Traversable ((:+:) * f g) 

Methods

traverse :: Applicative f => (a -> f b) -> (* :+: f) g a -> f ((* :+: f) g b) #

sequenceA :: Applicative f => (* :+: f) g (f a) -> f ((* :+: f) g a) #

mapM :: Monad m => (a -> m b) -> (* :+: f) g a -> m ((* :+: f) g b) #

sequence :: Monad m => (* :+: f) g (m a) -> m ((* :+: f) g a) #

(Traversable f, Traversable g) => Traversable ((:*:) * f g) 

Methods

traverse :: Applicative f => (a -> f b) -> (* :*: f) g a -> f ((* :*: f) g b) #

sequenceA :: Applicative f => (* :*: f) g (f a) -> f ((* :*: f) g a) #

mapM :: Monad m => (a -> m b) -> (* :*: f) g a -> m ((* :*: f) g b) #

sequence :: Monad m => (* :*: f) g (m a) -> m ((* :*: f) g a) #

(Traversable f, Traversable g) => Traversable (Product * f g)

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Product * f g a -> f (Product * f g b) #

sequenceA :: Applicative f => Product * f g (f a) -> f (Product * f g a) #

mapM :: Monad m => (a -> m b) -> Product * f g a -> m (Product * f g b) #

sequence :: Monad m => Product * f g (m a) -> m (Product * f g a) #

(Traversable f, Traversable g) => Traversable (Sum * f g)

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Sum * f g a -> f (Sum * f g b) #

sequenceA :: Applicative f => Sum * f g (f a) -> f (Sum * f g a) #

mapM :: Monad m => (a -> m b) -> Sum * f g a -> m (Sum * f g b) #

sequence :: Monad m => Sum * f g (m a) -> m (Sum * f g a) #

Traversable f => Traversable (M1 * i c f) 

Methods

traverse :: Applicative f => (a -> f b) -> M1 * i c f a -> f (M1 * i c f b) #

sequenceA :: Applicative f => M1 * i c f (f a) -> f (M1 * i c f a) #

mapM :: Monad m => (a -> m b) -> M1 * i c f a -> m (M1 * i c f b) #

sequence :: Monad m => M1 * i c f (m a) -> m (M1 * i c f a) #

(Traversable f, Traversable g) => Traversable ((:.:) * * f g) 

Methods

traverse :: Applicative f => (a -> f b) -> (* :.: *) f g a -> f ((* :.: *) f g b) #

sequenceA :: Applicative f => (* :.: *) f g (f a) -> f ((* :.: *) f g a) #

mapM :: Monad m => (a -> m b) -> (* :.: *) f g a -> m ((* :.: *) f g b) #

sequence :: Monad m => (* :.: *) f g (m a) -> m ((* :.: *) f g a) #

(Traversable f, Traversable g) => Traversable (Compose * * f g)

Since: 4.9.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Compose * * f g a -> f (Compose * * f g b) #

sequenceA :: Applicative f => Compose * * f g (f a) -> f (Compose * * f g a) #

mapM :: Monad m => (a -> m b) -> Compose * * f g a -> m (Compose * * f g b) #

sequence :: Monad m => Compose * * f g (m a) -> m (Compose * * f g a) #

Miscellaneous functions

id :: a -> a #

Identity function.

const :: a -> b -> a #

const x is a unary function which evaluates to x for all inputs.

For instance,

>>> map (const 42) [0..3]
[42,42,42,42]

flip :: (a -> b -> c) -> b -> a -> c #

flip f takes its (first) two arguments in the reverse order of f.

until :: (a -> Bool) -> (a -> a) -> a -> a #

until p f yields the result of applying f until p holds.

asTypeOf :: a -> a -> a #

asTypeOf is a type-restricted version of const. It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

error :: HasCallStack => [Char] -> a #

error stops execution and displays an error message.

undefined :: HasCallStack => a #

A special case of error. It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

seq :: a -> b -> b #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

(.) :: (b -> c) -> (a -> b) -> a -> c infixr 9 #

Function composition.

($) :: (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

    f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

($!) :: (a -> b) -> a -> b infixr 0 #

Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.

List operations

map :: (a -> b) -> [a] -> [b] #

map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]

filter :: (a -> Bool) -> [a] -> [a] #

filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]

head :: [a] -> a #

Extract the first element of a list, which must be non-empty.

last :: [a] -> a #

Extract the last element of a list, which must be finite and non-empty.

tail :: [a] -> [a] #

Extract the elements after the head of a list, which must be non-empty.

init :: [a] -> [a] #

Return all the elements of a list except the last one. The list must be non-empty.

reverse :: [a] -> [a] #

reverse xs returns the elements of xs in reverse order. xs must be finite.

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

(!!) :: [a] -> Int -> a infixl 9 #

List index (subscript) operator, starting from 0. It is an instance of the more general genericIndex, which takes an index of any integral type.

Special folds

and :: Foldable t => t Bool -> Bool #

and returns the conjunction of a container of Bools. For the result to be True, the container must be finite; False, however, results from a False value finitely far from the left end.

or :: Foldable t => t Bool -> Bool #

or returns the disjunction of a container of Bools. For the result to be False, the container must be finite; True, however, results from a True value finitely far from the left end.

any :: Foldable t => (a -> Bool) -> t a -> Bool #

Determines whether any element of the structure satisfies the predicate.

all :: Foldable t => (a -> Bool) -> t a -> Bool #

Determines whether all elements of the structure satisfy the predicate.

concat :: Foldable t => t [a] -> [a] #

The concatenation of all the elements of a container of lists.

concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #

Map a function over all the elements of a container and concatenate the resulting lists.

Building lists

Scans

scanl :: (b -> a -> b) -> b -> [a] -> [b] #

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]

Note that

last (scanl f z xs) == foldl f z xs.

scanl1 :: (a -> a -> a) -> [a] -> [a] #

scanl1 is a variant of scanl that has no starting value argument:

scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]

scanr :: (a -> b -> b) -> b -> [a] -> [b] #

scanr is the right-to-left dual of scanl. Note that

head (scanr f z xs) == foldr f z xs.

scanr1 :: (a -> a -> a) -> [a] -> [a] #

scanr1 is a variant of scanr that has no starting value argument.

Infinite lists

iterate :: (a -> a) -> a -> [a] #

iterate f x returns an infinite list of repeated applications of f to x:

iterate f x == [x, f x, f (f x), ...]

repeat :: a -> [a] #

repeat x is an infinite list, with x the value of every element.

replicate :: Int -> a -> [a] #

replicate n x is a list of length n with x the value of every element. It is an instance of the more general genericReplicate, in which n may be of any integral type.

cycle :: [a] -> [a] #

cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists.

Sublists

take :: Int -> [a] -> [a] #

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n > length xs:

take 5 "Hello World!" == "Hello"
take 3 [1,2,3,4,5] == [1,2,3]
take 3 [1,2] == [1,2]
take 3 [] == []
take (-1) [1,2] == []
take 0 [1,2] == []

It is an instance of the more general genericTake, in which n may be of any integral type.

drop :: Int -> [a] -> [a] #

drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs:

drop 6 "Hello World!" == "World!"
drop 3 [1,2,3,4,5] == [4,5]
drop 3 [1,2] == []
drop 3 [] == []
drop (-1) [1,2] == [1,2]
drop 0 [1,2] == [1,2]

It is an instance of the more general genericDrop, in which n may be of any integral type.

splitAt :: Int -> [a] -> ([a], [a]) #

splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the remainder of the list:

splitAt 6 "Hello World!" == ("Hello ","World!")
splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
splitAt 1 [1,2,3] == ([1],[2,3])
splitAt 3 [1,2,3] == ([1,2,3],[])
splitAt 4 [1,2,3] == ([1,2,3],[])
splitAt 0 [1,2,3] == ([],[1,2,3])
splitAt (-1) [1,2,3] == ([],[1,2,3])

It is equivalent to (take n xs, drop n xs) when n is not _|_ (splitAt _|_ xs = _|_). splitAt is an instance of the more general genericSplitAt, in which n may be of any integral type.

takeWhile :: (a -> Bool) -> [a] -> [a] #

takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:

takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
takeWhile (< 9) [1,2,3] == [1,2,3]
takeWhile (< 0) [1,2,3] == []

dropWhile :: (a -> Bool) -> [a] -> [a] #

dropWhile p xs returns the suffix remaining after takeWhile p xs:

dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
dropWhile (< 9) [1,2,3] == []
dropWhile (< 0) [1,2,3] == [1,2,3]

span :: (a -> Bool) -> [a] -> ([a], [a]) #

span, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that satisfy p and second element is the remainder of the list:

span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
span (< 9) [1,2,3] == ([1,2,3],[])
span (< 0) [1,2,3] == ([],[1,2,3])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

break :: (a -> Bool) -> [a] -> ([a], [a]) #

break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:

break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
break (< 9) [1,2,3] == ([],[1,2,3])
break (> 9) [1,2,3] == ([1,2,3],[])

break p is equivalent to span (not . p).

