tax-0.2.0.0: Types and combinators for taxes

Safe HaskellNone
LanguageHaskell2010

Data.Tax

Contents

Description

This library provides combinators for constructing taxes. It is based on the dollaridoos library.

The most basic tax is a flat rate tax:

businessTax = flat 0.3

To compute the tax, use getTax:

λ> getTax businessTax (review money 1000000)
$300000.0

Taxes form a semigroup (sum of tax outputs) and monoid:

λ> getTax (flat 0.1 <> flat 0.2) (review money 10)
$3.0
λ> getTax mempty (review money 10)
$0

Marginal tax rates can be constructed using the above combinator, which taxes the amount above a given threshold at a flat rate.

individualIncomeTax =
  above (review money 18200) 0.19
  <> above (review money 37000) (0.325 - 0.19)
  <> above (review money 87000) (0.37 - 0.325)
  <> above (review money 180000) (0.45 - 0.37)

Taxes can be negative. For exmaple, the lump, above and limit combinators can be used to construct a low-income tax offset that starts at $445 and reduces at a rate of 1.5c per dollar earned over $37000:

lowIncomeTaxOffset =
  limit mempty
  (lump (review money (-445)) <> above (review money 37000) 0.015)

The threshold combinator applies a tax to the full input amount, if it exceeds the threshold. Some taxes have "shade-in" where the amount above the threshold is taxed at a higher rate to "catch up" to some lower flat rate. The threshold' and lesserOf combinators can be used to construct this tax:

medicareLevy =
  threshold' l (lesserOf (above l 0.1) (flat 0.02))
    where l = review money 21656

Although some of the combinators deal directory with Money, a Tax can be defined for other types. For example, you can tax a person a certain number of days labour, based on their age.

data Sex = M | F
newtype Years = Years Int
newtype Days = Days Int
data Person = Person Years Sex

corvée :: Tax Person Days
corvée = Tax f
  where
  f (Person (Years age) sex) = Days $ if age >= 18 && age <= maxAge sex then 10 else 0
  maxAge sex = case sex of M -> 45 ; F -> 35
Synopsis

Constructing taxes

newtype Tax a b Source #

A function from gross income to tax payable.

Taxes form a semigroup where the tax payable is the sum of tax payable of consituent taxes.

Taxes form a monoid where the identity is a tax of 0%

Taxes are a profunctor, making it trivial to perform simple transformations of the input and/or output (e.g. rounding down to whole dollars).

Constructors

Tax 

Fields

Instances
Profunctor Tax Source # 
Instance details

Defined in Data.Tax

Methods

dimap :: (a -> b) -> (c -> d) -> Tax b c -> Tax a d #

lmap :: (a -> b) -> Tax b c -> Tax a c #

rmap :: (b -> c) -> Tax a b -> Tax a c #

(#.) :: Coercible c b => q b c -> Tax a b -> Tax a c #

(.#) :: Coercible b a => Tax b c -> q a b -> Tax a c #

Functor (Tax a) Source # 
Instance details

Defined in Data.Tax

Methods

fmap :: (a0 -> b) -> Tax a a0 -> Tax a b #

(<$) :: a0 -> Tax a b -> Tax a a0 #

Semigroup b => Semigroup (Tax a b) Source # 
Instance details

Defined in Data.Tax

Methods

(<>) :: Tax a b -> Tax a b -> Tax a b #

sconcat :: NonEmpty (Tax a b) -> Tax a b #

stimes :: Integral b0 => b0 -> Tax a b -> Tax a b #

Monoid b => Monoid (Tax a b) Source # 
Instance details

Defined in Data.Tax

Methods

mempty :: Tax a b #

mappend :: Tax a b -> Tax a b -> Tax a b #

mconcat :: [Tax a b] -> Tax a b #

type MoneyTax a = Tax (Money a) (Money a) Source #

Convenience synonym for working with Money

lump :: a -> Tax b a Source #

A lump-sum tax; a fixed value, not affected by the size of the input

flat :: Num a => a -> Tax (Money a) (Money a) Source #

Construct a flat rate tax with no threshold

threshold :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a) Source #

Tax full amount at flat rate if input >= threshold

threshold' :: (Ord b, Monoid a) => b -> Tax b a -> Tax b a Source #

Levy the tax if input >= threshold, otherwise don't

thresholds :: (Fractional a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a) Source #

