{-# LANGUAGE CPP #-}
{-# LANGUAGE OverloadedStrings #-}

--------------------------------------------------------------------------------
--  See end of this file for licence information.
--------------------------------------------------------------------------------
-- |
--  Module      :  N3
--  Copyright   :  (c) 2003, Graham Klyne, 2009 Vasili I Galchin, 2011, 2012, 2013, 2014, 2018, 2020 Douglas Burke
--  License     :  GPL V2
--
--  Maintainer  :  Douglas Burke
--  Stability   :  experimental
--  Portability :  CPP, OverloadedStrings
--
--  This Module implements a Notation 3 parser, returning a
--  new 'RDFGraph' consisting of triples and namespace information parsed from
--  the supplied N3 input string, or an error indication.
--
-- REFERENCES:
--
-- - \"Notation3 (N3): A readable RDF syntax\",
--      W3C Team Submission 14 January 2008,
--      <http://www.w3.org/TeamSubmission/2008/SUBM-n3-20080114/>
--
-- - Tim Berners-Lee's design issues series notes and description,
--      <http://www.w3.org/DesignIssues/Notation3.html>
--
-- - Notation 3 Primer by Sean Palmer,
--      <http://www.w3.org/2000/10/swap/Primer.html>
--    
-- NOTES:
--
--  - The parser needs to be updated to the latest version
--    (\"W3C Team Submission 28 March 2011\",
--    <http://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/>)
--
--  - UTF-8 handling is not really tested.
--
--  - No performance testing has been applied.
--
--  - Not all N3 grammar elements are supported, including:
--
--    - @\@forSome@ (we read it in but ignore the arguments)
--
--    - @\@forAll@  (this causes a parse error)
--
--    - formulae are lightly tested
--
--    - string support is incomplete (e.g. unrecognized escape characters
--      such as @\\q@ are probably handled incorrectly)
--
--------------------------------------------------------------------------------

module Swish.RDF.Parser.N3
    ( ParseResult
    , parseN3      
    , parseN3fromText      
    , parseAnyfromText
    , parseTextFromText, parseAltFromText
    , parseNameFromText -- , parsePrefixFromText
    , parseAbsURIrefFromText, parseLexURIrefFromText, parseURIref2FromText
    
    -- * Exports for parsers that embed Notation3 in a bigger syntax
    , N3Parser, N3State(..), SpecialMap
    
    , getPrefix -- a combination of the old defaultPrefix and namedPrefix productions
    , n3symbol -- replacement for uriRef2 -- TODO: check this is semantically correct      
    , quickVariable -- was varid      
    , lexUriRef       
    , document, subgraph                                                   
    , newBlankNode
    )
where

import Swish.GraphClass (arc)
import Swish.Namespace
    ( Namespace
    , ScopedName
    , makeNamespace
    , getNamespaceTuple
    , getScopeNamespace
    , getScopedNameURI
    , getScopeNamespace
    , makeURIScopedName
    , makeQNameScopedName
    , makeNSScopedName
    , nullScopedName
    )
import Swish.QName (QName, newLName)

import Swish.RDF.Graph
    ( RDFGraph, RDFLabel(..)
    , ToRDFLabel(..)
    , NamespaceMap
    , LookupFormula(..) 
    , addArc 
    , setFormula
    , setNamespaces
    , emptyRDFGraph
    )

import Swish.RDF.Datatype (makeDatatypedLiteral)

import Swish.RDF.Vocabulary
    ( LanguageTag
    , toLangTag
    , rdfType
    , rdfFirst, rdfRest, rdfNil
    , owlSameAs, logImplies
    , xsdBoolean, xsdInteger, xsdDecimal, xsdDouble
    )

import Swish.RDF.Parser.Utils
    ( SpecialMap
    , ParseResult
    , runParserWithError
    -- , mapPrefix
    , prefixTable
    , specialTable
    , ignore
    , notFollowedBy
    , endBy
    , sepEndBy
    -- , manyTill
    , noneOf
    , char
    , ichar
    , string
    , stringT
    , symbol
    , lexeme
    , whiteSpace
    , hex4  
    , hex8  
    , appendURIs
    )

import Control.Applicative
import Control.Monad (forM_, foldM)

import Data.Char (isSpace, isDigit, ord, isAsciiLower)

#if MIN_VERSION_base(4, 7, 0)
import Data.Functor (($>))
#endif

import Data.Maybe (fromMaybe, fromJust)
import Data.Word (Word32)

import Network.URI (URI(..), parseURIReference)

import Text.ParserCombinators.Poly.StateText

import qualified Data.Map as M
import qualified Data.Text as T
import qualified Data.Text.Lazy as L

#if !MIN_VERSION_base(4, 7, 0)
($>) :: Functor f => f a -> b -> f b
($>) = flip (<$)
#endif

----------------------------------------------------------------------
-- Define parser state and helper functions
----------------------------------------------------------------------

-- | N3 parser state
data N3State = N3State
        { N3State -> RDFGraph
graphState :: RDFGraph            -- Graph under construction
        , N3State -> RDFLabel
thisNode   :: RDFLabel            -- current context node (aka 'this')
        , N3State -> NamespaceMap
prefixUris :: NamespaceMap        -- namespace prefix mapping table
        , N3State -> SpecialMap
syntaxUris :: SpecialMap          -- special name mapping table
        , N3State -> Word32
nodeGen    :: Word32              -- blank node id generator
        , N3State -> [Text]
keywordsList :: [T.Text]          -- contents of the @keywords statement
        , N3State -> Bool
allowLocalNames :: Bool           -- True if @keywords used so that bare names are QNames in default namespace
        }

-- | Functions to update N3State vector (use with stUpdate)

setPrefix :: Maybe T.Text -> URI -> N3State -> N3State
setPrefix :: Maybe Text -> URI -> N3State -> N3State
setPrefix Maybe Text
pre URI
uri N3State
st =  N3State
st { prefixUris :: NamespaceMap
prefixUris=NamespaceMap
p' }
    where
        p' :: NamespaceMap
p' = forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert Maybe Text
pre URI
uri (N3State -> NamespaceMap
prefixUris N3State
st)

-- | Set name for special syntax element
setSName :: String -> ScopedName -> N3State -> N3State
setSName :: [Char] -> ScopedName -> N3State -> N3State
setSName [Char]
nam ScopedName
snam N3State
st =  N3State
st { syntaxUris :: SpecialMap
syntaxUris=SpecialMap
s' }
    where
        s' :: SpecialMap
s' = forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert [Char]
nam ScopedName
snam (N3State -> SpecialMap
syntaxUris N3State
st)

setSUri :: String -> URI -> N3State -> N3State
setSUri :: [Char] -> URI -> N3State -> N3State
setSUri [Char]
nam = [Char] -> ScopedName -> N3State -> N3State
setSName [Char]
nam forall b c a. (b -> c) -> (a -> b) -> a -> c
. URI -> ScopedName
makeURIScopedName

-- | Set the list of tokens that can be used without needing the leading 
-- \@ symbol.
setKeywordsList :: [T.Text] -> N3State -> N3State
setKeywordsList :: [Text] -> N3State -> N3State
setKeywordsList [Text]
ks N3State
st = N3State
st { keywordsList :: [Text]
keywordsList = [Text]
ks, allowLocalNames :: Bool
allowLocalNames = Bool
True }

--  Functions to access state:

-- | Get name for special syntax element, default null
getSName :: N3State -> String -> ScopedName
getSName :: N3State -> [Char] -> ScopedName
getSName N3State
st [Char]
nam = forall k a. Ord k => a -> k -> Map k a -> a
M.findWithDefault ScopedName
nullScopedName [Char]
nam forall a b. (a -> b) -> a -> b
$ N3State -> SpecialMap
syntaxUris N3State
st

getSUri :: N3State -> String -> URI
getSUri :: N3State -> [Char] -> URI
getSUri N3State
st [Char]
nam = ScopedName -> URI
getScopedNameURI forall a b. (a -> b) -> a -> b
$ N3State -> [Char] -> ScopedName
getSName N3State
st [Char]
nam

--  Map prefix to URI
getPrefixURI :: N3State -> Maybe T.Text -> Maybe URI
getPrefixURI :: N3State -> Maybe Text -> Maybe URI
getPrefixURI N3State
st Maybe Text
pre = forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup Maybe Text
pre (N3State -> NamespaceMap
prefixUris N3State
st)

getKeywordsList :: N3State -> [T.Text]
getKeywordsList :: N3State -> [Text]
getKeywordsList = N3State -> [Text]
keywordsList

getAllowLocalNames :: N3State -> Bool
getAllowLocalNames :: N3State -> Bool
getAllowLocalNames = N3State -> Bool
allowLocalNames

