{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE UndecidableInstances #-}
module Language.Symantic.Typing.Module where
import Data.Functor (Functor(..))
import Data.Maybe (fromMaybe)
import Data.String (IsString(..))
import Data.Semigroup (Semigroup(..))
import Data.Text (Text)
import Data.Typeable
import Data.Map.Strict (Map)
import qualified Data.Char as C
import qualified Data.List as L
import qualified Data.Kind as K
import qualified Data.Text as T
import qualified Data.Map.Strict as Map
import Language.Symantic.Grammar.Fixity
data NsT
= NsTerm
| NsType
type Name = Text
newtype NameTy = NameTy Text
deriving (Eq, Ord, Show)
instance IsString NameTy where
fromString = NameTy . fromString
type NameConst = NameTy
type NameFam = NameTy
class NameOf a where
nameOf :: a -> Name
class NameTyOf (c::kc) where
nameTyOf :: proxy c -> Mod NameTy
default nameTyOf :: Typeable c => proxy c -> Mod NameTy
nameTyOf c = path (tyConModule repr) `Mod` fromString (tyConName repr)
where
repr = typeRepTyCon (typeRep c)
path = fmap fromString . L.lines . fmap (\case '.' -> '\n'; x -> x)
isNameTyOp :: proxy c -> Bool
default isNameTyOp :: Typeable c => proxy c -> Bool
isNameTyOp c = let _m `Mod` NameTy n = nameTyOf c in isOp n
where
isOp = T.all $ \case
'_' -> False
'\'' -> False
x -> case C.generalCategory x of
C.NonSpacingMark -> True
C.SpacingCombiningMark -> True
C.EnclosingMark -> True
C.ConnectorPunctuation -> True
C.DashPunctuation -> True
C.OpenPunctuation -> True
C.ClosePunctuation -> True
C.InitialQuote -> True
C.FinalQuote -> True
C.OtherPunctuation -> True
C.MathSymbol -> True
C.CurrencySymbol -> True
C.ModifierSymbol -> True
C.OtherSymbol -> True
C.UppercaseLetter -> False
C.LowercaseLetter -> False
C.TitlecaseLetter -> False
C.ModifierLetter -> False
C.OtherLetter -> False
C.DecimalNumber -> False
C.LetterNumber -> False
C.OtherNumber -> False
C.Space -> False
C.LineSeparator -> False
C.ParagraphSeparator -> False
C.Control -> False
C.Format -> False
C.Surrogate -> False
C.PrivateUse -> False
C.NotAssigned -> False
data Mod a = Mod PathMod a
deriving (Eq, Functor, Ord, Show)
type PathMod = [NameMod]
newtype NameMod = NameMod Name
deriving (Eq, Ord, Show)
instance IsString NameMod where
fromString = NameMod . fromString
newtype Imports name = Imports (Map PathMod (MapFixity (Map name PathMod)))
deriving (Eq, Show)
instance Ord name => Semigroup (Imports name) where
Imports x <> Imports y = Imports $ Map.unionWith (<>) x y
instance Ord name => Monoid (Imports name) where
mempty = Imports mempty
mappend = (<>)
lookupImports :: Ord name => Fixy p i q a -> Mod name -> Imports name -> Maybe PathMod
lookupImports f (m `Mod` n) (Imports is) =
Map.lookup m is >>=
Map.lookup n . getByFixity f
revlookupImports :: Ord name => Fixy p i q a -> Mod name -> Imports name -> Maybe PathMod
revlookupImports f (m `Mod` n) (Imports is) =
(fst . fst <$>) $ Map.minViewWithKey $
Map.filter (\i ->
case Map.lookup n $ getByFixity f i of
Just m' | m' == m -> True
_ -> False
) is
class ImportTypes ts where
importTypes :: PathMod -> Imports NameTy