Searching lists

notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #

notElem is the negation of elem.

lookup :: Eq a => a -> [(a, b)] -> Maybe b #

lookup key assocs looks up a key in an association list.

Zipping and unzipping lists

zip :: [a] -> [b] -> [(a, b)] #

zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.

zip is right-lazy:

zip [] _|_ = []

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)] #

zip3 takes three lists and returns a list of triples, analogous to zip.

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #

zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two lists to produce the list of corresponding sums.

zipWith is right-lazy:

zipWith f [] _|_ = []

zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d] #

The zipWith3 function takes a function which combines three elements, as well as three lists and returns a list of their point-wise combination, analogous to zipWith.

unzip :: [(a, b)] -> ([a], [b]) #

unzip transforms a list of pairs into a list of first components and a list of second components.

unzip3 :: [(a, b, c)] -> ([a], [b], [c]) #

The unzip3 function takes a list of triples and returns three lists, analogous to unzip.

Functions on strings

lines :: String -> [String] #

lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.

Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,

lines "" == []
lines "\n" == [""]
lines "one" == ["one"]
lines "one\n" == ["one"]
lines "one\n\n" == ["one",""]
lines "one\ntwo" == ["one","two"]
lines "one\ntwo\n" == ["one","two"]

Thus lines s contains at least as many elements as newlines in s.

words :: String -> [String] #

words breaks a string up into a list of words, which were delimited by white space.

unlines :: [String] -> String #

unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to each.

unwords :: [String] -> String #

unwords is an inverse operation to words. It joins words with separating spaces.

Converting from and to String

Converting to String

type ShowS = String -> String #

The shows functions return a function that prepends the output String to an existing String. This allows constant-time concatenation of results using function composition.

class Show a where #

Conversion of values to readable Strings.

Derived instances of Show have the following properties, which are compatible with derived instances of Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Show is equivalent to

instance (Show a) => Show (Tree a) where

       showsPrec d (Leaf m) = showParen (d > app_prec) $
            showString "Leaf " . showsPrec (app_prec+1) m
         where app_prec = 10

       showsPrec d (u :^: v) = showParen (d > up_prec) $
            showsPrec (up_prec+1) u .
            showString " :^: "      .
            showsPrec (up_prec+1) v
         where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Minimal complete definition

showsPrec | show

Methods

showsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS 

Convert a value to a readable String.

showsPrec should satisfy the law

showsPrec d x r ++ s  ==  showsPrec d x (r ++ s)

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

show :: a -> String #

A specialised variant of showsPrec, using precedence context zero, and returning an ordinary String.

showList :: [a] -> ShowS #

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show Bool 

Methods

showsPrec :: Int -> Bool -> ShowS #

show :: Bool -> String #

showList :: [Bool] -> ShowS #

Show Char

Since: 2.1

Methods

showsPrec :: Int -> Char -> ShowS #

show :: Char -> String #

showList :: [Char] -> ShowS #

Show Int

Since: 2.1

Methods

showsPrec :: Int -> Int -> ShowS #

show :: Int -> String #

showList :: [Int] -> ShowS #

Show Int8

Since: 2.1

Methods

showsPrec :: Int -> Int8 -> ShowS #

show :: Int8 -> String #

showList :: [Int8] -> ShowS #

Show Int16

Since: 2.1

Methods

showsPrec :: Int -> Int16 -> ShowS #

show :: Int16 -> String #

showList :: [Int16] -> ShowS #

Show Int32

Since: 2.1

Methods

showsPrec :: Int -> Int32 -> ShowS #

show :: Int32 -> String #

showList :: [Int32] -> ShowS #

Show Int64

Since: 2.1

Methods

showsPrec :: Int -> Int64 -> ShowS #

show :: Int64 -> String #

showList :: [Int64] -> ShowS #

Show Integer

Since: 2.1

Show Natural

Since: 4.8.0.0

Show Ordering 
Show Word

Since: 2.1

Methods

showsPrec :: Int -> Word -> ShowS #

show :: Word -> String #

showList :: [Word] -> ShowS #

Show Word8

Since: 2.1

Methods

showsPrec :: Int -> Word8 -> ShowS #

show :: Word8 -> String #

showList :: [Word8] -> ShowS #

Show Word16

Since: 2.1

Show Word32

Since: 2.1

Show Word64

Since: 2.1

Show CallStack

Since: 4.9.0.0

Show SomeTypeRep

Since: 4.10.0.0

Show Exp 

Methods

showsPrec :: Int -> Exp -> ShowS #

show :: Exp -> String #

showList :: [Exp] -> ShowS #

Show Match 

Methods

showsPrec :: Int -> Match -> ShowS #

show :: Match -> String #

showList :: [Match] -> ShowS #

Show Clause 
Show Pat 

Methods

showsPrec :: Int -> Pat -> ShowS #

show :: Pat -> String #

showList :: [Pat] -> ShowS #

Show Type 

Methods

showsPrec :: Int -> Type -> ShowS #

show :: Type -> String #

showList :: [Type] -> ShowS #

Show Dec 

Methods

showsPrec :: Int -> Dec -> ShowS #

show :: Dec -> String #

showList :: [Dec] -> ShowS #

Show Name 

Methods

showsPrec :: Int -> Name -> ShowS #

show :: Name -> String #

showList :: [Name] -> ShowS #

Show FunDep 
Show TyVarBndr 
Show InjectivityAnn 
Show Overlap 
Show DerivStrategy 
Show () 

Methods

showsPrec :: Int -> () -> ShowS #

show :: () -> String #

showList :: [()] -> ShowS #

Show TyCon

Since: 2.1

Methods

showsPrec :: Int -> TyCon -> ShowS #

show :: TyCon -> String #

showList :: [TyCon] -> ShowS #

Show Module

Since: 4.9.0.0

Show TrName

Since: 4.9.0.0

Show EventLifetime 

Methods

showsPrec :: Int -> EventLifetime -> ShowS #

show :: EventLifetime -> String #

showList :: [EventLifetime] -> ShowS #

Show Timeout 

Methods

showsPrec :: Int -> Timeout -> ShowS #

show :: Timeout -> String #

showList :: [Timeout] -> ShowS #

Show Void

Since: 4.8.0.0

Methods

showsPrec :: Int -> Void -> ShowS #

show :: Void -> String #

showList :: [Void] -> ShowS #

Show DataType 
Show Constr

Since: 4.0.0.0

Show DataRep 
Show ConstrRep 
Show Fixity 
Show Version 
Show ThreadId

Since: 4.2.0.0

Show BlockReason 
Show ThreadStatus 
Show Event

Since: 4.3.1.0

Methods

showsPrec :: Int -> Event -> ShowS #

show :: Event -> String #

showList :: [Event] -> ShowS #

Show Lifetime 
Show BlockedIndefinitelyOnMVar

Since: 4.1.0.0

Show BlockedIndefinitelyOnSTM

Since: 4.1.0.0

Show Deadlock

Since: 4.1.0.0

Show AllocationLimitExceeded

Since: 4.7.1.0

Show CompactionFailed

Since: 4.10.0.0

Show AssertionFailed

Since: 4.1.0.0

Show SomeAsyncException

Since: 4.7.0.0

Show AsyncException

Since: 4.1.0.0

Show ArrayException

Since: 4.1.0.0

Show ExitCode 
Show IOErrorType

Since: 4.1.0.0

Show MaskingState 
Show IOException

Since: 4.1.0.0

Show ErrorCall

Since: 4.0.0.0

Show ArithException

Since: 4.0.0.0

Show All 

Methods

showsPrec :: Int -> All -> ShowS #

show :: All -> String #

showList :: [All] -> ShowS #

Show Any 

Methods

showsPrec :: Int -> Any -> ShowS #

show :: Any -> String #

showList :: [Any] -> ShowS #

Show Fixity 
Show Associativity 
Show SourceUnpackedness 
Show SourceStrictness 
Show DecidedStrictness 
Show SomeSymbol