--  Return function to update graph in N3 parser state,
--  using the supplied function of a graph
--
updateGraph :: (RDFGraph -> RDFGraph) -> N3State -> N3State
updateGraph :: (RDFGraph -> RDFGraph) -> N3State -> N3State
updateGraph RDFGraph -> RDFGraph
f N3State
s = N3State
s { graphState :: RDFGraph
graphState = RDFGraph -> RDFGraph
f (N3State -> RDFGraph
graphState N3State
s) }

----------------------------------------------------------------------
--  Define top-level parser function:
--  accepts a string and returns a graph or error
----------------------------------------------------------------------

-- | The N3 parser.
type N3Parser a = Parser N3State a

-- | Parse a string as N3 (with no real base URI).
-- 
-- See 'parseN3' if you need to provide a base URI.
--
parseN3fromText ::
  L.Text -- ^ input in N3 format.
  -> ParseResult
parseN3fromText :: Text -> ParseResult
parseN3fromText = forall a b c. (a -> b -> c) -> b -> a -> c
flip Text -> Maybe QName -> ParseResult
parseN3 forall a. Maybe a
Nothing

-- | Parse a string with an optional base URI.
--            
-- See also 'parseN3fromString'.            
--
parseN3 ::
  L.Text -- ^ input in N3 format.
  -> Maybe QName -- ^ optional base URI
  -> ParseResult
parseN3 :: Text -> Maybe QName -> ParseResult
parseN3 Text
txt Maybe QName
mbase = forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText N3Parser RDFGraph
document Maybe QName
mbase Text
txt

{-
-- useful for testing
test :: String -> RDFGraph
test = either error id . parseAnyfromString document Nothing
-}

hashURI :: URI
hashURI :: URI
hashURI = forall a. HasCallStack => Maybe a -> a
fromJust forall a b. (a -> b) -> a -> b
$ [Char] -> Maybe URI
parseURIReference [Char]
"#"

emptyState :: 
  Maybe QName  -- ^ starting base for the graph
  -> N3State
emptyState :: Maybe QName -> N3State
emptyState Maybe QName
mbase = 
  let pmap :: Map (Maybe a) URI
pmap   = forall k a. k -> a -> Map k a
M.singleton forall a. Maybe a
Nothing URI
hashURI
      muri :: Maybe ScopedName
muri   = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Maybe Text -> QName -> ScopedName
makeQNameScopedName forall a. Maybe a
Nothing) Maybe QName
mbase
      smap :: SpecialMap
smap   = forall k a. Ord k => [(k, a)] -> Map k a
M.fromList forall a b. (a -> b) -> a -> b
$ Maybe ScopedName -> [([Char], ScopedName)]
specialTable Maybe ScopedName
muri
  in N3State
     { graphState :: RDFGraph
graphState = RDFGraph
emptyRDFGraph
     , thisNode :: RDFLabel
thisNode   = RDFLabel
NoNode
     , prefixUris :: NamespaceMap
prefixUris = forall {a}. Map (Maybe a) URI
pmap
     , syntaxUris :: SpecialMap
syntaxUris = SpecialMap
smap
     , nodeGen :: Word32
nodeGen    = Word32
0
     , keywordsList :: [Text]
keywordsList = [Text
"a", Text
"is", Text
"of", Text
"true", Text
"false"] -- not 100% sure about true/false here
     , allowLocalNames :: Bool
allowLocalNames = Bool
False
     }


-- TODO: change from QName to URI for the base?

-- | Function to supply initial context and parse supplied term.
--
parseAnyfromText :: N3Parser a      -- ^ parser to apply
                    -> Maybe QName  -- ^ base URI of the input, or @Nothing@ to use default base value
                    -> L.Text       -- ^ input to be parsed
                    -> Either String a
parseAnyfromText :: forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText N3Parser a
parser Maybe QName
mbase = forall a b. Parser a b -> a -> Text -> Either [Char] b
runParserWithError N3Parser a
parser (Maybe QName -> N3State
emptyState Maybe QName
mbase)

-- | Create a new blank node.
newBlankNode :: N3Parser RDFLabel
newBlankNode :: N3Parser RDFLabel
newBlankNode = do
  Word32
n <- forall s a. (s -> a) -> Parser s a
stQuery (forall a. Enum a => a -> a
succ forall b c a. (b -> c) -> (a -> b) -> a -> c
. N3State -> Word32
nodeGen)
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
s -> N3State
s { nodeGen :: Word32
nodeGen = Word32
n }
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ [Char] -> RDFLabel
Blank (forall a. Show a => a -> [Char]
show Word32
n)
  
--  Test functions for selected element parsing

-- TODO: remove these
  
-- | Used in testing.
parseTextFromText :: String -> L.Text -> Either String String
parseTextFromText :: [Char] -> Text -> Either [Char] [Char]
parseTextFromText [Char]
s =
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText (forall s. [Char] -> Parser s [Char]
string [Char]
s) forall a. Maybe a
Nothing

-- | Used in testing.
parseAltFromText :: String -> String -> L.Text -> Either String String
parseAltFromText :: [Char] -> [Char] -> Text -> Either [Char] [Char]
parseAltFromText [Char]
s1 [Char]
s2 =
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText (forall s. [Char] -> Parser s [Char]
string [Char]
s1 forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s. [Char] -> Parser s [Char]
string [Char]
s2) forall a. Maybe a
Nothing

-- | Used in testing.
parseNameFromText :: L.Text -> Either String String
parseNameFromText :: Text -> Either [Char] [Char]
parseNameFromText =
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText Parser N3State [Char]
n3NameStr forall a. Maybe a
Nothing

{-
This has been made tricky by the attempt to remove the default list
of prefixes from the starting point of a N3 parse and the subsequent
attempt to add every new namespace we come across to the parser state.

So we add in the original default namespaces for testing, since
this routine is really for testing.
-}

addTestPrefixes :: N3Parser ()
addTestPrefixes :: Parser N3State ()
addTestPrefixes = forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
st -> N3State
st { prefixUris :: NamespaceMap
prefixUris = 
                                         forall k a. Ord k => [(k, a)] -> Map k a
M.fromList 
                                          forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map Namespace -> (Maybe Text, URI)
getNamespaceTuple [Namespace]
prefixTable 
                                       } -- should append to existing map

{-
parsePrefixFromText :: L.Text -> Either String URI
parsePrefixFromText =
    parseAnyfromText p Nothing
      where
        p = do
          addTestPrefixes
          pref <- n3Name
          st   <- stGet
          case getPrefixURI st (Just pref) of
            Just uri -> return uri
            _ -> fail $ "Undefined prefix: '" ++ pref ++ "'"
-}

-- | Used in testing.
parseAbsURIrefFromText :: L.Text -> Either String URI
parseAbsURIrefFromText :: Text -> Either [Char] URI
parseAbsURIrefFromText =
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText N3Parser URI
explicitURI forall a. Maybe a
Nothing

-- | Used in testing.
parseLexURIrefFromText :: L.Text -> Either String URI
parseLexURIrefFromText :: Text -> Either [Char] URI
parseLexURIrefFromText =
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText N3Parser URI
lexUriRef forall a. Maybe a
Nothing

-- | Used in testing.
parseURIref2FromText :: L.Text -> Either String ScopedName
parseURIref2FromText :: Text -> Either [Char] ScopedName
parseURIref2FromText = 
    forall a. N3Parser a -> Maybe QName -> Text -> Either [Char] a
parseAnyfromText (Parser N3State ()
addTestPrefixes forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Parser N3State ScopedName
n3symbol) forall a. Maybe a
Nothing

----------------------------------------------------------------------
--  Syntax productions
----------------------------------------------------------------------

-- helper routines

comma, semiColon , fullStop :: N3Parser ()
comma :: Parser N3State ()
comma = forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s. [Char] -> Parser s [Char]
symbol [Char]
","
semiColon :: Parser N3State ()
semiColon = forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s. [Char] -> Parser s [Char]
symbol [Char]
";"
fullStop :: Parser N3State ()
fullStop = forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s. [Char] -> Parser s [Char]
symbol [Char]
"."