Convert a [(threshold, rate)] into a flat tax whose rate is the sum of the rates that apply for a given input. The rates are cumulative. For example, if you want to tax people earning >$30,000 20%, and people earning >$50,000 30%, you only tax an extra 10% at 50000:

tax = thresholds [(30000, .2), (50000, .1)]

above :: (Num a, Ord a) => Money a -> a -> Tax (Money a) (Money a) Source #

Tax the amount exceeding the threshold at a flat rate.

above' :: (Num b, Ord b) => Money b -> Tax (Money b) a -> Tax (Money b) a Source #

Tax the amount exceeding the threshold

marginal :: (Fractional a, Ord a) => [(Money a, a)] -> Tax (Money a) (Money a) Source #

Convert a [(threshold, rate)] into a marginal tax. The rates are cumulative, i.e. the top marginal rate is the sum of the rates that apply for a given input.

lesserOf :: Ord a => Tax b a -> Tax b a -> Tax b a Source #

Levy the lesser of two taxes

greaterOf :: Ord a => Tax b a -> Tax b a -> Tax b a Source #

Levy the greater of two taxes

limit :: Ord a => a -> Tax b a -> Tax b a Source #

Limit the tax payable to the given amount

This could be used e.g. for limiting a compulsory loan repayment to the balance of the loan, or ensuring a (negative) tax offset does not become a (positive) tax.

effective :: Fractional a => Money a -> Tax (Money a) (Money a) -> Tax (Money a) (Money a) Source #

Given a tax and an amount construct the effective flat tax rate

Miscellanea

class Semigroup a where #

The class of semigroups (types with an associative binary operation).

Instances should satisfy the associativity law:

Since: base-4.9.0.0

Minimal complete definition

(<>)

Methods

(<>) :: a -> a -> a infixr 6 #

An associative operation.

sconcat :: NonEmpty a -> a #

Reduce a non-empty list with <>

The default definition should be sufficient, but this can be overridden for efficiency.

stimes :: Integral b => b -> a -> a #

Repeat a value n times.

Given that this works on a Semigroup it is allowed to fail if you request 0 or fewer repetitions, and the default definition will do so.

By making this a member of the class, idempotent semigroups and monoids can upgrade this to execute in O(1) by picking stimes = stimesIdempotent or stimes = stimesIdempotentMonoid respectively.

Instances
Semigroup Ordering

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Semigroup ()

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: () -> () -> () #

sconcat :: NonEmpty () -> () #

stimes :: Integral b => b -> () -> () #

Semigroup [a]

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: [a] -> [a] -> [a] #

sconcat :: NonEmpty [a] -> [a] #

stimes :: Integral b => b -> [a] -> [a] #

Semigroup a => Semigroup (Maybe a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: Maybe a -> Maybe a -> Maybe a #

sconcat :: NonEmpty (Maybe a) -> Maybe a #

stimes :: Integral b => b -> Maybe a -> Maybe a #

Semigroup a => Semigroup (IO a)

Since: base-4.10.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: IO a -> IO a -> IO a #

sconcat :: NonEmpty (IO a) -> IO a #

stimes :: Integral b => b -> IO a -> IO a #

Ord a => Semigroup (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Min a -> Min a -> Min a #

sconcat :: NonEmpty (Min a) -> Min a #

stimes :: Integral b => b -> Min a -> Min a #

Ord a => Semigroup (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Max a -> Max a -> Max a #

sconcat :: NonEmpty (Max a) -> Max a #

stimes :: Integral b => b -> Max a -> Max a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Monoid m => Semigroup (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Semigroup (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

(<>) :: Option a -> Option a -> Option a #

sconcat :: NonEmpty (Option a) -> Option a #

stimes :: Integral b => b -> Option a -> Option a #

Semigroup (First a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: First a -> First a -> First a #

sconcat :: NonEmpty (First a) -> First a #

stimes :: Integral b => b -> First a -> First a #

Semigroup (Last a)