Since: 4.7.0.0

Show SomeNat

Since: 4.7.0.0

Show CChar 

Methods

showsPrec :: Int -> CChar -> ShowS #

show :: CChar -> String #

showList :: [CChar] -> ShowS #

Show CSChar 
Show CUChar 
Show CShort 
Show CUShort 
Show CInt 

Methods

showsPrec :: Int -> CInt -> ShowS #

show :: CInt -> String #

showList :: [CInt] -> ShowS #

Show CUInt 

Methods

showsPrec :: Int -> CUInt -> ShowS #

show :: CUInt -> String #

showList :: [CUInt] -> ShowS #

Show CLong 

Methods

showsPrec :: Int -> CLong -> ShowS #

show :: CLong -> String #

showList :: [CLong] -> ShowS #

Show CULong 
Show CLLong 
Show CULLong 
Show CBool 

Methods

showsPrec :: Int -> CBool -> ShowS #

show :: CBool -> String #

showList :: [CBool] -> ShowS #

Show CFloat 
Show CDouble 
Show CPtrdiff 
Show CSize 

Methods

showsPrec :: Int -> CSize -> ShowS #

show :: CSize -> String #

showList :: [CSize] -> ShowS #

Show CWchar 
Show CSigAtomic 
Show CClock 
Show CTime 

Methods

showsPrec :: Int -> CTime -> ShowS #

show :: CTime -> String #

showList :: [CTime] -> ShowS #

Show CUSeconds 
Show CSUSeconds 
Show CIntPtr 
Show CUIntPtr 
Show CIntMax 
Show CUIntMax 
Show Fingerprint

Since: 4.7.0.0

Show Lexeme 
Show Number 
Show GeneralCategory 
Show SomeException

Since: 3.0

Show SrcLoc 
Show ShortByteString 
Show ByteString 
Show ByteString 
Show IntSet 
Show Extension 
Show SourceError 
Show GhcApiError 
Show PrimRep 
Show PrimElemRep 
Show ErrMsg 
Show IOEnvFailure 
Show GeneralFlag 
Show WarnReason 
Show WarningFlag 
Show Language 
Show SafeHaskellMode 
Show HscTarget 
Show GhcLink 
Show PackageArg 
Show RtsOptsEnabled 
Show Way 

Methods

showsPrec :: Int -> Way -> ShowS #

show :: Way -> String #

showList :: [Way] -> ShowS #

Show ModLocation 
Show Unique 
Show SourceText 
Show RuleMatchInfo 
Show InlineSpec 
Show FractionalLit 
Show Severity 
Show RealSrcLoc 
Show SrcLoc 
Show RealSrcSpan 
Show SrcSpan 
Show Doc 

Methods

showsPrec :: Int -> Doc -> ShowS #

show :: Doc -> String #

showList :: [Doc] -> ShowS #

Show UnitId 
Show FastString 
Show OverridingBool 
Show DumpFlag 
Show ForeignSrcLang 
Show EvalOpts 
Show SerializableException 
Show THResultType 
Show QState 
Show FFIType 
Show FFIConv 
Show Doc 

Methods

showsPrec :: Int -> Doc -> ShowS #

show :: Doc -> String #

showList :: [Doc] -> ShowS #

Show TextDetails 
Show Style 

Methods

showsPrec :: Int -> Style -> ShowS #

show :: Style -> String #

showList :: [Style] -> ShowS #

Show Mode 

Methods

showsPrec :: Int -> Mode -> ShowS #

show :: Mode -> String #

showList :: [Mode] -> ShowS #

Show ModName 
Show PkgName 
Show Module 
Show OccName 
Show NameFlavour 
Show NameSpace 
Show Loc 

Methods

showsPrec :: Int -> Loc -> ShowS #

show :: Loc -> String #

showList :: [Loc] -> ShowS #

Show Info 

Methods

showsPrec :: Int -> Info -> ShowS #

show :: Info -> String #

showList :: [Info] -> ShowS #

Show ModuleInfo 
Show Fixity 
Show FixityDirection 
Show Lit 

Methods

showsPrec :: Int -> Lit -> ShowS #

show :: Lit -> String #

showList :: [Lit] -> ShowS #

Show Body 

Methods

showsPrec :: Int -> Body -> ShowS #

show :: Body -> String #

showList :: [Body] -> ShowS #

Show Guard 

Methods

showsPrec :: Int -> Guard -> ShowS #

show :: Guard -> String #

showList :: [Guard] -> ShowS #

Show Stmt 

Methods

showsPrec :: Int -> Stmt -> ShowS #

show :: Stmt -> String #

showList :: [Stmt] -> ShowS #

Show Range 

Methods

showsPrec :: Int -> Range -> ShowS #

show :: Range -> String #

showList :: [Range] -> ShowS #

Show DerivClause 
Show TypeFamilyHead 
Show TySynEqn 
Show FamFlavour 
Show Foreign 
Show Callconv 
Show Safety 
Show Pragma 
Show Inline 
Show RuleMatch 
Show Phases 
Show RuleBndr 
Show AnnTarget 
Show SourceUnpackedness 
Show SourceStrictness 
Show DecidedStrictness 
Show Con 

Methods

showsPrec :: Int -> Con -> ShowS #

show :: Con -> String #

showList :: [Con] -> ShowS #

Show Bang 

Methods

showsPrec :: Int -> Bang -> ShowS #

show :: Bang -> String #

showList :: [Bang] -> ShowS #

Show PatSynDir 
Show PatSynArgs 
Show FamilyResultSig 
Show TyLit 

Methods

showsPrec :: Int -> TyLit -> ShowS #

show :: TyLit -> String #

showList :: [TyLit] -> ShowS #

Show Role 

Methods

showsPrec :: Int -> Role -> ShowS #

show :: Role -> String #

showList :: [Role] -> ShowS #

Show AnnLookup 
Show Padding 

Methods

showsPrec :: Int -> Padding -> ShowS #

show :: Padding -> String #

showList :: [Padding] -> ShowS #

Show DateFormatSpec 

Methods

showsPrec :: Int -> DateFormatSpec -> ShowS #

show :: DateFormatSpec -> String #

showList :: [DateFormatSpec] -> ShowS #

Show ZonedTime 
Show LocalTime 
Show TimeOfDay 
Show TimeZone 
Show DiffTime 
Show a => Show [a]

Since: 2.1

Methods

showsPrec :: Int -> [a] -> ShowS #

show :: [a] -> String #

showList :: [[a]] -> ShowS #

Show a => Show (Maybe a) 

Methods

showsPrec :: Int -> Maybe a -> ShowS #

show :: Maybe a -> String #

showList :: [Maybe a] -> ShowS #

Show a => Show (Ratio a)

Since: 2.0.1

Methods

showsPrec :: Int -> Ratio a -> ShowS #

show :: Ratio a -> String #

showList :: [Ratio a] -> ShowS #

Show (Ptr a)

Since: 2.1

Methods

showsPrec :: Int -> Ptr a -> ShowS #

show :: Ptr a -> String #

showList :: [Ptr a] -> ShowS #

Show (FunPtr a)

Since: 2.1

Methods

showsPrec :: Int -> FunPtr a -> ShowS #

show :: FunPtr a -> String #

showList :: [FunPtr a] -> ShowS #

Show p => Show (Par1 p) 

Methods

showsPrec :: Int -> Par1 p -> ShowS #

show :: Par1 p -> String #

showList :: [Par1 p] -> ShowS #

Show (ForeignPtr a)