-- a specialization of bracket/between 
br :: String -> String -> N3Parser a -> N3Parser a
br :: forall a. [Char] -> [Char] -> N3Parser a -> N3Parser a
br [Char]
lsym [Char]
rsym = forall (p :: * -> *) bra ket a.
PolyParse p =>
p bra -> p ket -> p a -> p a
bracket (forall s. [Char] -> Parser s [Char]
symbol [Char]
lsym) (forall s. [Char] -> Parser s [Char]
symbol [Char]
rsym)

-- to make porting from parsec to polyparse easier
between :: Parser s lbr -> Parser s rbr -> Parser s a -> Parser s a
between :: forall s lbr rbr a.
Parser s lbr -> Parser s rbr -> Parser s a -> Parser s a
between = forall (p :: * -> *) bra ket a.
PolyParse p =>
p bra -> p ket -> p a -> p a
bracket

-- The @ character is optional if the keyword is in the
-- keyword list
--
atSign :: T.Text -> N3Parser ()
atSign :: Text -> Parser N3State ()
atSign Text
s = do
  N3State
st <- forall s. Parser s s
stGet
  
  let p :: Parser s ()
p = forall s. Char -> Parser s ()
ichar Char
'@'
  
  if Text
s forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` N3State -> [Text]
getKeywordsList N3State
st
    then forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional forall {s}. Parser s ()
p
    else forall {s}. Parser s ()
p
         
atWord :: T.Text -> N3Parser T.Text
atWord :: Text -> N3Parser Text
atWord Text
s = do
  Text -> Parser N3State ()
atSign Text
s
  
  -- TODO: does it really make sense to add the not-followed-by-a-colon rule here?
  -- apply to both cases even though should only really be necessary
  -- when the at sign is not given
  --
  forall s a. Parser s a -> Parser s a
lexeme forall a b. (a -> b) -> a -> b
$ forall s. Text -> Parser s Text
stringT Text
s forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall s. (Char -> Bool) -> Parser s ()
notFollowedBy (forall a. Eq a => a -> a -> Bool
== Char
':')
  forall (m :: * -> *) a. Monad m => a -> m a
return Text
s

{-
Since operatorLabel can be used to add a label with an 
unknown namespace, we need to ensure that the namespace
is added if not known. If the namespace prefix is already
in use then it is over-written (rather than add a new
prefix for the label).

TODO:
  - could we use the reverse lookupmap functionality to
    find if the given namespace URI is in the namespace
    list? If it is, use it's key otherwise do a
    mapReplace for the input namespace.
    
-}
operatorLabel :: ScopedName -> N3Parser RDFLabel
operatorLabel :: ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
snam = do
  N3State
st <- forall s. Parser s s
stGet
  let (Maybe Text
pkey, URI
pval) = Namespace -> (Maybe Text, URI)
getNamespaceTuple forall a b. (a -> b) -> a -> b
$ ScopedName -> Namespace
getScopeNamespace ScopedName
snam
      opmap :: NamespaceMap
opmap = N3State -> NamespaceMap
prefixUris N3State
st
      
      rval :: RDFLabel
rval = ScopedName -> RDFLabel
Res ScopedName
snam
      
  -- TODO: the lookup and the replacement could be fused
  case forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup Maybe Text
pkey NamespaceMap
opmap of
    Just URI
val | URI
val forall a. Eq a => a -> a -> Bool
== URI
pval -> forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
rval
             | Bool
otherwise   -> do
               forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
s -> N3State
s { prefixUris :: NamespaceMap
prefixUris = forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert Maybe Text
pkey URI
pval NamespaceMap
opmap }
               forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
rval
    
    Maybe URI
_ -> do
      forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
s -> N3State
s { prefixUris :: NamespaceMap
prefixUris = forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert Maybe Text
pkey URI
pval NamespaceMap
opmap }
      forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
rval
        
{-
Add statement to graph in N3 parser state.

To support literals that are written directly/implicitly - i.e.  as
true/false/1/1.0/1.0e23 - rather than a string with an explicit
datatype we need to special case handling of the object label for
literals. Is this actually needed? The N3 Formatter now doesn't
display the xsd: datatypes on output, but there may be issues with
other formats (e.g RDF/XML once it is supported).

-}

type AddStatement = RDFLabel -> N3Parser ()

addStatement :: RDFLabel -> RDFLabel -> AddStatement
addStatement :: RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
s RDFLabel
p o :: RDFLabel
o@(TypedLit Text
_ ScopedName
dtype) | ScopedName
dtype forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [ScopedName
xsdBoolean, ScopedName
xsdInteger, ScopedName
xsdDecimal, ScopedName
xsdDouble] = do 
  N3State
ost <- forall s. Parser s s
stGet
  let stmt :: Arc RDFLabel
stmt = forall lb. lb -> lb -> lb -> Arc lb
arc RDFLabel
s RDFLabel
p RDFLabel
o
      oldp :: NamespaceMap
oldp = N3State -> NamespaceMap
prefixUris N3State
ost
      ogs :: RDFGraph
ogs = N3State -> RDFGraph
graphState N3State
ost
      (Maybe Text
ns, URI
uri) = Namespace -> (Maybe Text, URI)
getNamespaceTuple forall a b. (a -> b) -> a -> b
$ ScopedName -> Namespace
getScopeNamespace ScopedName
dtype
      newp :: NamespaceMap
newp = forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert Maybe Text
ns URI
uri NamespaceMap
oldp
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
st -> N3State
st { prefixUris :: NamespaceMap
prefixUris = NamespaceMap
newp, graphState :: RDFGraph
graphState = forall lb. Label lb => Arc lb -> NSGraph lb -> NSGraph lb
addArc Arc RDFLabel
stmt RDFGraph
ogs }
addStatement RDFLabel
s RDFLabel
p RDFLabel
o = forall s. (s -> s) -> Parser s ()
stUpdate ((RDFGraph -> RDFGraph) -> N3State -> N3State
updateGraph (forall lb. Label lb => Arc lb -> NSGraph lb -> NSGraph lb
addArc (forall lb. lb -> lb -> lb -> Arc lb
arc RDFLabel
s RDFLabel
p RDFLabel
o) ))

addStatementRev :: RDFLabel -> RDFLabel -> AddStatement
addStatementRev :: RDFLabel -> RDFLabel -> AddStatement
addStatementRev RDFLabel
o RDFLabel
p RDFLabel
s = RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
s RDFLabel
p RDFLabel
o

{-
A number of productions require a name, which starts with

[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]

and then has

[\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*

we encode this as the n3Name production
-}

isaz, is09, isaz09 :: Char -> Bool
isaz :: Char -> Bool
isaz = Char -> Bool
isAsciiLower
is09 :: Char -> Bool
is09 = Char -> Bool
isDigit
isaz09 :: Char -> Bool
isaz09 Char
c = Char -> Bool
isaz Char
c Bool -> Bool -> Bool
|| Char -> Bool
is09 Char
c

match :: (Ord a) => a -> [(a,a)] -> Bool
match :: forall a. Ord a => a -> [(a, a)] -> Bool
match a
v = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (\(a
l,a
h) -> a
v forall a. Ord a => a -> a -> Bool
>= a
l Bool -> Bool -> Bool
&& a
v forall a. Ord a => a -> a -> Bool
<= a
h)

startChar :: Char -> Bool
startChar :: Char -> Bool
startChar Char
c = let i :: Int
i = Char -> Int
ord Char
c
              in Char
c forall a. Eq a => a -> a -> Bool
== Char
'_' Bool -> Bool -> Bool
|| 
                 forall a. Ord a => a -> [(a, a)] -> Bool
match Char
c [(Char
'A', Char
'Z'), (Char
'a', Char
'z')] Bool -> Bool -> Bool
||
                 forall a. Ord a => a -> [(a, a)] -> Bool
match Int
i [(Int
0x00c0, Int
0x00d6), (Int
0x00d8, Int
0x00f6), (Int
0x00f8, Int
0x02ff), 
                          (Int
0x0370, Int
0x037d), 
                          (Int
0x037f, Int
0x1fff), (Int
0x200c, Int
0x200d), 
                          (Int
0x2070, Int
0x218f), (Int
0x2c00, Int
0x2fef), (Int
0x3001, Int
0xd7ff), 
                          (Int
0xf900, Int
0xfdcf), (Int
0xfdf0, Int
0xfffd), 
                          (Int
0x00010000, Int
0x000effff)]           
  
inBody :: Char -> Bool
inBody :: Char -> Bool
inBody Char
c = let i :: Int
i = Char -> Int
ord Char
c
           in Char
c forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` ([Char]
"-_"::String) Bool -> Bool -> Bool
|| Int
i forall a. Eq a => a -> a -> Bool
== Int
0x007 Bool -> Bool -> Bool
||
              forall a. Ord a => a -> [(a, a)] -> Bool
match Char
c [(Char
'0', Char
'9'), (Char
'A', Char
'Z'), (Char
'a', Char
'z')] Bool -> Bool -> Bool
||
              forall a. Ord a => a -> [(a, a)] -> Bool
match Int
i [(Int
0x00c0, Int
0x00d6), (Int
0x00d8, Int
0x00f6), (Int
0x00f8, Int
0x037d), 
                       (Int
0x037f, Int
0x1fff), (Int
0x200c, Int
0x200d), (Int
0x203f, Int
0x2040), 
                       (Int
0x2070, Int
0x218f), (Int
0x2c00, Int
0x2fef), (Int
0x3001, Int
0xd7ff), 
                       (Int
0xf900, Int
0xfdcf), (Int
0xfdf0, Int
0xfffd), 
                       (Int
0x00010000, Int
0x000effff)]           