Since: base-4.9.0.0

Instance details

Defined in Data.Monoid

Methods

(<>) :: Last a -> Last a -> Last a #

sconcat :: NonEmpty (Last a) -> Last a #

stimes :: Integral b => b -> Last a -> Last a #

Semigroup (NonEmpty a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: NonEmpty a -> NonEmpty a -> NonEmpty a #

sconcat :: NonEmpty (NonEmpty a) -> NonEmpty a #

stimes :: Integral b => b -> NonEmpty a -> NonEmpty a #

Num a => Semigroup (Money a) 
Instance details

Defined in Data.Money

Methods

(<>) :: Money a -> Money a -> Money a #

sconcat :: NonEmpty (Money a) -> Money a #

stimes :: Integral b => b -> Money a -> Money a #

Semigroup b => Semigroup (a -> b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a -> b) -> (a -> b) -> a -> b #

sconcat :: NonEmpty (a -> b) -> a -> b #

stimes :: Integral b0 => b0 -> (a -> b) -> a -> b #

Semigroup (Either a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Either

Methods

(<>) :: Either a b -> Either a b -> Either a b #

sconcat :: NonEmpty (Either a b) -> Either a b #

stimes :: Integral b0 => b0 -> Either a b -> Either a b #

(Semigroup a, Semigroup b) => Semigroup (a, b)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b) -> (a, b) -> (a, b) #

sconcat :: NonEmpty (a, b) -> (a, b) #

stimes :: Integral b0 => b0 -> (a, b) -> (a, b) #

Semigroup b => Semigroup (Tax a b) # 
Instance details

Defined in Data.Tax

Methods

(<>) :: Tax a b -> Tax a b -> Tax a b #

sconcat :: NonEmpty (Tax a b) -> Tax a b #

stimes :: Integral b0 => b0 -> Tax a b -> Tax a b #

(Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c) -> (a, b, c) -> (a, b, c) #

sconcat :: NonEmpty (a, b, c) -> (a, b, c) #

stimes :: Integral b0 => b0 -> (a, b, c) -> (a, b, c) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

sconcat :: NonEmpty (a, b, c, d) -> (a, b, c, d) #

stimes :: Integral b0 => b0 -> (a, b, c, d) -> (a, b, c, d) #

(Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(<>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

sconcat :: NonEmpty (a, b, c, d, e) -> (a, b, c, d, e) #

stimes :: Integral b0 => b0 -> (a, b, c, d, e) -> (a, b, c, d, e) #

class Semigroup a => Monoid a where #

The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following laws:

The method names refer to the monoid of lists under concatenation, but there are many other instances.

Some types can be viewed as a monoid in more than one way, e.g. both addition and multiplication on numbers. In such cases we often define newtypes and make those instances of Monoid, e.g. Sum and Product.

NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.

Minimal complete definition

mempty

Methods

mempty :: a #

Identity of mappend

mappend :: a -> a -> a #

An associative operation

NOTE: This method is redundant and has the default implementation mappend = '(<>)' since base-4.11.0.0.

mconcat :: [a] -> a #

Fold a list using the monoid.

For most types, the default definition for mconcat will be used, but the function is included in the class definition so that an optimized version can be provided for specific types.

Instances
Monoid Ordering

Since: base-2.1

Instance details

Defined in GHC.Base

Monoid ()

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: () #

mappend :: () -> () -> () #

mconcat :: [()] -> () #

Monoid [a]

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: [a] #

mappend :: [a] -> [a] -> [a] #

mconcat :: [[a]] -> [a] #

Semigroup a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s ∈ S."

Since 4.11.0: constraint on inner a value generalised from Monoid to Semigroup.