Since: 2.1

Show a => Show (Complex a) 

Methods

showsPrec :: Int -> Complex a -> ShowS #

show :: Complex a -> String #

showList :: [Complex a] -> ShowS #

HasResolution a => Show (Fixed a)

Since: 2.1

Methods

showsPrec :: Int -> Fixed a -> ShowS #

show :: Fixed a -> String #

showList :: [Fixed a] -> ShowS #

Show a => Show (Min a) 

Methods

showsPrec :: Int -> Min a -> ShowS #

show :: Min a -> String #

showList :: [Min a] -> ShowS #

Show a => Show (Max a) 

Methods

showsPrec :: Int -> Max a -> ShowS #

show :: Max a -> String #

showList :: [Max a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show m => Show (WrappedMonoid m) 
Show a => Show (Option a) 

Methods

showsPrec :: Int -> Option a -> ShowS #

show :: Option a -> String #

showList :: [Option a] -> ShowS #

Show a => Show (NonEmpty a) 

Methods

showsPrec :: Int -> NonEmpty a -> ShowS #

show :: NonEmpty a -> String #

showList :: [NonEmpty a] -> ShowS #

Show a => Show (ZipList a) 

Methods

showsPrec :: Int -> ZipList a -> ShowS #

show :: ZipList a -> String #

showList :: [ZipList a] -> ShowS #

Show a => Show (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: 4.8.0.0

Methods

showsPrec :: Int -> Identity a -> ShowS #

show :: Identity a -> String #

showList :: [Identity a] -> ShowS #

Show a => Show (Dual a) 

Methods

showsPrec :: Int -> Dual a -> ShowS #

show :: Dual a -> String #

showList :: [Dual a] -> ShowS #

Show a => Show (Sum a) 

Methods

showsPrec :: Int -> Sum a -> ShowS #

show :: Sum a -> String #

showList :: [Sum a] -> ShowS #

Show a => Show (Product a) 

Methods

showsPrec :: Int -> Product a -> ShowS #

show :: Product a -> String #

showList :: [Product a] -> ShowS #

Show a => Show (First a) 

Methods

showsPrec :: Int -> First a -> ShowS #

show :: First a -> String #

showList :: [First a] -> ShowS #

Show a => Show (Last a) 

Methods

showsPrec :: Int -> Last a -> ShowS #

show :: Last a -> String #

showList :: [Last a] -> ShowS #

Show a => Show (Down a) 

Methods

showsPrec :: Int -> Down a -> ShowS #

show :: Down a -> String #

showList :: [Down a] -> ShowS #

Show a => Show (IntMap a) 

Methods

showsPrec :: Int -> IntMap a -> ShowS #

show :: IntMap a -> String #

showList :: [IntMap a] -> ShowS #

Show vertex => Show (SCC vertex) 

Methods

showsPrec :: Int -> SCC vertex -> ShowS #

show :: SCC vertex -> String #

showList :: [SCC vertex] -> ShowS #

Show a => Show (Tree a) 

Methods

showsPrec :: Int -> Tree a -> ShowS #

show :: Tree a -> String #

showList :: [Tree a] -> ShowS #

Show a => Show (Seq a) 

Methods

showsPrec :: Int -> Seq a -> ShowS #

show :: Seq a -> String #

showList :: [Seq a] -> ShowS #

Show a => Show (ViewL a) 

Methods

showsPrec :: Int -> ViewL a -> ShowS #

show :: ViewL a -> String #

showList :: [ViewL a] -> ShowS #

Show a => Show (ViewR a) 

Methods

showsPrec :: Int -> ViewR a -> ShowS #

show :: ViewR a -> String #

showList :: [ViewR a] -> ShowS #

Show a => Show (Set a) 

Methods

showsPrec :: Int -> Set a -> ShowS #

show :: Set a -> String #

showList :: [Set a] -> ShowS #

Show a => Show (FromListCounting a) 

Methods

showsPrec :: Int -> FromListCounting a -> ShowS #

show :: FromListCounting a -> String #

showList :: [FromListCounting a] -> ShowS #

Show b => Show (GroupEdges b) 

Methods

showsPrec :: Int -> GroupEdges b -> ShowS #

show :: GroupEdges b -> String #

showList :: [GroupEdges b] -> ShowS #

Show a => Show (LPath a) 

Methods

showsPrec :: Int -> LPath a -> ShowS #

show :: LPath a -> String #

showList :: [LPath a] -> ShowS #

Show a => Show (OnOff a) 

Methods

showsPrec :: Int -> OnOff a -> ShowS #

show :: OnOff a -> String #

showList :: [OnOff a] -> ShowS #

Show a => Show (EvalResult a) 
Show a => Show (EvalExpr a) 

Methods

showsPrec :: Int -> EvalExpr a -> ShowS #

show :: EvalExpr a -> String #

showList :: [EvalExpr a] -> ShowS #

Show (Message a) 

Methods

showsPrec :: Int -> Message a -> ShowS #

show :: Message a -> String #

showList :: [Message a] -> ShowS #

Show a => Show (SizedSeq a) 

Methods

showsPrec :: Int -> SizedSeq a -> ShowS #

show :: SizedSeq a -> String #

showList :: [SizedSeq a] -> ShowS #

Show a => Show (QResult a) 

Methods

showsPrec :: Int -> QResult a -> ShowS #

show :: QResult a -> String #

showList :: [QResult a] -> ShowS #

Show (THMessage a) 
Show a => Show (THResult a) 

Methods

showsPrec :: Int -> THResult a -> ShowS #

show :: THResult a -> String #

showList :: [THResult a] -> ShowS #

Show (Doc a) 

Methods

showsPrec :: Int -> Doc a -> ShowS #

show :: Doc a -> String #

showList :: [Doc a] -> ShowS #

Show a => Show (AnnotDetails a) 
Show a => Show (Span a) 

Methods

showsPrec :: Int -> Span a -> ShowS #

show :: Span a -> String #

showList :: [Span a] -> ShowS #

(Show b, Show a) => Show (Either a b) 

Methods

showsPrec :: Int -> Either a b -> ShowS #

show :: Either a b -> String #

showList :: [Either a b] -> ShowS #

Show (V1 k p) 

Methods

showsPrec :: Int -> V1 k p -> ShowS #

show :: V1 k p -> String #

showList :: [V1 k p] -> ShowS #

Show (U1 k p)

Since: 4.9.0.0

Methods

showsPrec :: Int -> U1 k p -> ShowS #

show :: U1 k p -> String #

showList :: [U1 k p] -> ShowS #

Show (TypeRep k a) 

Methods

showsPrec :: Int -> TypeRep k a -> ShowS #

show :: TypeRep k a -> String #

showList :: [TypeRep k a] -> ShowS #

(Show a, Show b) => Show (a, b)

Since: 2.1

Methods

showsPrec :: Int -> (a, b) -> ShowS #

show :: (a, b) -> String #

showList :: [(a, b)] -> ShowS #

Show (ST s a)

Since: 2.1

Methods

showsPrec :: Int -> ST s a -> ShowS #

show :: ST s a -> String #

showList :: [ST s a] -> ShowS #

(Ix ix, Show ix, Show e, IArray UArray e) => Show (UArray ix e) 

Methods

showsPrec :: Int -> UArray ix e -> ShowS #

show :: UArray ix e -> String #

showList :: [UArray ix e] -> ShowS #

(Ix a, Show a, Show b) => Show (Array a b)

Since: 2.1

Methods

showsPrec :: Int -> Array a b -> ShowS #

show :: Array a b -> String #

showList :: [Array a b] -> ShowS #

(Show b, Show a) => Show (Arg a b) 

Methods

showsPrec :: Int -> Arg a b -> ShowS #

show :: Arg a b -> String #

showList :: [Arg a b] -> ShowS #

Show (Proxy k s)

Since: 4.7.0.0

Methods

showsPrec :: Int -> Proxy k s -> ShowS #

show :: Proxy k s -> String #

showList :: [Proxy k s] -> ShowS #

(Show k, Show a) => Show (Map k a) 

Methods

showsPrec :: Int -> Map k a -> ShowS #

show :: Map k a -> String #

showList :: [Map k a] -> ShowS #

(Show a, Show b) => Show (Gr a b) 