-- should this be strict or lazy text?
n3Name :: N3Parser T.Text
n3Name :: N3Parser Text
n3Name = Char -> Text -> Text
T.cons forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {s}. Parser s Char
n3Init forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall {s}. Parser s Text
n3Body
  where
    n3Init :: Parser s Char
n3Init = forall s. (Char -> Bool) -> Parser s Char
satisfy Char -> Bool
startChar
    n3Body :: Parser s Text
n3Body = Text -> Text
L.toStrict forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s. (Char -> Bool) -> Parser s Text
manySatisfy Char -> Bool
inBody


n3NameStr :: N3Parser String
n3NameStr :: Parser N3State [Char]
n3NameStr = Text -> [Char]
T.unpack forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser Text
n3Name

{-
quickvariable ::=	\?[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*
-}

-- TODO: is mapping to Var correct?
-- | Match @?<variable name>@.
quickVariable :: N3Parser RDFLabel
quickVariable :: N3Parser RDFLabel
quickVariable = forall s. Char -> Parser s Char
char Char
'?' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ([Char] -> RDFLabel
Var forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3NameStr) 

{-
string ::=	("""[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*""")|("[^"\\]*(?:\\.[^"\\]*)*")

or

string ::= tripleQuoted | singleQUoted

-}

n3string :: N3Parser T.Text
n3string :: N3Parser Text
n3string = N3Parser Text
tripleQuoted forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser Text
singleQuoted 

{-
singleQuoted ::=  "[^"\\]*(?:\\.[^"\\]*)*"

asciiChars :: String
asciiChars = map chr [0x20..0x7e]

asciiCharsN3 :: String
asciiCharsN3 = filter (`notElem` "\\\"") asciiChars

-}

digit :: N3Parser Char
digit :: N3Parser Char
digit = forall s. (Char -> Bool) -> Parser s Char
satisfy Char -> Bool
isDigit

{-
This is very similar to NTriples accept that also allow the escaping of '
even though it is not required.

The Python rules allow \N{name}, where name is the Unicode name. It's
not clear whether we need to support this too, so for now we do not.

-}
protectedChar :: N3Parser Char
protectedChar :: N3Parser Char
protectedChar =
  (forall s. Char -> Parser s Char
char Char
't' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\t')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'n' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\n')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'r' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\r')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'"' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'"')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'\'' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\'')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'\\' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\\')
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'u' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall {s}. Parser s Char
hex4)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. Char -> Parser s Char
char Char
'U' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall {s}. Parser s Char
hex8)

-- Accept an escape character or any character as long as it isn't
-- a new-line or quote. Unrecognized escape sequences should therefore
-- be left alone by this. 
--
n3Character :: N3Parser Char
n3Character :: N3Parser Char
n3Character = 
  (forall s. Char -> Parser s Char
char Char
'\\' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> (N3Parser Char
protectedChar forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (m :: * -> *) a. Monad m => a -> m a
return Char
'\\'))
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s. [Char] -> Parser s Char
noneOf [Char]
"\"\n"
      
{-
      <|> (oneOf asciiCharsN3 <?> "ASCII character")
              -- TODO: bodyChar and asciiCharsN3 overlap
      <|> (oneOf bodyChar <?> "Unicode character")
-}              

sQuot :: N3Parser Char
sQuot :: N3Parser Char
sQuot = forall s. Char -> Parser s Char
char Char
'"'

{-
TODO: there must be a better way of building up the Text
-}

singleQuoted :: N3Parser T.Text
singleQuoted :: N3Parser Text
singleQuoted = [Char] -> Text
T.pack forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (p :: * -> *) bra ket a.
PolyParse p =>
p bra -> p ket -> p a -> p a
bracket N3Parser Char
sQuot N3Parser Char
sQuot (forall (f :: * -> *) a. Alternative f => f a -> f [a]
many N3Parser Char
n3Character)
    
{-
tripleQUoted ::=	"""[^"\\]*(?:(?:\\.|"(?!""))[^"\\]*)*"""

The following may not match the output format we now create (with the
move to the Turtle Candidate Recommendation), so re-writing as a test,
but this means pulling in a lot of Turtle productions, which should
be shared.

tripleQuoted = tQuot *> fmap T.pack (manyTill (n3Character <|> sQuot <|> char '\n') tQuot)
  where
    -- tQuot = try (count 3 sQuot)
    tQuot = exactly 3 sQuot
-}
tripleQuoted :: N3Parser T.Text
tripleQuoted :: N3Parser Text
tripleQuoted =
  let sep :: Parser N3State [Char]
sep = forall (p :: * -> *) a. PolyParse p => Int -> p a -> p [a]
exactly Int
3 N3Parser Char
sQuot
  in [Text] -> Text
T.concat forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (p :: * -> *) bra ket a.
PolyParse p =>
p bra -> p ket -> p a -> p a
bracket Parser N3State [Char]
sep Parser N3State [Char]
sep (forall (f :: * -> *) a. Alternative f => f a -> f [a]
many N3Parser Text
_tCharsLong)

{-- Turtle productions: start --}
oneOrTwo :: N3Parser T.Text
oneOrTwo :: N3Parser Text
oneOrTwo = do
  forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s. Char -> Parser s Char
char Char
'"'
  Maybe Char
mb <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional (forall s. Char -> Parser s Char
char Char
'"')
  case Maybe Char
mb of
    Just Char
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return Text
"\"\""
    Maybe Char
_      -> forall (m :: * -> *) a. Monad m => a -> m a
return Text
"\""

_multiQuote :: N3Parser T.Text
_multiQuote :: N3Parser Text
_multiQuote = do
  Maybe Text
mq <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional N3Parser Text
oneOrTwo
  Char
r <- forall s. [Char] -> Parser s Char
noneOf [Char]
"\"\\"
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a -> a
fromMaybe Text
T.empty Maybe Text
mq Text -> Char -> Text
`T.snoc` Char
r
                
_tCharsLong :: N3Parser T.Text
_tCharsLong :: N3Parser Text
_tCharsLong =
  Char -> Text
T.singleton forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser Char
_protChar
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser Text
_multiQuote

_protChar :: N3Parser Char
_protChar :: N3Parser Char
_protChar = forall s. Char -> Parser s Char
char Char
'\\' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> (N3Parser Char
_echar' forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser Char
_uchar')

_echar' :: N3Parser Char
_echar' :: N3Parser Char
_echar' = 
  (forall s. Char -> Parser s Char
char Char
't' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\t') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'b' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\b') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'n' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\n') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'r' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\r') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'f' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\f') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'\\' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\\') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'"' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'"') forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'\'' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> Char
'\'')

_uchar' :: N3Parser Char
_uchar' :: N3Parser Char
_uchar' =
  (forall s. Char -> Parser s Char
char Char
'u' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall (p :: * -> *) a. Commitment p => p a -> p a
commit forall {s}. Parser s Char
hex4)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|>
  (forall s. Char -> Parser s Char
char Char
'U' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall (p :: * -> *) a. Commitment p => p a -> p a
commit forall {s}. Parser s Char
hex8)

{-- Turtle productions: end --}

getDefaultPrefix :: N3Parser Namespace
getDefaultPrefix :: N3Parser Namespace
getDefaultPrefix = do
  N3State
s <- forall s. Parser s s
stGet
  case N3State -> Maybe Text -> Maybe URI
getPrefixURI N3State
s forall a. Maybe a
Nothing of
    Just URI
uri -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Maybe Text -> URI -> Namespace
makeNamespace forall a. Maybe a
Nothing URI
uri
    Maybe URI
_ -> forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail [Char]
"No default prefix defined; how unexpected!"

