| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Language.Syntactic.Syntax
Contents
Description
Generic representation of typed syntax trees
For details, see: A Generic Abstract Syntax Model for Embedded Languages (ICFP 2012, http://www.cse.chalmers.se/~emax/documents/axelsson2012generic.pdf).
- data AST sym sig where
- type ASTF sym a = AST sym (Full a)
- newtype ASTFull sym a = ASTFull {}
- newtype Full a = Full {
- result :: a
- newtype a :-> sig = Partial (a -> sig)
- data SigRep sig where
- class Signature sig where
- type family DenResult sig
- class Symbol sym where
- size :: AST sym sig -> Int
- type family SmartFun (sym :: * -> *) sig
- type family SmartSig f
- type family SmartSym f :: * -> *
- smartSym' :: forall sig f sym. (Signature sig, f ~ SmartFun sym sig, sig ~ SmartSig f, sym ~ SmartSym f) => sym sig -> f
- data (sym1 :+: sym2) sig where
- class Project sub sup where
- class Project sub sup => sub :<: sup where
- smartSym :: (Signature sig, f ~ SmartFun sup sig, sig ~ SmartSig f, sup ~ SmartSym f, sub :<: sup) => sub sig -> f
- smartSymTyped :: (Signature sig, f ~ SmartFun (Typed sup) sig, sig ~ SmartSig f, Typed sup ~ SmartSym f, sub :<: sup, Typeable (DenResult sig)) => sub sig -> f
- data Empty :: * -> *
- data E e where
- liftE :: (forall a. e a -> b) -> E e -> b
- liftE2 :: (forall a b. e a -> e b -> c) -> E e -> E e -> c
- data EF e where
- liftEF :: (forall a. e (Full a) -> b) -> EF e -> b
- liftEF2 :: (forall a b. e (Full a) -> e (Full b) -> c) -> EF e -> EF e -> c
- data Typed sym sig where
- injT :: (sub :<: sup, Typeable (DenResult sig)) => sub sig -> AST (Typed sup) sig
- castExpr :: forall sym a b. ASTF (Typed sym) a -> ASTF (Typed sym) b -> Maybe (ASTF (Typed sym) b)
- class NFData1 c where
- symType :: Proxy sym -> sym sig -> sym sig
- prjP :: Project sub sup => Proxy sub -> sup sig -> Maybe (sub sig)
Syntax trees
data AST sym sig where Source #
Generic abstract syntax tree, parameterized by a symbol domain
( represents a partially applied (or unapplied)
symbol, missing at least one argument, while AST sym (a :-> b))(
represents a fully applied symbol, i.e. a complete syntax tree.AST sym (Full a))
Constructors
| Sym :: sym sig -> AST sym sig | |
| (:$) :: AST sym (a :-> sig) -> AST sym (Full a) -> AST sym sig infixl 1 |
Instances
| (:<:) sub sup => sub :<: (AST sup) Source # | |
| Project sub sup => Project sub (AST sup) Source # | |
| Functor sym => Functor (AST sym) Source # | |
| Equality sym => Equality (AST sym) Source # | |
| BindingDomain sym => BindingDomain (AST sym) Source # | |
| NFData1 sym => NFData (AST sym sig) Source # | |
| Syntactic (ASTF sym a) Source # | |
| (Syntactic a, (~) (* -> *) (Domain a) sym, (~) * ia (Internal a), SyntacticN f fi) => SyntacticN (a -> f) (AST sym (Full ia) -> fi) Source # | |
| type SmartSym (AST sym sig) Source # | |
| type SmartSig (ASTF sym a -> f) Source # | |
| type SmartSig (AST sym sig) Source # | |
| type Domain (ASTF sym a) Source # | |
| type Internal (ASTF sym a) Source # | |
newtype ASTFull sym a Source #
Fully applied abstract syntax tree
This type is like AST, but being a newtype, it is a proper type constructor
that can be partially applied.