Methods

showsPrec :: Int -> Gr a b -> ShowS #

show :: Gr a b -> String #

showList :: [Gr a b] -> ShowS #

Show (Bin k a) 

Methods

showsPrec :: Int -> Bin k a -> ShowS #

show :: Bin k a -> String #

showList :: [Bin k a] -> ShowS #

Show a => Show (EvalStatus_ a b) 

Methods

showsPrec :: Int -> EvalStatus_ a b -> ShowS #

show :: EvalStatus_ a b -> String #

showList :: [EvalStatus_ a b] -> ShowS #

(Show1 m, Show a) => Show (MaybeT m a) 

Methods

showsPrec :: Int -> MaybeT m a -> ShowS #

show :: MaybeT m a -> String #

showList :: [MaybeT m a] -> ShowS #

(Show1 m, Show a) => Show (ListT m a) 

Methods

showsPrec :: Int -> ListT m a -> ShowS #

show :: ListT m a -> String #

showList :: [ListT m a] -> ShowS #

Show (f p) => Show (Rec1 k f p) 

Methods

showsPrec :: Int -> Rec1 k f p -> ShowS #

show :: Rec1 k f p -> String #

showList :: [Rec1 k f p] -> ShowS #

Show (URec k Char p) 

Methods

showsPrec :: Int -> URec k Char p -> ShowS #

show :: URec k Char p -> String #

showList :: [URec k Char p] -> ShowS #

Show (URec k Double p) 

Methods

showsPrec :: Int -> URec k Double p -> ShowS #

show :: URec k Double p -> String #

showList :: [URec k Double p] -> ShowS #

Show (URec k Float p) 

Methods

showsPrec :: Int -> URec k Float p -> ShowS #

show :: URec k Float p -> String #

showList :: [URec k Float p] -> ShowS #

Show (URec k Int p) 

Methods

showsPrec :: Int -> URec k Int p -> ShowS #

show :: URec k Int p -> String #

showList :: [URec k Int p] -> ShowS #

Show (URec k Word p) 

Methods

showsPrec :: Int -> URec k Word p -> ShowS #

show :: URec k Word p -> String #

showList :: [URec k Word p] -> ShowS #

(Show a, Show b, Show c) => Show (a, b, c)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c) -> ShowS #

show :: (a, b, c) -> String #

showList :: [(a, b, c)] -> ShowS #

Show a => Show (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Since: 4.8.0.0

Methods

showsPrec :: Int -> Const k a b -> ShowS #

show :: Const k a b -> String #

showList :: [Const k a b] -> ShowS #

Show (f a) => Show (Alt k f a) 

Methods

showsPrec :: Int -> Alt k f a -> ShowS #

show :: Alt k f a -> String #

showList :: [Alt k f a] -> ShowS #

Show (Coercion k a b) 

Methods

showsPrec :: Int -> Coercion k a b -> ShowS #

show :: Coercion k a b -> String #

showList :: [Coercion k a b] -> ShowS #

Show ((:~:) k a b) 

Methods

showsPrec :: Int -> (k :~: a) b -> ShowS #

show :: (k :~: a) b -> String #

showList :: [(k :~: a) b] -> ShowS #

Show (gr a b) => Show (OrdGr gr a b) 

Methods

showsPrec :: Int -> OrdGr gr a b -> ShowS #

show :: OrdGr gr a b -> String #

showList :: [OrdGr gr a b] -> ShowS #

(Show e, Show1 m, Show a) => Show (ErrorT e m a) 

Methods

showsPrec :: Int -> ErrorT e m a -> ShowS #

show :: ErrorT e m a -> String #

showList :: [ErrorT e m a] -> ShowS #

(Show e, Show1 m, Show a) => Show (ExceptT e m a) 

Methods

showsPrec :: Int -> ExceptT e m a -> ShowS #

show :: ExceptT e m a -> String #

showList :: [ExceptT e m a] -> ShowS #

(Show w, Show1 m, Show a) => Show (WriterT w m a) 

Methods

showsPrec :: Int -> WriterT w m a -> ShowS #

show :: WriterT w m a -> String #

showList :: [WriterT w m a] -> ShowS #

(Show w, Show1 m, Show a) => Show (WriterT w m a) 

Methods

showsPrec :: Int -> WriterT w m a -> ShowS #

show :: WriterT w m a -> String #

showList :: [WriterT w m a] -> ShowS #

(Show1 f, Show a) => Show (IdentityT * f a) 

Methods

showsPrec :: Int -> IdentityT * f a -> ShowS #

show :: IdentityT * f a -> String #

showList :: [IdentityT * f a] -> ShowS #

Show c => Show (K1 k i c p) 

Methods

showsPrec :: Int -> K1 k i c p -> ShowS #

show :: K1 k i c p -> String #

showList :: [K1 k i c p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:+:) k f g p) 

Methods

showsPrec :: Int -> (k :+: f) g p -> ShowS #

show :: (k :+: f) g p -> String #

showList :: [(k :+: f) g p] -> ShowS #

(Show (g p), Show (f p)) => Show ((:*:) k f g p) 

Methods

showsPrec :: Int -> (k :*: f) g p -> ShowS #

show :: (k :*: f) g p -> String #

showList :: [(k :*: f) g p] -> ShowS #

(Show a, Show b, Show c, Show d) => Show (a, b, c, d)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d) -> ShowS #

show :: (a, b, c, d) -> String #

showList :: [(a, b, c, d)] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Product * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Product * f g a -> ShowS #

show :: Product * f g a -> String #

showList :: [Product * f g a] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Sum * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Sum * f g a -> ShowS #

show :: Sum * f g a -> String #

showList :: [Sum * f g a] -> ShowS #

Show ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

showsPrec :: Int -> (k1 :~~: k2) a b -> ShowS #

show :: (k1 :~~: k2) a b -> String #

showList :: [(k1 :~~: k2) a b] -> ShowS #

Show (f p) => Show (M1 k i c f p) 

Methods

showsPrec :: Int -> M1 k i c f p -> ShowS #

show :: M1 k i c f p -> String #

showList :: [M1 k i c f p] -> ShowS #

Show (f (g p)) => Show ((:.:) k2 k1 f g p) 

Methods

showsPrec :: Int -> (k2 :.: k1) f g p -> ShowS #

show :: (k2 :.: k1) f g p -> String #

showList :: [(k2 :.: k1) f g p] -> ShowS #

(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e) -> ShowS #

show :: (a, b, c, d, e) -> String #

showList :: [(a, b, c, d, e)] -> ShowS #

(Show1 f, Show1 g, Show a) => Show (Compose * * f g a)

Since: 4.9.0.0

Methods

showsPrec :: Int -> Compose * * f g a -> ShowS #

show :: Compose * * f g a -> String #

showList :: [Compose * * f g a] -> ShowS #

(Show modulename, Show unitid) => Show (DbModule instunitid compid unitid modulename mod) 

Methods

showsPrec :: Int -> DbModule instunitid compid unitid modulename mod -> ShowS #

show :: DbModule instunitid compid unitid modulename mod -> String #

showList :: [DbModule instunitid compid unitid modulename mod] -> ShowS #

(Show instunitid, Show mod, Show modulename, Show compid) => Show (DbUnitId instunitid compid unitid modulename mod) 

Methods

showsPrec :: Int -> DbUnitId instunitid compid unitid modulename mod -> ShowS #

show :: DbUnitId instunitid compid unitid modulename mod -> String #

showList :: [DbUnitId instunitid compid unitid modulename mod] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f) -> ShowS #

show :: (a, b, c, d, e, f) -> String #

showList :: [(a, b, c, d, e, f)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g) -> ShowS #

show :: (a, b, c, d, e, f, g) -> String #

showList :: [(a, b, c, d, e, f, g)] -> ShowS #

(Show srcpkgname, Show srcpkgid, Show mod, Show modulename, Show compid, Show instunitid) => Show (InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod) 

Methods

showsPrec :: Int -> InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> ShowS #

show :: InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod -> String #

showList :: [InstalledPackageInfo compid srcpkgid srcpkgname instunitid unitid modulename mod] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h) -> ShowS #

show :: (a, b, c, d, e, f, g, h) -> String #

showList :: [(a, b, c, d, e, f, g, h)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i) -> String #

showList :: [(a, b, c, d, e, f, g, h, i)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] -> ShowS #

(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

showsPrec :: Int -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> ShowS #

show :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> String #

showList :: [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] -> ShowS #

shows :: Show a => a -> ShowS #

equivalent to showsPrec with a precedence of 0.

showChar :: Char -> ShowS #

utility function converting a Char to a show function that simply prepends the character unchanged.

showString :: String -> ShowS #

utility function converting a String to a show function that simply prepends the string unchanged.

showParen :: Bool -> ShowS -> ShowS #

utility function that surrounds the inner show function with parentheses when the Bool parameter is True.