addBase :: URI -> N3Parser ()
addBase :: URI -> Parser N3State ()
addBase = forall s. (s -> s) -> Parser s ()
stUpdate forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> URI -> N3State -> N3State
setSUri [Char]
"base" 

addPrefix :: Maybe T.Text -> URI -> N3Parser ()
addPrefix :: Maybe Text -> URI -> Parser N3State ()
addPrefix Maybe Text
p = forall s. (s -> s) -> Parser s ()
stUpdate forall b c a. (b -> c) -> (a -> b) -> a -> c
. Maybe Text -> URI -> N3State -> N3State
setPrefix Maybe Text
p 

{-|
Update the set of keywords that can be given without
an \@ sign.
-}
updateKeywordsList :: [T.Text] -> N3Parser ()
updateKeywordsList :: [Text] -> Parser N3State ()
updateKeywordsList = forall s. (s -> s) -> Parser s ()
stUpdate forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Text] -> N3State -> N3State
setKeywordsList

{-
document ::=		|	statements_optional EOF
-}

-- | Process a N3 document, returning a graph.
document :: N3Parser RDFGraph
document :: N3Parser RDFGraph
document = N3State -> RDFGraph
mkGr forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall {s}. Parser s ()
whiteSpace forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Parser N3State ()
statementsOptional forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall {s}. Parser s ()
eof forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall s. Parser s s
stGet)
  where
    mkGr :: N3State -> RDFGraph
mkGr N3State
s = forall lb. NamespaceMap -> NSGraph lb -> NSGraph lb
setNamespaces (N3State -> NamespaceMap
prefixUris N3State
s) (N3State -> RDFGraph
graphState N3State
s)

{-
statements_optional ::=		|	statement  "."  statements_optional
		|	void

-}

statementsOptional :: N3Parser ()
statementsOptional :: Parser N3State ()
statementsOptional = forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s a b. Parser s a -> Parser s b -> Parser s [a]
endBy (forall s a. Parser s a -> Parser s a
lexeme Parser N3State ()
statement) Parser N3State ()
fullStop
    
{-
statement ::=		|	declaration
		|	existential
		|	simpleStatement
		|	universal

-}

statement :: N3Parser ()
statement :: Parser N3State ()
statement =
  Parser N3State ()
declaration
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Parser N3State ()
existential
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Parser N3State ()
universal
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Parser N3State ()
simpleStatement
  -- having an error here leads to less informative errors in general, it seems
  -- <?> "statement (existential or universal quantification or a simple statement)"
  
{-
declaration ::=		|	 "@base"  explicituri
		|	 "@keywords"  barename_csl
		|	 "@prefix"  prefix explicituri
-}

-- TODO: do we need the try statements here? atWord would need to have a try on '@'
-- (if applicable) which should mean being able to get rid of try
--
declaration :: N3Parser ()
declaration :: Parser N3State ()
declaration = forall (p :: * -> *) a. PolyParse p => [p a] -> p a
oneOf [
  Text -> N3Parser Text
atWord Text
"base" forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> N3Parser URI
explicitURI forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= URI -> Parser N3State ()
addBase,
  Text -> N3Parser Text
atWord Text
"keywords" forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Parser N3State [Text]
bareNameCsl forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= [Text] -> Parser N3State ()
updateKeywordsList,
  Text -> N3Parser Text
atWord Text
"prefix" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Parser N3State ()
getPrefix
  ]

  {-
  (try (atWord "base") >> explicitURI >>= addBase)
  <|>
  (try (atWord "keywords") >> bareNameCsl >>= updateKeywordsList)
  <|>
  (try (atWord "prefix") *> getPrefix)
  -}

-- | Process the remainder of an @\@prefix@ line (after this
-- has been processed). The prefix value and URI are added to the parser
-- state.
getPrefix :: N3Parser ()  
getPrefix :: Parser N3State ()
getPrefix = do
  Maybe Text
p <- forall s a. Parser s a -> Parser s a
lexeme N3Parser (Maybe Text)
prefix
  URI
u <- N3Parser URI
explicitURI
  Maybe Text -> URI -> Parser N3State ()
addPrefix Maybe Text
p URI
u

{-
explicituri ::=	<[^>]*>

Note: white space is to be ignored within <>
-}

explicitURI :: N3Parser URI
explicitURI :: N3Parser URI
explicitURI = do
  forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s. Char -> Parser s Char
char Char
'<'
  [Char]
ustr <- forall (p :: * -> *) a z.
(PolyParse p, Show a) =>
p a -> p z -> p [a]
manyFinally' ((forall s. (Char -> Bool) -> Parser s Char
satisfy Char -> Bool
isSpace forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall {s}. Parser s Char
next) forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall {s}. Parser s Char
next) (forall s. Char -> Parser s Char
char Char
'>')
  case [Char] -> Maybe URI
parseURIReference [Char]
ustr of
    Maybe URI
Nothing -> forall (p :: * -> *) a. PolyParse p => [Char] -> p a
failBad forall a b. (a -> b) -> a -> b
$ [Char]
"Invalid URI: <" forall a. [a] -> [a] -> [a]
++ [Char]
ustr forall a. [a] -> [a] -> [a]
++ [Char]
">"
    Just URI
uref -> do
      N3State
s <- forall s. Parser s s
stGet
      let base :: URI
base = N3State -> [Char] -> URI
getSUri N3State
s [Char]
"base"
      forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ URI -> URI -> Either [Char] URI
appendURIs URI
base URI
uref
      
-- production from the old parser; used in SwishScript
-- | An explicitly given URI followed by white space.
lexUriRef :: N3Parser URI
lexUriRef :: N3Parser URI
lexUriRef = forall s a. Parser s a -> Parser s a
lexeme N3Parser URI
explicitURI

{-
barename ::=	[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*
barename_csl ::=		|	barename barename_csl_tail
		|	void
barename_csl_tail ::=		|	 ","  barename barename_csl_tail
		|	void
-}

bareNameCsl :: N3Parser [T.Text]
bareNameCsl :: Parser N3State [Text]
bareNameCsl = forall (p :: * -> *) a sep. PolyParse p => p a -> p sep -> p [a]
sepBy (forall s a. Parser s a -> Parser s a
lexeme N3Parser Text
bareName) Parser N3State ()
comma

bareName :: N3Parser T.Text
bareName :: N3Parser Text
bareName = N3Parser Text
n3Name 

{-
prefix ::=	([A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*)?:
-}

prefix :: N3Parser (Maybe T.Text)
prefix :: N3Parser (Maybe Text)
prefix = forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional (forall s a. Parser s a -> Parser s a
lexeme N3Parser Text
n3Name) forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* forall s. Char -> Parser s Char
char Char
':'
         

{-
symbol ::=		|	explicituri
		|	qname
symbol_csl ::=		|	symbol symbol_csl_tail
		|	void
symbol_csl_tail ::=		|	 ","  symbol symbol_csl_tail
		|	void

-}

-- | Match a N3 symbol (an explicit URI or a QName)
-- and convert it to a 'ScopedName'.
n3symbol :: N3Parser ScopedName
n3symbol :: Parser N3State ScopedName
n3symbol = 
  (URI -> ScopedName
makeURIScopedName forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser URI
explicitURI)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Parser N3State ScopedName
qname

symbolCsl :: N3Parser [ScopedName]
symbolCsl :: N3Parser [ScopedName]
symbolCsl = forall (p :: * -> *) a sep. PolyParse p => p a -> p sep -> p [a]
sepBy (forall s a. Parser s a -> Parser s a
lexeme Parser N3State ScopedName
n3symbol) Parser N3State ()
comma

{-
qname ::=	(([A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*)?:)?[A-Z_a-z#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x02ff#x0370-#x037d#x037f-#x1fff#x200c-#x200d#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff][\-0-9A-Z_a-z#x00b7#x00c0-#x00d6#x00d8-#x00f6#x00f8-#x037d#x037f-#x1fff#x200c-#x200d#x203f-#x2040#x2070-#x218f#x2c00-#x2fef#x3001-#xd7ff#xf900-#xfdcf#xfdf0-#xfffd#x00010000-#x000effff]*

TODO:
  Note that, for now, we explicitly handle blank nodes
  (of the form _:name) direcly in pathItem'.
  This is not a good idea since qname' is used elsewhere
  and so shouldn't we do the same thing there too?
-}