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: Maybe a #

mappend :: Maybe a -> Maybe a -> Maybe a #

mconcat :: [Maybe a] -> Maybe a #

Monoid a => Monoid (IO a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

mempty :: IO a #

mappend :: IO a -> IO a -> IO a #

mconcat :: [IO a] -> IO a #

(Ord a, Bounded a) => Monoid (Min a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Min a #

mappend :: Min a -> Min a -> Min a #

mconcat :: [Min a] -> Min a #

(Ord a, Bounded a) => Monoid (Max a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Max a #

mappend :: Max a -> Max a -> Max a #

mconcat :: [Max a] -> Max a #

Monoid m => Monoid (WrappedMonoid m)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Semigroup a => Monoid (Option a)

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup

Methods

mempty :: Option a #

mappend :: Option a -> Option a -> Option a #

mconcat :: [Option a] -> Option a #

Monoid (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: First a #

mappend :: First a -> First a -> First a #

mconcat :: [First a] -> First a #

Monoid (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Methods

mempty :: Last a #

mappend :: Last a -> Last a -> Last a #

mconcat :: [Last a] -> Last a #

Num a => Monoid (Money a) 
Instance details

Defined in Data.Money

Methods

mempty :: Money a #

mappend :: Money a -> Money a -> Money a #

mconcat :: [Money a] -> Money a #

Monoid b => Monoid (a -> b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: a -> b #

mappend :: (a -> b) -> (a -> b) -> a -> b #

mconcat :: [a -> b] -> a -> b #

(Monoid a, Monoid b) => Monoid (a, b)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b) #

mappend :: (a, b) -> (a, b) -> (a, b) #

mconcat :: [(a, b)] -> (a, b) #

Monoid b => Monoid (Tax a b) # 
Instance details

Defined in Data.Tax

Methods

mempty :: Tax a b #

mappend :: Tax a b -> Tax a b -> Tax a b #

mconcat :: [Tax a b] -> Tax a b #

(Monoid a, Monoid b, Monoid c) => Monoid (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c) #

mappend :: (a, b, c) -> (a, b, c) -> (a, b, c) #

mconcat :: [(a, b, c)] -> (a, b, c) #

(Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d) #

mappend :: (a, b, c, d) -> (a, b, c, d) -> (a, b, c, d) #

mconcat :: [(a, b, c, d)] -> (a, b, c, d) #

(Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

mempty :: (a, b, c, d, e) #

mappend :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) #

mconcat :: [(a, b, c, d, e)] -> (a, b, c, d, e) #

class Profunctor (p :: * -> * -> *) where #

Formally, the class Profunctor represents a profunctor from Hask -> Hask.

Intuitively it is a bifunctor where the first argument is contravariant and the second argument is covariant.

You can define a Profunctor by either defining dimap or by defining both lmap and rmap.

If you supply dimap, you should ensure that:

dimap id idid

If you supply lmap and rmap, ensure:

lmap idid
rmap idid

If you supply both, you should also ensure:

dimap f g ≡ lmap f . rmap g

These ensure by parametricity:

dimap (f . g) (h . i) ≡ dimap g h . dimap f i
lmap (f . g) ≡ lmap g . lmap f
rmap (f . g) ≡ rmap f . rmap g

Minimal complete definition

dimap | lmap, rmap

Methods

dimap :: (a -> b) -> (c -> d) -> p b c -> p a d #

Map over both arguments at the same time.

dimap f g ≡ lmap f . rmap g

lmap :: (a -> b) -> p b c -> p a c #

Map the first argument contravariantly.

lmap f ≡ dimap f id

rmap :: (b -> c) -> p a b -> p a c #

Map the second argument covariantly.

rmapdimap id
Instances
Profunctor Tax # 
Instance details

Defined in Data.Tax

Methods

dimap :: (a -> b) -> (c -> d) -> Tax b c -> Tax a d #

lmap :: (a -> b) -> Tax b c -> Tax a c #

rmap :: (b -> c) -> Tax a b -> Tax a c #

(#.) :: Coercible c b => q b c -> Tax a b -> Tax a c #

(.#) :: Coercible b a => Tax b c -> q a b -> Tax a c #

Monad m => Profunctor (Kleisli m) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Kleisli m b c -> Kleisli m a d #

lmap :: (a -> b) -> Kleisli m b c -> Kleisli m a c #

rmap :: (b -> c) -> Kleisli m a b -> Kleisli m a c #

(#.) :: Coercible c b => q b c -> Kleisli m a b -> Kleisli m a c #

(.#) :: Coercible b a => Kleisli m b c -> q a b -> Kleisli m a c #

Profunctor (Tagged :: * -> * -> *) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Tagged b c -> Tagged a d #