instance ImportTypes '[] where
importTypes _p = mempty
instance (NameTyOf t, FixityOf t, ImportTypes ts) => ImportTypes (Proxy t ': ts) where
importTypes p = Imports (Map.singleton p byFixy) <> importTypes @ts p
where
t = Proxy @t
f = Fixity2 infixN5 `fromMaybe` fixityOf t
m `Mod` n = nameTyOf t
byFixy :: MapFixity (Map NameTy PathMod)
byFixy = case f of
Fixity1 Prefix{} -> ByFixity{byPrefix = Map.singleton n m, byInfix =mempty, byPostfix=mempty}
Fixity2{} -> ByFixity{byInfix = Map.singleton n m, byPrefix=mempty, byPostfix=mempty}
Fixity1 Postfix{} -> ByFixity{byPostfix = Map.singleton n m, byPrefix=mempty, byInfix =mempty}
data Fixy p i q a where
FixyPrefix :: Fixy p i q p
FixyInfix :: Fixy p i q i
FixyPostfix :: Fixy p i q q
deriving instance Eq (Fixy p i q a)
deriving instance Show (Fixy p i q a)
fixyOfFixity :: Fixity -> Fixy a a a a
fixyOfFixity (Fixity1 Prefix{}) = FixyPrefix
fixyOfFixity (Fixity2 Infix{}) = FixyInfix
fixyOfFixity (Fixity1 Postfix{}) = FixyPostfix
class FixityOf (c::kc) where
fixityOf :: proxy c -> Maybe Fixity
fixityOf _c = Nothing
instance FixityOf (c::K.Type)
instance FixityOf (c::K.Constraint)
newtype FixyA = FixyA (forall (a:: *). Fixy a a a a)
deriving instance Eq FixyA
deriving instance Show FixyA
data WithFixity a
= WithFixity a Fixity
deriving (Eq, Functor, Show)
instance IsString a => IsString (WithFixity a) where
fromString a = WithFixity (fromString a) (Fixity2 infixN5)
withInfix :: a -> Infix -> WithFixity a
withInfix a inf = a `WithFixity` Fixity2 inf
withInfixR :: a -> Precedence -> WithFixity a
withInfixR a p = a `WithFixity` Fixity2 (infixR p)
withInfixL :: a -> Precedence -> WithFixity a
withInfixL a p = a `WithFixity` Fixity2 (infixL p)
withInfixN :: a -> Precedence -> WithFixity a
withInfixN a p = a `WithFixity` Fixity2 (infixN p)
withInfixB :: a -> (Side, Precedence) -> WithFixity a
withInfixB a (lr, p) = a `WithFixity` Fixity2 (infixB lr p)
withPrefix :: a -> Precedence -> WithFixity a
withPrefix a p = a `WithFixity` Fixity1 (Prefix p)
withPostfix :: a -> Precedence -> WithFixity a
withPostfix a p = a `WithFixity` Fixity1 (Postfix p)
data ByFixity p i q
= ByFixity
{ byPrefix :: p
, byInfix :: i
, byPostfix :: q
} deriving (Eq, Show)
instance (Semigroup p, Semigroup i, Semigroup q) => Semigroup (ByFixity p i q) where
ByFixity px ix qx <> ByFixity py iy qy =
ByFixity (px <> py) (ix <> iy) (qx <> qy)
instance (Monoid p, Monoid i, Monoid q) => Monoid (ByFixity p i q) where
mempty = ByFixity mempty mempty mempty
ByFixity px ix qx `mappend` ByFixity py iy qy =
ByFixity (px `mappend` py) (ix `mappend` iy) (qx `mappend` qy)
getByFixity :: Fixy p i q a -> MapFixity b -> b
getByFixity FixyPrefix = byPrefix
getByFixity FixyInfix = byInfix
getByFixity FixyPostfix = byPostfix
selectByFixity :: Fixy p i q a -> ByFixity p i q -> a
selectByFixity FixyPrefix = byPrefix
selectByFixity FixyInfix = byInfix
selectByFixity FixyPostfix = byPostfix
type MapFixity a = ByFixity a a a
mapMapFixity :: (a -> b) -> MapFixity a -> MapFixity b
mapMapFixity f (ByFixity p i q) = ByFixity (f p) (f i) (f q)