-- for now assume that the parsing rule for the local part
-- will not create an invalid LName.
toName :: Namespace -> T.Text -> ScopedName
toName :: Namespace -> Text -> ScopedName
toName Namespace
ns Text
l = 
    case Text -> Maybe LName
newLName Text
l of
      Just LName
local -> Namespace -> LName -> ScopedName
makeNSScopedName Namespace
ns LName
local
      Maybe LName
_ -> forall a. HasCallStack => [Char] -> a
error forall a b. (a -> b) -> a -> b
$ [Char]
"Invalid local name: " forall a. [a] -> [a] -> [a]
++ Text -> [Char]
T.unpack Text
l

qname :: N3Parser ScopedName
qname :: Parser N3State ScopedName
qname = Parser N3State ScopedName
qname1 forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Parser N3State ScopedName
qname2

qname1 :: N3Parser ScopedName
qname1 :: Parser N3State ScopedName
qname1 = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Namespace -> Text -> ScopedName
toName) (forall s. Char -> Parser s Char
char Char
':' forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Parser N3State (Namespace, Text)
g)
    where
      g :: Parser N3State (Namespace, Text)
g = (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser Namespace
getDefaultPrefix forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (N3Parser Text
n3Name forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (m :: * -> *) a. Monad m => a -> m a
return Text
"")
               
qname2 :: N3Parser ScopedName
qname2 :: Parser N3State ScopedName
qname2 = N3Parser Text
n3Name forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Text -> Parser N3State ScopedName
fullOrLocalQName

fullOrLocalQName :: T.Text -> N3Parser ScopedName
fullOrLocalQName :: Text -> Parser N3State ScopedName
fullOrLocalQName Text
name = 
  (forall s. Char -> Parser s Char
char Char
':' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Text -> Parser N3State ScopedName
fullQName Text
name)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Text -> Parser N3State ScopedName
localQName Text
name
  
fullQName :: T.Text -> N3Parser ScopedName
fullQName :: Text -> Parser N3State ScopedName
fullQName Text
name = Namespace -> Text -> ScopedName
toName forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Text -> N3Parser Namespace
findPrefix Text
name forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (N3Parser Text
n3Name forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (f :: * -> *) a. Applicative f => a -> f a
pure Text
"")
  
findPrefix :: T.Text -> N3Parser Namespace
findPrefix :: Text -> N3Parser Namespace
findPrefix Text
pre = do
  N3State
st <- forall s. Parser s s
stGet
  case forall k a. Ord k => k -> Map k a -> Maybe a
M.lookup (forall a. a -> Maybe a
Just Text
pre) (N3State -> NamespaceMap
prefixUris N3State
st) of
    Just URI
uri -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Maybe Text -> URI -> Namespace
makeNamespace (forall a. a -> Maybe a
Just Text
pre) URI
uri
    Maybe URI
Nothing  -> forall (p :: * -> *) a. PolyParse p => [Char] -> p a
failBad forall a b. (a -> b) -> a -> b
$ [Char]
"Prefix '" forall a. [a] -> [a] -> [a]
++ Text -> [Char]
T.unpack Text
pre forall a. [a] -> [a] -> [a]
++ [Char]
":' not bound."
  
localQName :: T.Text -> N3Parser ScopedName
localQName :: Text -> Parser N3State ScopedName
localQName Text
name = do
  N3State
st <- forall s. Parser s s
stGet
  if N3State -> Bool
getAllowLocalNames N3State
st
    then let g :: Parser N3State (Namespace, Text)
g = (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser Namespace
getDefaultPrefix forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Applicative f => a -> f a
pure Text
name
         in forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry Namespace -> Text -> ScopedName
toName forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State (Namespace, Text)
g
            
    else forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char]
"Invalid 'bare' word: " forall a. [a] -> [a] -> [a]
++ Text -> [Char]
T.unpack Text
name)-- TODO: not ideal error message; can we handle this case differently?

{-
existential ::=		|	 "@forSome"  symbol_csl

For now we just read in the symbols and ignore them,
since we do not mark blank nodes as existentially quantified
(we assume this is the case).

TODO: fix this?
-}

existential :: N3Parser ()
-- existential = try (atWord "forSome") *> symbolCsl >> return ()
existential :: Parser N3State ()
existential = (Text -> N3Parser Text
atWord Text
"forSome" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> N3Parser [ScopedName]
symbolCsl) forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> ()

{-
simpleStatement ::=		|	subject propertylist
-}

simpleStatement :: N3Parser ()
simpleStatement :: Parser N3State ()
simpleStatement = N3Parser RDFLabel
subject forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= AddStatement
propertyListWith
  
{-
subject ::=		|	expression
-}

subject :: N3Parser RDFLabel
subject :: N3Parser RDFLabel
subject = forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression

{-
expression ::=		|	pathitem pathtail
pathtail ::=		|	 "!"  expression
		|	 "^"  expression
		|	void

-}

expression :: N3Parser RDFLabel
expression :: N3Parser RDFLabel
expression = do
  RDFLabel
i <- N3Parser RDFLabel
pathItem
  
  let backwardExpr :: Parser s (RDFLabel -> RDFLabel -> AddStatement)
backwardExpr = forall s. Char -> Parser s Char
char Char
'!' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> RDFLabel -> RDFLabel -> AddStatement
addStatementRev
      forwardExpr :: Parser s (RDFLabel -> RDFLabel -> AddStatement)
forwardExpr  = forall s. Char -> Parser s Char
char Char
'^' forall (f :: * -> *) a b. Functor f => f a -> b -> f b
$> RDFLabel -> RDFLabel -> AddStatement
addStatement
  
  Maybe (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
mpt <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional
        ( (,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s a. Parser s a -> Parser s a
lexeme (forall {s}. Parser s (RDFLabel -> RDFLabel -> AddStatement)
forwardExpr forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall {s}. Parser s (RDFLabel -> RDFLabel -> AddStatement)
backwardExpr) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression )
  case Maybe (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
mpt of
    Maybe (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
i 
    Just (RDFLabel -> RDFLabel -> AddStatement
addFunc, RDFLabel
pt) -> do
      RDFLabel
bNode <- N3Parser RDFLabel
newBlankNode
      RDFLabel -> RDFLabel -> AddStatement
addFunc RDFLabel
bNode RDFLabel
pt RDFLabel
i
      forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
bNode
  
{-
pathitem ::=		|	 "("  pathlist  ")" 
		|	 "["  propertylist  "]" 
		|	 "{"  formulacontent  "}" 
		|	boolean
		|	literal
		|	numericliteral
		|	quickvariable
		|	symbol

pathlist ::=		|	expression pathlist
		|	void

Need to think about how to handle formulae, since need to know the context
of the call to know where to add them.

TOOD: may include direct support for blank nodes here,
namely convert _:stringval -> Blank stringval since although
this should be done by symbol the types don't seem to easily match
up (at first blush anyway)
-}

pathItem :: N3Parser RDFLabel
pathItem :: N3Parser RDFLabel
pathItem = 
  forall a. [Char] -> [Char] -> N3Parser a -> N3Parser a
br [Char]
"(" [Char]
")" N3Parser RDFLabel
pathList
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall a. [Char] -> [Char] -> N3Parser a -> N3Parser a
br [Char]
"[" [Char]
"]" N3Parser RDFLabel
propertyListBNode
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall a. [Char] -> [Char] -> N3Parser a -> N3Parser a
br [Char]
"{" [Char]
"}" N3Parser RDFLabel
formulaContent
  -- <|> try boolean
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser RDFLabel
boolean
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser RDFLabel
literal
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser RDFLabel
numericLiteral
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> N3Parser RDFLabel
quickVariable
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> [Char] -> RDFLabel
Blank forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (forall s. [Char] -> Parser s [Char]
string [Char]
"_:" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> Parser N3State [Char]
n3NameStr) -- TODO a hack that needs fixing
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> ScopedName -> RDFLabel
Res forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State ScopedName
n3symbol
  
{-  
we create a blank node for the list and return it, whilst
adding the list contents to the graph
-}
pathList :: N3Parser RDFLabel
pathList :: N3Parser RDFLabel
pathList = do
  [RDFLabel]
cts <- forall (f :: * -> *) a. Alternative f => f a -> f [a]
many (forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression)
  RDFLabel
eNode <- ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfNil
  case [RDFLabel]
cts of
    [] -> forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
eNode
      