Converting from String

type ReadS a = String -> [(a, String)] #

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP).

class Read a where #

Parsing of Strings, producing values.

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Why do both readsPrec and readPrec exist, and why does GHC opt to implement readPrec in derived Read instances instead of readsPrec? The reason is that readsPrec is based on the ReadS type, and although ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient parser data structure.

readPrec, on the other hand, is based on a much more efficient ReadPrec datatype (a.k.a "new-style parsers"), but its definition relies on the use of the RankNTypes language extension. Therefore, readPrec (and its cousin, readListPrec) are marked as GHC-only. Nevertheless, it is recommended to use readPrec instead of readsPrec whenever possible for the efficiency improvements it brings.

As mentioned above, derived Read instances in GHC will implement readPrec instead of readsPrec. The default implementations of readsPrec (and its cousin, readList) will simply use readPrec under the hood. If you are writing a Read instance by hand, it is recommended to write it like so:

instance Read T where
  readPrec     = ...
  readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Methods

readsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a] #

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances

Read Bool

Since: 2.1

Read Char

Since: 2.1

Read Double

Since: 2.1

Read Float

Since: 2.1

Read Int

Since: 2.1

Read Int8

Since: 2.1

Read Int16

Since: 2.1

Read Int32

Since: 2.1

Read Int64

Since: 2.1

Read Integer

Since: 2.1

Read Natural

Since: 4.8.0.0

Read Ordering

Since: 2.1

Read Word

Since: 4.5.0.0

Read Word8

Since: 2.1

Read Word16

Since: 2.1

Read Word32

Since: 2.1

Read Word64

Since: 2.1

Read ()

Since: 2.1

Methods

readsPrec :: Int -> ReadS () #

readList :: ReadS [()] #

readPrec :: ReadPrec () #

readListPrec :: ReadPrec [()] #

Read Void

Reading a Void value is always a parse error, considering Void as a data type with no constructors. | @since 4.8.0.0

Read Version 
Read ExitCode 
Read All 
Read Any 
Read Fixity 
Read Associativity 
Read SourceUnpackedness 
Read SourceStrictness 
Read DecidedStrictness 
Read SomeSymbol

Since: 4.7.0.0

Read SomeNat

Since: 4.7.0.0

Read CChar 
Read CSChar 
Read CUChar 
Read CShort 
Read CUShort 
Read CInt 
Read CUInt 
Read CLong 
Read CULong 
Read CLLong 
Read CULLong 
Read CBool 
Read CFloat 
Read CDouble 
Read CPtrdiff 
Read CSize 
Read CWchar 
Read CSigAtomic 
Read CClock 
Read CTime 
Read CUSeconds 
Read CSUSeconds 
Read CIntPtr 
Read CUIntPtr 
Read CIntMax 
Read CUIntMax 
Read Lexeme

Since: 2.1

Read GeneralCategory 
Read ShortByteString 
Read ByteString 
Read ByteString 
Read IntSet 
Read a => Read [a]

Since: 2.1

Methods

readsPrec :: Int -> ReadS [a] #

readList :: ReadS [[a]] #

readPrec :: ReadPrec [a] #

readListPrec :: ReadPrec [[a]] #

Read a => Read (Maybe a)

Since: 2.1

(Integral a, Read a) => Read (Ratio a)

Since: 2.1

Read p => Read (Par1 p) 
Read a => Read (Complex a) 
HasResolution a => Read (Fixed a)

Since: 4.3.0.0

Read a => Read (Min a) 
Read a => Read (Max a) 
Read a => Read (First a) 
Read a => Read (Last a) 
Read m => Read (WrappedMonoid m) 
Read a => Read (Option a) 
Read a => Read (NonEmpty a) 
Read a => Read (ZipList a) 
Read a => Read (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: 4.8.0.0

Read a => Read (Dual a) 
Read a => Read (Sum a) 
Read a => Read (Product a) 
Read a => Read (First a) 
Read a => Read (Last a) 
Read a => Read (Down a) 
Read e => Read (IntMap e) 
Read vertex => Read (SCC vertex) 

Methods

readsPrec :: Int -> ReadS (SCC vertex) #

readList :: ReadS [SCC vertex] #

readPrec :: ReadPrec (SCC vertex) #

readListPrec :: ReadPrec [SCC vertex] #

Read a => Read (Tree a) 
Read a => Read (Seq a) 
Read a => Read (ViewL a) 
Read a => Read (ViewR a) 
(Read a, Ord a) => Read (Set a) 
Read a => Read (FromListCounting a) 

Methods

readsPrec :: Int -> ReadS (FromListCounting a) #

readList :: ReadS [FromListCounting a] #

readPrec :: ReadPrec (FromListCounting a) #

readListPrec :: ReadPrec [FromListCounting a] #

Read b => Read (GroupEdges b) 

Methods

readsPrec :: Int -> ReadS (GroupEdges b) #

readList :: ReadS [GroupEdges b] #

readPrec :: ReadPrec (GroupEdges b) #

readListPrec :: ReadPrec [GroupEdges b] #

(Read b, Read a) => Read (Either a b) 
Read (V1 k p) 

Methods

readsPrec :: Int -> ReadS (V1 k p) #

readList :: ReadS [V1 k p] #

readPrec :: ReadPrec (V1 k p) #

readListPrec :: ReadPrec [V1 k p] #

Read (U1 k p)

Since: 4.9.0.0

Methods

readsPrec :: Int -> ReadS (U1 k p) #

readList :: ReadS [U1 k p] #

readPrec :: ReadPrec (U1 k p) #

readListPrec :: ReadPrec [U1 k p] #

(Read a, Read b) => Read (a, b)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b) #

readList :: ReadS [(a, b)] #

readPrec :: ReadPrec (a, b) #

readListPrec :: ReadPrec [(a, b)] #

(Ix a, Read a, Read b) => Read (Array a b)

Since: 2.1

(Read b, Read a) => Read (Arg a b) 

Methods

readsPrec :: Int -> ReadS (Arg a b) #

readList :: ReadS [Arg a b] #

readPrec :: ReadPrec (Arg a b) #

readListPrec :: ReadPrec [Arg a b] #

Read (Proxy k s)

Since: 4.7.0.0

(Ord k, Read k, Read e) => Read (Map k e) 

Methods

readsPrec :: Int -> ReadS (Map k e) #

readList :: ReadS [Map k e] #

readPrec :: ReadPrec (Map k e) #

readListPrec :: ReadPrec [Map k e] #

(Read a, Read b) => Read (Gr a b) 

Methods

readsPrec :: Int -> ReadS (Gr a b) #

readList :: ReadS [Gr a b] #

readPrec :: ReadPrec (Gr a b) #

readListPrec :: ReadPrec [Gr a b] #

(Read1 m, Read a) => Read (MaybeT m a) 
(Read1 m, Read a) => Read (ListT m a) 
Read (f p) => Read (Rec1 k f p) 

Methods

readsPrec :: Int -> ReadS (Rec1 k f p) #

readList :: ReadS [Rec1 k f p] #

readPrec :: ReadPrec (Rec1 k f p) #

readListPrec :: ReadPrec [Rec1 k f p] #

(Read a, Read b, Read c) => Read (a, b, c)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c) #

readList :: ReadS [(a, b, c)] #

readPrec :: ReadPrec (a, b, c) #

readListPrec :: ReadPrec [(a, b, c)] #

Read a => Read (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Since: 4.8.0.0

