|
| Synthesizer.Generic.Analysis |
|
|
|
|
|
| Synopsis |
|
| volumeMaximum :: (C y, Read sig y) => sig y -> y | | | volumeEuclidean :: (C y, Read sig y) => sig y -> y | | | volumeEuclideanSqr :: (C y, Read sig y) => sig y -> y | | | volumeSum :: (C y, C y, Read sig y) => sig y -> y | | | volumeVectorMaximum :: (C y yv, Ord y, Read sig yv) => sig yv -> y | | | volumeVectorEuclidean :: (C y, C y yv, Read sig yv) => sig yv -> y | | | volumeVectorEuclideanSqr :: (C y, Sqr y yv, Read sig yv) => sig yv -> y | | | volumeVectorSum :: (C y yv, C y, Read sig yv) => sig yv -> y | | | bounds :: (Ord y, Read sig y) => sig y -> (y, y) | | | directCurrentOffset :: (C y, Read sig y) => sig y -> y | | | scalarProduct :: (C y, Read sig y) => sig y -> sig y -> y | | | centroid :: (C y, Read sig y) => sig y -> y | | | average :: (C y, Read sig y) => sig y -> y | | | rectify :: (C y, Transform sig y) => sig y -> sig y | | | zeros :: (Ord y, C y, Transform sig y Bool) => sig y -> sig Bool | | | flipFlopHysteresis :: (Ord y, Transform sig y Bool) => (y, y) -> Bool -> sig y -> sig Bool |
|
|
|
| Notions of volume
|
|
|
| Volume based on Manhattan norm.
|
|
| volumeEuclidean :: (C y, Read sig y) => sig y -> y | Source |
|
| Volume based on Energy norm.
|
|
| volumeEuclideanSqr :: (C y, Read sig y) => sig y -> y | Source |
|
|
|
| Volume based on Sum norm.
|
|
| volumeVectorMaximum :: (C y yv, Ord y, Read sig yv) => sig yv -> y | Source |
|
| Volume based on Manhattan norm.
|
|
| volumeVectorEuclidean :: (C y, C y yv, Read sig yv) => sig yv -> y | Source |
|
| Volume based on Energy norm.
|
|
| volumeVectorEuclideanSqr :: (C y, Sqr y yv, Read sig yv) => sig yv -> y | Source |
|
|
| volumeVectorSum :: (C y yv, C y, Read sig yv) => sig yv -> y | Source |
|
| Volume based on Sum norm.
|
|
|
| Compute minimum and maximum value of the stream the efficient way.
Input list must be non-empty and finite.
|
|
| Miscellaneous
|
|
| directCurrentOffset :: (C y, Read sig y) => sig y -> y | Source |
|
| Requires finite length.
This is identical to the arithmetic mean.
|
|
| scalarProduct :: (C y, Read sig y) => sig y -> sig y -> y | Source |
|
|
|
| directCurrentOffset must be non-zero.
|
|
|
|
|
|
|
Detects zeros (sign changes) in a signal.
This can be used as a simple measure of the portion
of high frequencies or noise in the signal.
It ca be used as voiced/unvoiced detector in a vocoder.
zeros x !! n is True if and only if
(x !! n >= 0) /= (x !! (n+1) >= 0).
The result will be one value shorter than the input.
|
|
|
| Detect thresholds with a hysteresis.
|
|
| Produced by Haddock version 2.4.2 |