    (RDFLabel
c:[RDFLabel]
cs) -> do
      RDFLabel
sNode <- N3Parser RDFLabel
newBlankNode
      RDFLabel
first <- ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfFirst
      RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
sNode RDFLabel
first RDFLabel
c
      RDFLabel
lNode <- forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM RDFLabel -> RDFLabel -> N3Parser RDFLabel
addElem RDFLabel
sNode [RDFLabel]
cs
      RDFLabel
rest <- ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfRest
      RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
lNode RDFLabel
rest RDFLabel
eNode
      forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
sNode

    where      
      addElem :: RDFLabel -> RDFLabel -> N3Parser RDFLabel
addElem RDFLabel
prevNode RDFLabel
curElem = do
        RDFLabel
bNode <- N3Parser RDFLabel
newBlankNode
        RDFLabel
first <- ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfFirst
        RDFLabel
rest <- ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfRest
        RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
prevNode RDFLabel
rest RDFLabel
bNode
        RDFLabel -> RDFLabel -> AddStatement
addStatement RDFLabel
bNode RDFLabel
first RDFLabel
curElem
        forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
bNode
        
{-
formulacontent ::=		|	statementlist

statementlist ::=		|	statement statementtail
		|	void
statementtail ::=		|	 "."  statementlist
		|	void
-}

restoreState :: N3State -> N3Parser N3State
restoreState :: N3State -> Parser N3State N3State
restoreState N3State
origState = do
  N3State
oldState <- forall s. Parser s s
stGet
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ forall a b. a -> b -> a
const N3State
origState { nodeGen :: Word32
nodeGen = N3State -> Word32
nodeGen N3State
oldState }
  forall (m :: * -> *) a. Monad m => a -> m a
return N3State
oldState

{-
We create a subgraph and assign it to a blank node, returning the
blank node. At present it is a combination of the subgraph and formula
productions from the origial parser.

TODO: is it correct?
-}
formulaContent :: N3Parser RDFLabel
formulaContent :: N3Parser RDFLabel
formulaContent = do
  RDFLabel
bNode <- N3Parser RDFLabel
newBlankNode
  N3State
pstate <- forall s. Parser s s
stGet
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
st -> N3State
st { graphState :: RDFGraph
graphState = RDFGraph
emptyRDFGraph, thisNode :: RDFLabel
thisNode = RDFLabel
bNode }
  Parser N3State ()
statementList
  N3State
oldState <- N3State -> Parser N3State N3State
restoreState N3State
pstate
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ (RDFGraph -> RDFGraph) -> N3State -> N3State
updateGraph forall a b. (a -> b) -> a -> b
$ forall lb. Label lb => Formula lb -> NSGraph lb -> NSGraph lb
setFormula (forall lb gr. lb -> gr -> LookupFormula lb gr
Formula RDFLabel
bNode (N3State -> RDFGraph
graphState N3State
oldState))
  forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
bNode

-- | Process a sub graph and assign it to the given label.  
subgraph :: RDFLabel -> N3Parser RDFGraph
subgraph :: RDFLabel -> N3Parser RDFGraph
subgraph RDFLabel
this = do
  N3State
pstate <- forall s. Parser s s
stGet
  forall s. (s -> s) -> Parser s ()
stUpdate forall a b. (a -> b) -> a -> b
$ \N3State
st -> N3State
st { graphState :: RDFGraph
graphState = RDFGraph
emptyRDFGraph, thisNode :: RDFLabel
thisNode = RDFLabel
this }
  Parser N3State ()
statementsOptional    -- parse statements of formula
  N3State
oldState <- N3State -> Parser N3State N3State
restoreState N3State
pstate  
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ N3State -> RDFGraph
graphState N3State
oldState
  
statementList :: N3Parser ()
statementList :: Parser N3State ()
statementList = forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s a b. Parser s a -> Parser s b -> Parser s [a]
sepEndBy (forall s a. Parser s a -> Parser s a
lexeme Parser N3State ()
statement) Parser N3State ()
fullStop

{-
boolean ::=		|	 "@false" 
		|	 "@true" 
-}

boolean :: N3Parser RDFLabel
boolean :: N3Parser RDFLabel
boolean = ScopedName -> Text -> RDFLabel
makeDatatypedLiteral ScopedName
xsdBoolean forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> 
          (Text -> N3Parser Text
atWord Text
"false" forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> Text -> N3Parser Text
atWord Text
"true")
          -- (try (atWord "false") <|> atWord "true")
           
{-
dtlang ::=		|	 "@"  langcode
		|	 "^^"  symbol
		|	void
literal ::=		|	string dtlang

langcode ::=	[a-z]+(-[a-z0-9]+)*

-}

literal :: N3Parser RDFLabel
literal :: N3Parser RDFLabel
literal = do
    Text
lit <- N3Parser Text
n3string
    Maybe (Either LanguageTag ScopedName)
opt <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional N3Parser (Either LanguageTag ScopedName)
dtlang
    forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ case Maybe (Either LanguageTag ScopedName)
opt of
               Just (Left LanguageTag
lcode)  -> Text -> LanguageTag -> RDFLabel
LangLit Text
lit LanguageTag
lcode
               Just (Right ScopedName
dtype) -> Text -> ScopedName -> RDFLabel
TypedLit Text
lit ScopedName
dtype
               Maybe (Either LanguageTag ScopedName)
_                  -> Text -> RDFLabel
Lit Text
lit
  
dtlang :: N3Parser (Either LanguageTag ScopedName)
dtlang :: N3Parser (Either LanguageTag ScopedName)
dtlang = 
  (forall s. Char -> Parser s Char
char Char
'@' forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> (forall a b. a -> Either a b
Left forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser LanguageTag
langcode))
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s. [Char] -> Parser s [Char]
string [Char]
"^^" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> (forall a b. b -> Either a b
Right forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State ScopedName
n3symbol)

-- Note that toLangTag may fail since it does some extra
-- validation not done by the parser (mainly on the length of the
-- primary and secondary tags).
--
-- NOTE: This parser does not accept multiple secondary tags which RFC3066
-- does.
--
langcode :: N3Parser LanguageTag
langcode :: N3Parser LanguageTag
langcode = do
    Text
h <- forall s. (Char -> Bool) -> Parser s Text
many1Satisfy Char -> Bool
isaz
    Maybe Text
mt <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional (Char -> Text -> Text
L.cons forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s. Char -> Parser s Char
char Char
'-' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall s. (Char -> Bool) -> Parser s Text
many1Satisfy Char -> Bool
isaz09)
    let lbl :: Text
lbl = Text -> Text
L.toStrict forall a b. (a -> b) -> a -> b
$ Text -> Text -> Text
L.append Text
h forall a b. (a -> b) -> a -> b
$ forall a. a -> Maybe a -> a
fromMaybe Text
L.empty Maybe Text
mt
    case Text -> Maybe LanguageTag
toLangTag Text
lbl of
        Just LanguageTag
lt -> forall (m :: * -> *) a. Monad m => a -> m a
return LanguageTag
lt
        Maybe LanguageTag
_ -> forall (m :: * -> *) a. MonadFail m => [Char] -> m a
fail ([Char]
"Invalid language tag: " forall a. [a] -> [a] -> [a]
++ Text -> [Char]
T.unpack Text
lbl) -- should this be failBad?
    
{-
decimal ::=	[-+]?[0-9]+(\.[0-9]+)?
double ::=	[-+]?[0-9]+(\.[0-9]+)?([eE][-+]?[0-9]+)
integer ::=	[-+]?[0-9]+
numericliteral ::=		|	decimal
		|	double
		|	integer

We actually support 1. for decimal values which isn't supported 
by the above production.

TODO: we could convert via something like

  maybeRead value :: Double >>= Just . toRDFLabel

which would mean we store the canonical XSD value in the
label, but it is not useful for the xsd:decimal case
since we currently don't have a Haskell type that
goes with it.
-}

numericLiteral :: N3Parser RDFLabel
numericLiteral :: N3Parser RDFLabel
numericLiteral =
  -- -- try (makeDatatypedLiteral xsdDouble <$> n3double)
  -- try (d2s <$> n3double)
  -- <|> try (makeDatatypedLiteral xsdDecimal <$> n3decimal)
  [Char] -> RDFLabel
d2s forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3double
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> ScopedName -> Text -> RDFLabel
makeDatatypedLiteral ScopedName
xsdDecimal forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> Text
T.pack forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3decimal
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> ScopedName -> Text -> RDFLabel
makeDatatypedLiteral ScopedName
xsdInteger forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> Text
T.pack forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3integer

n3sign :: N3Parser Char
n3sign :: N3Parser Char
n3sign = forall s. Char -> Parser s Char
char Char
'+' forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s. Char -> Parser s Char
char Char
'-'

n3integer :: N3Parser String
n3integer :: Parser N3State [Char]
n3integer = do
  Maybe Char
ms <- forall (f :: * -> *) a. Alternative f => f a -> f (Maybe a)
optional N3Parser Char
n3sign
  [Char]
ds <- forall (p :: * -> *) a. PolyParse p => p a -> p [a]
many1 N3Parser Char
digit
  case Maybe Char
ms of
    Just Char
s -> forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ Char
s forall a. a -> [a] -> [a]
: [Char]
ds
    Maybe Char
_ -> forall (m :: * -> *) a. Monad m => a -> m a
return [Char]
ds

n3decimal :: N3Parser String
-- n3decimal = (++) <$> n3integer <*> ( (:) <$> char '.' <*> many1 digit )
n3decimal :: Parser N3State [Char]
n3decimal = forall a. [a] -> [a] -> [a]
(++) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3integer forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ( (:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s. Char -> Parser s Char
char Char
'.' forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (f :: * -> *) a. Alternative f => f a -> f [a]
many N3Parser Char
digit )
           
n3double :: N3Parser String
n3double :: Parser N3State [Char]
n3double = forall a. [a] -> [a] -> [a]
(++) 
           forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Parser N3State [Char]
n3decimal 
           forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ( (:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s. (Char -> Bool) -> Parser s Char
satisfy (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` ([Char]
"eE"::String)) forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Parser N3State [Char]
n3integer )