Signature of a fully applied symbol
Instances
| Functor Full Source # | |
| Eq a => Eq (Full a) Source # | |
| Show a => Show (Full a) Source # | |
| Signature (Full a) Source # | |
| Syntactic (ASTF sym a) Source # | |
| (Syntactic a, (~) (* -> *) (Domain a) sym, (~) * ia (Internal a), SyntacticN f fi) => SyntacticN (a -> f) (AST sym (Full ia) -> fi) Source # | |
| type SmartFun sym (Full a) Source # | |
| type DenotationM m (Full a) Source # | |
| type LiftReader env (Full a) Source # | |
| type DenResult (Full a) Source # | |
| type Denotation (Full a) Source # | |
| type LowerReader (Full a) Source # | |
| type SmartSig (ASTF sym a -> f) Source # | |
| type Domain (ASTF sym a) Source # | |
| type Internal (ASTF sym a) Source # | |
newtype a :-> sig infixr 9 Source #
Signature of a partially applied (or unapplied) symbol
Constructors
| Partial (a -> sig) |
Instances
| Functor ((:->) a) Source # | |
| Signature sig => Signature ((:->) a sig) Source # | |
| type SmartFun sym ((:->) a sig) Source # | |
| type DenotationM m ((:->) a sig) Source # | |
| type LiftReader env ((:->) a sig) Source # | |
| type DenResult ((:->) a sig) Source # | |
| type Denotation ((:->) a sig) Source # | |
| type LowerReader ((:->) a sig) Source # | |
class Symbol sym where Source #
Valid symbols to use in an AST
Minimal complete definition
Instances
| Symbol Let Source # | |
| Symbol BindingT Source # | |
| Symbol Binding Source # | |
| Symbol Construct Source # | |
| Symbol Literal Source # | |
| Symbol BindingWS Source # | |
| Symbol Tuple Source # | |
| Symbol (MONAD m) Source # | |
| (Symbol sym1, Symbol sym2) => Symbol ((:+:) sym1 sym2) Source # | |
| Symbol sym => Symbol ((:&:) sym info) Source # | |
Smart constructors
type family SmartFun (sym :: * -> *) sig Source #
Maps a symbol signature to the type of the corresponding smart constructor:
SmartFun sym (a :-> b :-> ... :-> Full x) = ASTF sym a -> ASTF sym b -> ... -> ASTF sym x
type family SmartSig f Source #
Maps a smart constructor type to the corresponding symbol signature:
SmartSig (ASTF sym a -> ASTF sym b -> ... -> ASTF sym x) = a :-> b :-> ... :-> Full x
smartSym' :: forall sig f sym. (Signature sig, f ~ SmartFun sym sig, sig ~ SmartSig f, sym ~ SmartSym f) => sym sig -> f Source #
Make a smart constructor of a symbol. smartSym' has any type of the form:
smartSym'
:: sym (a :-> b :-> ... :-> Full x)
-> (ASTF sym a -> ASTF sym b -> ... -> ASTF sym x)Open symbol domains
data (sym1 :+: sym2) sig where infixr 9 Source #
Direct sum of two symbol domains
Instances
| (:<:) sym1 sym3 => sym1 :<: ((:+:) sym2 sym3) Source # | |
| sym1 :<: ((:+:) sym1 sym2) Source # | |
| Project sym1 sym3 => Project sym1 ((:+:) sym2 sym3) Source # | |
| Project sym1 ((:+:) sym1 sym2) Source # | |
| (Functor sym1, Functor sym2) => Functor ((:+:) sym1 sym2) Source # | |
| (Foldable sym1, Foldable sym2) => Foldable ((:+:) sym1 sym2) Source # | |
| (Traversable sym1, Traversable sym2) => Traversable ((:+:) sym1 sym2) Source # | |
| (NFData1 sym1, NFData1 sym2) => NFData1 ((:+:) sym1 sym2) Source # | |
| (Symbol sym1, Symbol sym2) => Symbol ((:+:) sym1 sym2) Source # | |
| (StringTree sym1, StringTree sym2) => StringTree ((:+:) sym1 sym2) Source # | |
| (Render sym1, Render sym2) => Render ((:+:) sym1 sym2) Source # | |
| (Equality sym1, Equality sym2) => Equality ((:+:) sym1 sym2) Source # | |
| (Eval s, Eval t) => Eval ((:+:) s t) Source # | |
| (BindingDomain sym1, BindingDomain sym2) => BindingDomain ((:+:) sym1 sym2) Source # | |
| (EvalEnv sym1 env, EvalEnv sym2 env) => EvalEnv ((:+:) sym1 sym2) env Source # | |
class Project sub sup where Source #
Symbol projection
The class is defined for all pairs of types, but prj can only succeed if sup is of the form
(... .:+: sub :+: ...)
Minimal complete definition
Instances
| Project sub sup Source # | |
| Project sym sym Source # | |
| Project sub sup => Project sub (Typed sup) Source # | |
| Project sub sup => Project sub (AST sup) Source # | |
| Project sym1 sym3 => Project sym1 ((:+:) sym2 sym3) Source # | |
| Project sym1 ((:+:) sym1 sym2) Source # | |
| Project sub sup => Project sub ((:&:) sup info) Source # | |
class Project sub sup => sub :<: sup where Source #
Symbol injection
The class includes types sub and sup where sup is of the form (... .:+: sub :+: ...)
Minimal complete definition
smartSym :: (Signature sig, f ~ SmartFun sup sig, sig ~ SmartSig f, sup ~ SmartSym f, sub :<: sup) => sub sig -> f Source #
Make a smart constructor of a symbol. smartSym has any type of the form:
smartSym :: (sub :<: AST sup)
=> sub (a :-> b :-> ... :-> Full x)
-> (ASTF sup a -> ASTF sup b -> ... -> ASTF sup x)smartSymTyped :: (Signature sig, f ~ SmartFun (Typed sup) sig, sig ~ SmartSig f, Typed sup ~ SmartSym f, sub :<: sup, Typeable (DenResult sig)) => sub sig -> f Source #
Make a smart constructor of a symbol. smartSymTyped has any type of the
form:
smartSymTyped :: (sub :<: AST (Typed sup), Typeable x)
=> sub (a :-> b :-> ... :-> Full x)
-> (ASTF sup a -> ASTF sup b -> ... -> ASTF sup x)Empty symbol type
Can be used to make uninhabited AST types. It can also be used as a terminator in co-product
lists (e.g. to avoid overlapping instances):
(A :+: B :+: Empty)
Existential quantification
Existential quantification of Full-indexed type
Type casting expressions
data Typed sym sig where Source #
"Typed" symbol. Using instead of Typed symsym gives access to the
function castExpr for casting expressions.
Instances
Arguments
| :: ASTF (Typed sym) a | Expression to cast |
| -> ASTF (Typed sym) b | Witness for typeability of result |
| -> Maybe (ASTF (Typed sym) b) |
Type cast an expression