lmap :: (a -> b) -> Tagged b c -> Tagged a c #

rmap :: (b -> c) -> Tagged a b -> Tagged a c #

(#.) :: Coercible c b => q b c -> Tagged a b -> Tagged a c #

(.#) :: Coercible b a => Tagged b c -> q a b -> Tagged a c #

Profunctor ((->) :: * -> * -> *) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> (b -> c) -> a -> d #

lmap :: (a -> b) -> (b -> c) -> a -> c #

rmap :: (b -> c) -> (a -> b) -> a -> c #

(#.) :: Coercible c b => q b c -> (a -> b) -> a -> c #

(.#) :: Coercible b a => (b -> c) -> q a b -> a -> c #

Functor w => Profunctor (Cokleisli w) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Cokleisli w b c -> Cokleisli w a d #

lmap :: (a -> b) -> Cokleisli w b c -> Cokleisli w a c #

rmap :: (b -> c) -> Cokleisli w a b -> Cokleisli w a c #

(#.) :: Coercible c b => q b c -> Cokleisli w a b -> Cokleisli w a c #

(.#) :: Coercible b a => Cokleisli w b c -> q a b -> Cokleisli w a c #

Functor f => Profunctor (Joker f :: * -> * -> *) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Joker f b c -> Joker f a d #

lmap :: (a -> b) -> Joker f b c -> Joker f a c #

rmap :: (b -> c) -> Joker f a b -> Joker f a c #

(#.) :: Coercible c b => q b c -> Joker f a b -> Joker f a c #

(.#) :: Coercible b a => Joker f b c -> q a b -> Joker f a c #

Contravariant f => Profunctor (Clown f :: * -> * -> *) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Clown f b c -> Clown f a d #

lmap :: (a -> b) -> Clown f b c -> Clown f a c #

rmap :: (b -> c) -> Clown f a b -> Clown f a c #

(#.) :: Coercible c b => q b c -> Clown f a b -> Clown f a c #

(.#) :: Coercible b a => Clown f b c -> q a b -> Clown f a c #

(Profunctor p, Profunctor q) => Profunctor (Sum p q) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Sum p q b c -> Sum p q a d #

lmap :: (a -> b) -> Sum p q b c -> Sum p q a c #

rmap :: (b -> c) -> Sum p q a b -> Sum p q a c #

(#.) :: Coercible c b => q0 b c -> Sum p q a b -> Sum p q a c #

(.#) :: Coercible b a => Sum p q b c -> q0 a b -> Sum p q a c #

(Profunctor p, Profunctor q) => Profunctor (Product p q) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Product p q b c -> Product p q a d #

lmap :: (a -> b) -> Product p q b c -> Product p q a c #

rmap :: (b -> c) -> Product p q a b -> Product p q a c #

(#.) :: Coercible c b => q0 b c -> Product p q a b -> Product p q a c #

(.#) :: Coercible b a => Product p q b c -> q0 a b -> Product p q a c #

(Functor f, Profunctor p) => Profunctor (Tannen f p) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Tannen f p b c -> Tannen f p a d #

lmap :: (a -> b) -> Tannen f p b c -> Tannen f p a c #

rmap :: (b -> c) -> Tannen f p a b -> Tannen f p a c #

(#.) :: Coercible c b => q b c -> Tannen f p a b -> Tannen f p a c #

(.#) :: Coercible b a => Tannen f p b c -> q a b -> Tannen f p a c #

(Profunctor p, Functor f, Functor g) => Profunctor (Biff p f g) 
Instance details

Defined in Data.Profunctor.Unsafe

Methods

dimap :: (a -> b) -> (c -> d) -> Biff p f g b c -> Biff p f g a d #

lmap :: (a -> b) -> Biff p f g b c -> Biff p f g a c #

rmap :: (b -> c) -> Biff p f g a b -> Biff p f g a c #

(#.) :: Coercible c b => q b c -> Biff p f g a b -> Biff p f g a c #

(.#) :: Coercible b a => Biff p f g b c -> q a b -> Biff p f g a c #

module Data.Money