-- Convert a double, as returned by n3double, into it's
-- canonical XSD form. We assume that n3double returns
-- a syntactivally valid Double, so do not bother with reads here
--
d2s :: String -> RDFLabel
d2s :: [Char] -> RDFLabel
d2s [Char]
s = forall a. ToRDFLabel a => a -> RDFLabel
toRDFLabel (forall a. Read a => [Char] -> a
read [Char]
s :: Double)

{-
propertylist ::=		|	verb object objecttail propertylisttail
		|	void
propertylisttail ::=		|	 ";"  propertylist
		|	void

-}

-- it's probably important that bNode is created *after*
-- processing the plist (mainly for the assumptions made by
-- formatting the output as N3; e.g. list/sequence ordering)
--
propertyListBNode :: N3Parser RDFLabel
propertyListBNode :: N3Parser RDFLabel
propertyListBNode = do
  [((RDFLabel -> RDFLabel -> AddStatement, RDFLabel), [RDFLabel])]
plist <- forall s a b. Parser s a -> Parser s b -> Parser s [a]
sepEndBy ((,) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall s a. Parser s a -> Parser s a
lexeme Parser N3State (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
verb forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> N3Parser [RDFLabel]
objectList) Parser N3State ()
semiColon
  RDFLabel
bNode <- N3Parser RDFLabel
newBlankNode
  let addList :: ((RDFLabel -> t -> a -> m b, t), t a) -> m ()
addList ((RDFLabel -> t -> a -> m b
addFunc,t
vrb),t a
items) = forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (RDFLabel -> t -> a -> m b
addFunc RDFLabel
bNode t
vrb) t a
items
  forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [((RDFLabel -> RDFLabel -> AddStatement, RDFLabel), [RDFLabel])]
plist forall {t :: * -> *} {m :: * -> *} {t} {a} {b}.
(Foldable t, Monad m) =>
((RDFLabel -> t -> a -> m b, t), t a) -> m ()
addList
  forall (m :: * -> *) a. Monad m => a -> m a
return RDFLabel
bNode

propertyListWith :: RDFLabel -> N3Parser ()
propertyListWith :: AddStatement
propertyListWith RDFLabel
subj = 
  let -- term = lexeme verb >>= objectListWith subj
      term :: Parser N3State ()
term = forall s a. Parser s a -> Parser s a
lexeme Parser N3State (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
verb forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(RDFLabel -> RDFLabel -> AddStatement
addFunc, RDFLabel
vrb) -> AddStatement -> Parser N3State ()
objectListWith (RDFLabel -> RDFLabel -> AddStatement
addFunc RDFLabel
subj RDFLabel
vrb)
  in forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall s a b. Parser s a -> Parser s b -> Parser s [a]
sepEndBy Parser N3State ()
term Parser N3State ()
semiColon
  
{-
object ::=		|	expression
objecttail ::=		|	 ","  object objecttail
		|	void

We change the production rule from objecttail to objectlist for lists of
objects (may change back).

-}

object :: N3Parser RDFLabel
object :: N3Parser RDFLabel
object = forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression

objectList :: N3Parser [RDFLabel]
objectList :: N3Parser [RDFLabel]
objectList = forall (p :: * -> *) a sep. PolyParse p => p a -> p sep -> p [a]
sepBy1 N3Parser RDFLabel
object Parser N3State ()
comma

objectWith :: AddStatement -> N3Parser ()
objectWith :: AddStatement -> Parser N3State ()
objectWith AddStatement
addFunc = N3Parser RDFLabel
object forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= AddStatement
addFunc 

objectListWith :: AddStatement -> N3Parser ()
objectListWith :: AddStatement -> Parser N3State ()
objectListWith AddStatement
addFunc =
  forall (f :: * -> *) a. Applicative f => f a -> f ()
ignore forall a b. (a -> b) -> a -> b
$ forall (p :: * -> *) a sep. PolyParse p => p a -> p sep -> p [a]
sepBy1 (AddStatement -> Parser N3State ()
objectWith AddStatement
addFunc) Parser N3State ()
comma

{-
objectList1 :: N3Parser [RDFLabel]
objectList1 = sepBy1 object comma
-}

{-
verb ::=		|	 "<=" 
		|	 "=" 
		|	 "=>" 
		|	 "@a" 
		|	 "@has"  expression
		|	 "@is"  expression  "@of" 
		|	expression

-}

verb :: N3Parser (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
verb :: Parser N3State (RDFLabel -> RDFLabel -> AddStatement, RDFLabel)
verb = 
  -- we check reverse first so that <= is tried before looking for a URI via expression rule
  (,) RDFLabel -> RDFLabel -> AddStatement
addStatementRev forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser RDFLabel
verbReverse
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (,) RDFLabel -> RDFLabel -> AddStatement
addStatement forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> N3Parser RDFLabel
verbForward

-- those verbs for which subject is on the right and object on the left
verbReverse :: N3Parser RDFLabel
verbReverse :: N3Parser RDFLabel
verbReverse =
  forall s. [Char] -> Parser s [Char]
string [Char]
"<=" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
logImplies
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s lbr rbr a.
Parser s lbr -> Parser s rbr -> Parser s a -> Parser s a
between (Text -> N3Parser Text
atWord Text
"is") (Text -> N3Parser Text
atWord Text
"of") (forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression)

{-
  try (string "<=") *> operatorLabel logImplies
  <|> between (try (atWord "is")) (atWord "of") (lexeme expression)
-}

-- those verbs with subject on the left and object on the right
verbForward :: N3Parser RDFLabel
verbForward :: N3Parser RDFLabel
verbForward =  
  -- (try (string "=>") *> operatorLabel logImplies)
  (forall s. [Char] -> Parser s [Char]
string [Char]
"=>" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
logImplies)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (forall s. [Char] -> Parser s [Char]
string [Char]
"=" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
owlSameAs)
  -- <|> (try (atWord "a") *> operatorLabel rdfType)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (Text -> N3Parser Text
atWord Text
"a" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> ScopedName -> N3Parser RDFLabel
operatorLabel ScopedName
rdfType)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> (Text -> N3Parser Text
atWord Text
"has" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression)
  forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall s a. Parser s a -> Parser s a
lexeme N3Parser RDFLabel
expression

{-
universal ::=		|	 "@forAll"  symbol_csl

TODO: what needs to be done to support universal quantification
-}
universal :: N3Parser ()
universal :: Parser N3State ()
universal = 
  -- try (atWord "forAll") *> 
  Text -> N3Parser Text
atWord Text
"forAll" forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> 
  forall (p :: * -> *) a. PolyParse p => [Char] -> p a
failBad [Char]
"universal (@forAll) currently unsupported." 
  -- will be something like: *> symbolCsl

--------------------------------------------------------------------------------
--
--  Copyright (c) 2003, Graham Klyne, 2009 Vasili I Galchin,
--    2011, 2012, 2013, 2014, 2018, 2020 Douglas Burke
--  All rights reserved.
--
--  This file is part of Swish.
--
--  Swish is free software; you can redistribute it and/or modify
--  it under the terms of the GNU General Public License as published by
--  the Free Software Foundation; either version 2 of the License, or
--  (at your option) any later version.
--
--  Swish is distributed in the hope that it will be useful,
--  but WITHOUT ANY WARRANTY; without even the implied warranty of
--  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
--  GNU General Public License for more details.
--
--  You should have received a copy of the GNU General Public License
--  along with Swish; if not, write to:
--    The Free Software Foundation, Inc.,
--    59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
--
--------------------------------------------------------------------------------