Methods

readsPrec :: Int -> ReadS (Const k a b) #

readList :: ReadS [Const k a b] #

readPrec :: ReadPrec (Const k a b) #

readListPrec :: ReadPrec [Const k a b] #

Read (f a) => Read (Alt k f a) 

Methods

readsPrec :: Int -> ReadS (Alt k f a) #

readList :: ReadS [Alt k f a] #

readPrec :: ReadPrec (Alt k f a) #

readListPrec :: ReadPrec [Alt k f a] #

Coercible k a b => Read (Coercion k a b)

Since: 4.7.0.0

(~) k a b => Read ((:~:) k a b)

Since: 4.7.0.0

Methods

readsPrec :: Int -> ReadS ((k :~: a) b) #

readList :: ReadS [(k :~: a) b] #

readPrec :: ReadPrec ((k :~: a) b) #

readListPrec :: ReadPrec [(k :~: a) b] #

Read (gr a b) => Read (OrdGr gr a b) 

Methods

readsPrec :: Int -> ReadS (OrdGr gr a b) #

readList :: ReadS [OrdGr gr a b] #

readPrec :: ReadPrec (OrdGr gr a b) #

readListPrec :: ReadPrec [OrdGr gr a b] #

(Read e, Read1 m, Read a) => Read (ErrorT e m a) 

Methods

readsPrec :: Int -> ReadS (ErrorT e m a) #

readList :: ReadS [ErrorT e m a] #

readPrec :: ReadPrec (ErrorT e m a) #

readListPrec :: ReadPrec [ErrorT e m a] #

(Read e, Read1 m, Read a) => Read (ExceptT e m a) 

Methods

readsPrec :: Int -> ReadS (ExceptT e m a) #

readList :: ReadS [ExceptT e m a] #

readPrec :: ReadPrec (ExceptT e m a) #

readListPrec :: ReadPrec [ExceptT e m a] #

(Read w, Read1 m, Read a) => Read (WriterT w m a) 

Methods

readsPrec :: Int -> ReadS (WriterT w m a) #

readList :: ReadS [WriterT w m a] #

readPrec :: ReadPrec (WriterT w m a) #

readListPrec :: ReadPrec [WriterT w m a] #

(Read w, Read1 m, Read a) => Read (WriterT w m a) 

Methods

readsPrec :: Int -> ReadS (WriterT w m a) #

readList :: ReadS [WriterT w m a] #

readPrec :: ReadPrec (WriterT w m a) #

readListPrec :: ReadPrec [WriterT w m a] #

(Read1 f, Read a) => Read (IdentityT * f a) 
Read c => Read (K1 k i c p) 

Methods

readsPrec :: Int -> ReadS (K1 k i c p) #

readList :: ReadS [K1 k i c p] #

readPrec :: ReadPrec (K1 k i c p) #

readListPrec :: ReadPrec [K1 k i c p] #

(Read (g p), Read (f p)) => Read ((:+:) k f g p) 

Methods

readsPrec :: Int -> ReadS ((k :+: f) g p) #

readList :: ReadS [(k :+: f) g p] #

readPrec :: ReadPrec ((k :+: f) g p) #

readListPrec :: ReadPrec [(k :+: f) g p] #

(Read (g p), Read (f p)) => Read ((:*:) k f g p) 

Methods

readsPrec :: Int -> ReadS ((k :*: f) g p) #

readList :: ReadS [(k :*: f) g p] #

readPrec :: ReadPrec ((k :*: f) g p) #

readListPrec :: ReadPrec [(k :*: f) g p] #

(Read a, Read b, Read c, Read d) => Read (a, b, c, d)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d) #

readList :: ReadS [(a, b, c, d)] #

readPrec :: ReadPrec (a, b, c, d) #

readListPrec :: ReadPrec [(a, b, c, d)] #

(Read1 f, Read1 g, Read a) => Read (Product * f g a)

Since: 4.9.0.0

Methods

readsPrec :: Int -> ReadS (Product * f g a) #

readList :: ReadS [Product * f g a] #

readPrec :: ReadPrec (Product * f g a) #

readListPrec :: ReadPrec [Product * f g a] #

(Read1 f, Read1 g, Read a) => Read (Sum * f g a)

Since: 4.9.0.0

Methods

readsPrec :: Int -> ReadS (Sum * f g a) #

readList :: ReadS [Sum * f g a] #

readPrec :: ReadPrec (Sum * f g a) #

readListPrec :: ReadPrec [Sum * f g a] #

(~~) k1 k2 a b => Read ((:~~:) k1 k2 a b)

Since: 4.10.0.0

Methods

readsPrec :: Int -> ReadS ((k1 :~~: k2) a b) #

readList :: ReadS [(k1 :~~: k2) a b] #

readPrec :: ReadPrec ((k1 :~~: k2) a b) #

readListPrec :: ReadPrec [(k1 :~~: k2) a b] #

Read (f p) => Read (M1 k i c f p) 

Methods

readsPrec :: Int -> ReadS (M1 k i c f p) #

readList :: ReadS [M1 k i c f p] #

readPrec :: ReadPrec (M1 k i c f p) #

readListPrec :: ReadPrec [M1 k i c f p] #

Read (f (g p)) => Read ((:.:) k2 k1 f g p) 

Methods

readsPrec :: Int -> ReadS ((k2 :.: k1) f g p) #

readList :: ReadS [(k2 :.: k1) f g p] #

readPrec :: ReadPrec ((k2 :.: k1) f g p) #

readListPrec :: ReadPrec [(k2 :.: k1) f g p] #

(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e) #

readList :: ReadS [(a, b, c, d, e)] #

readPrec :: ReadPrec (a, b, c, d, e) #

readListPrec :: ReadPrec [(a, b, c, d, e)] #

(Read1 f, Read1 g, Read a) => Read (Compose * * f g a)

Since: 4.9.0.0

Methods

readsPrec :: Int -> ReadS (Compose * * f g a) #

readList :: ReadS [Compose * * f g a] #

readPrec :: ReadPrec (Compose * * f g a) #

readListPrec :: ReadPrec [Compose * * f g a] #

(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f) #

readList :: ReadS [(a, b, c, d, e, f)] #

readPrec :: ReadPrec (a, b, c, d, e, f) #

readListPrec :: ReadPrec [(a, b, c, d, e, f)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g) #

readList :: ReadS [(a, b, c, d, e, f, g)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h) #

readList :: ReadS [(a, b, c, d, e, f, g, h)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: 2.1

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

reads :: Read a => ReadS a #

equivalent to readsPrec with a precedence of 0.

readParen :: Bool -> ReadS a -> ReadS a #

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

read :: Read a => String -> a #

The read function reads input from a string, which must be completely consumed by the input process.

lex :: ReadS String #

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

Basic input and output

data IO a :: * -> * #

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Monad IO

Since: 2.1

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

fail :: String -> IO a #

Functor IO

Since: 2.1

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

MonadFix IO

Since: 2.1

Methods

mfix :: (a -> IO a) -> IO a #

MonadFail IO

Since: 4.9.0.0

Methods

fail :: String -> IO a #

Applicative IO

Since: 2.1

Methods

pure :: a -> IO a #

(<*>) :: IO (a -> b) -> IO a -> IO b #

liftA2 :: (a -> b -> c) -> IO a -> IO b -> IO c #

(*>) :: IO a -> IO b -> IO b #

(<*) :: IO a -> IO b -> IO a #

MonadIO IO

Since: 4.9.0.0

Methods

liftIO :: IO a -> IO a #

Alternative IO

Since: 4.9.0.0

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

MonadPlus IO

Since: 4.9.0.0

Methods

mzero :: IO a #

mplus :: IO a -> IO a -> IO a #

ExceptionMonad IO 

Methods

gcatch :: Exception e => IO a -> (e -> IO a) -> IO a #

gmask :: ((IO a -> IO a) -> IO b) -> IO b #

gbracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c #

gfinally :: IO a -> IO b -> IO a #

Quasi IO 
Fail IO Source # 

Associated Types

type FailCts (IO :: * -> *) :: Constraint Source #

Methods

fail :: FailCts IO => String -> IO a Source #

Return IO Source # 

Associated Types

type ReturnCts (IO :: * -> *) :: Constraint Source #

Methods

return :: ReturnCts IO => a -> IO a Source #

Functor IO Source # 

Associated Types

type FunctorCts (IO :: * -> *) a b :: Constraint Source #

Methods

fmap :: FunctorCts IO a b => (a -> b) -> IO a -> IO b Source #

(<$) :: FunctorCts IO b a => a -> IO b -> IO a Source #

Fail IO Source # 

Associated Types

type FailCts (IO :: * -> *) a :: Constraint Source #

Methods

fail :: FailCts IO a => String -> IO a Source #

Return IO Source # 

Associated Types

type ReturnCts (IO :: * -> *) a :: Constraint Source #

Methods

return :: ReturnCts IO a => a -> IO a Source #

AlternativeEmpty IO Source # 

Associated Types

type AlternativeEmptyCts (IO :: * -> *) :: Constraint Source #

MonadPlusZero IO Source # 

Associated Types

type MonadPlusZeroCts (IO :: * -> *) :: Constraint Source #

AlternativeEmpty IO Source # 

Associated Types

type AlternativeEmptyCts (IO :: * -> *) a :: Constraint Source #

MonadPlusZero IO Source # 

Associated Types

type MonadPlusZeroCts (IO :: * -> *) a :: Constraint Source #

Methods

mzero :: MonadPlusZeroCts IO a => IO a Source #

MonadError IOException IO 

Methods

throwError :: IOException -> IO a #

catchError :: IO a -> (IOException -> IO a) -> IO a #

MArray IOArray e IO 

Methods

getBounds :: Ix i => IOArray i e -> IO (i, i) #

getNumElements :: Ix i => IOArray i e -> IO Int

newArray :: Ix i => (i, i) -> e -> IO (IOArray i e) #

newArray_ :: Ix i => (i, i) -> IO (IOArray i e) #

unsafeNewArray_ :: Ix i => (i, i) -> IO (IOArray i e)

unsafeRead :: Ix i => IOArray i e -> Int -> IO e

unsafeWrite :: Ix i => IOArray i e -> Int -> e -> IO ()

Bind IO IO IO Source # 

Associated Types

type BindCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) :: Constraint Source #

Methods

(>>=) :: BindCts IO IO IO => IO a -> (a -> IO b) -> IO b Source #

(>>) :: BindCts IO IO IO => IO a -> IO b -> IO b Source #

Applicative IO IO IO Source # 

Associated Types

type ApplicativeCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) :: Constraint Source #

Methods

(<*>) :: ApplicativeCts IO IO IO => IO (a -> b) -> IO a -> IO b Source #

(*>) :: ApplicativeCts IO IO IO => IO a -> IO b -> IO b Source #

(<*) :: ApplicativeCts IO IO IO => IO a -> IO b -> IO a Source #

Bind IO IO IO Source # 

Associated Types

type BindCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a b :: Constraint Source #

Methods

(>>=) :: BindCts IO IO IO a b => IO a -> (a -> IO b) -> IO b Source #

(>>) :: BindCts IO IO IO a b => IO a -> IO b -> IO b Source #

Applicative IO IO IO Source # 

Associated Types

type ApplicativeCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a b :: Constraint Source #

type ApplicativeCtsR (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a b :: Constraint Source #

type ApplicativeCtsL (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a b :: Constraint Source #

Methods

(<*>) :: ApplicativeCts IO IO IO a b => IO (a -> b) -> IO a -> IO b Source #

(*>) :: ApplicativeCtsR IO IO IO a b => IO a -> IO b -> IO b Source #

(<*) :: ApplicativeCtsL IO IO IO a b => IO a -> IO b -> IO a Source #

AlternativeAlt IO IO IO Source # 

Associated Types

type AlternativeAltCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) :: Constraint Source #

Methods

(<|>) :: AlternativeAltCts IO IO IO => IO a -> IO a -> IO a Source #

MonadPlusAdd IO IO IO Source # 

Associated Types

type MonadPlusAddCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) :: Constraint Source #

Methods

mplus :: MonadPlusAddCts IO IO IO => IO a -> IO a -> IO a Source #

AlternativeAlt IO IO IO Source # 

Associated Types

type AlternativeAltCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a :: Constraint Source #

Methods

(<|>) :: AlternativeAltCts IO IO IO a => IO a -> IO a -> IO a Source #

MonadPlusAdd IO IO IO Source # 

Associated Types

type MonadPlusAddCts (IO :: * -> *) (IO :: * -> *) (IO :: * -> *) a :: Constraint Source #

Methods

mplus :: MonadPlusAddCts IO IO IO a => IO a -> IO a -> IO a Source #

Semigroup a => Semigroup (IO a)

Since: 4.10.0.0

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Monoid a => Monoid (IO a)

Since: 4.9.0.0

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

type FailCts IO Source # 
type FailCts IO = ()
type ReturnCts IO Source # 
type ReturnCts IO = ()
type AlternativeEmptyCts IO Source # 
type MonadPlusZeroCts IO Source # 
type FailCts IO a Source # 
type FailCts IO a = ()
type ReturnCts IO a Source # 
type ReturnCts IO a = ()
type AlternativeEmptyCts IO a Source # 
type MonadPlusZeroCts IO a Source # 
type MonadPlusZeroCts IO a = ()
type BindCts IO IO IO Source # 
type BindCts IO IO IO = ()
type ApplicativeCts IO IO IO Source # 
type FunctorCts IO a b Source # 
type FunctorCts IO a b = ()
type AlternativeAltCts IO IO IO Source # 
type MonadPlusAddCts IO IO IO Source # 
type AlternativeAltCts IO IO IO a Source # 
type MonadPlusAddCts IO IO IO a Source # 
type MonadPlusAddCts IO IO IO a = ()
type BindCts IO IO IO a b Source # 
type BindCts IO IO IO a b = ()
type ApplicativeCts IO IO IO a b Source # 
type ApplicativeCts IO IO IO a b = ()
type ApplicativeCtsR IO IO IO a b Source # 
type ApplicativeCtsL IO IO IO a b Source # 

Simple I/O operations

Output functions

putChar :: Char -> IO () #

Write a character to the standard output device (same as hPutChar stdout).

putStr :: String -> IO () #

Write a string to the standard output device (same as hPutStr stdout).

putStrLn :: String -> IO () #

The same as putStr, but adds a newline character.

print :: Show a => a -> IO () #

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

Input functions

getChar :: IO Char #

Read a character from the standard input device (same as hGetChar stdin).

getLine :: IO String #

Read a line from the standard input device (same as hGetLine stdin).

getContents :: IO String #

The getContents operation returns all user input as a single string, which is read lazily as it is needed (same as hGetContents stdin).

interact :: (String -> String) -> IO () #

The interact function takes a function of type String->String as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device.

Files

type FilePath = String #

File and directory names are values of type String, whose precise meaning is operating system dependent. Files can be opened, yielding a handle which can then be used to operate on the contents of that file.

readFile :: FilePath -> IO String #

The readFile function reads a file and returns the contents of the file as a string. The file is read lazily, on demand, as with getContents.

writeFile :: FilePath -> String -> IO () #

The computation writeFile file str function writes the string str, to the file file.

appendFile :: FilePath -> String -> IO () #

The computation appendFile file str function appends the string str, to the file file.

Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print, use the show function to convert the value to a string first.

main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])

readIO :: Read a => String -> IO a #

The readIO function is similar to read except that it signals parse failure to the IO monad instead of terminating the program.

readLn :: Read a => IO a #

The readLn function combines getLine and readIO.

Exception handing in the I/O monad

type IOError = IOException #

The Haskell 2010 type for exceptions in the IO monad. Any I/O operation may raise an IOError instead of returning a result. For a more general type of exception, including also those that arise in pure code, see Exception.

In Haskell 2010, this is an opaque type.

ioError :: IOError -> IO a #

Raise an IOError in the IO monad.

userError :: String -> IOError #

Construct an IOError value with a string describing the error. The fail method of the IO instance of the Monad class raises a userError, thus:

instance Monad IO where
  ...
  fail s = ioError (userError s)