testing-feat-1.0.0.0: Functional Enumeration of Algebraic Types

Test.Feat.Enumerate

Description

Basic combinators for building enumerations most users will want to use the type class based combinators in Test.Feat.Class instead.

Synopsis

# Documentation

data Enumerate a Source #

A functional enumeration of type t is a partition of t into finite numbered sets called Parts. Each parts contains values of a certain cost (typically the size of the value).

Constructors

 Enumerate FieldsrevParts :: RevList (Finite a)

Instances

 Source # Only use fmap with bijective functions (e.g. data constructors) Methodsfmap :: (a -> b) -> Enumerate a -> Enumerate b #(<$) :: a -> Enumerate b -> Enumerate a # Source # Pure is singleton and <*> corresponds to cartesian product (as with lists) Methodspure :: a -> Enumerate a #(<*>) :: Enumerate (a -> b) -> Enumerate a -> Enumerate b #liftA2 :: (a -> b -> c) -> Enumerate a -> Enumerate b -> Enumerate c #(*>) :: Enumerate a -> Enumerate b -> Enumerate b #(<*) :: Enumerate a -> Enumerate b -> Enumerate a # Source # Methods(<|>) :: Enumerate a -> Enumerate a -> Enumerate a #some :: Enumerate a -> Enumerate [a] #many :: Enumerate a -> Enumerate [a] # Source # Methodspay :: Enumerate a -> Enumerate a #pair :: Enumerate a -> Enumerate b -> Enumerate (a, b) #aconcat :: [Enumerate a] -> Enumerate a # Source # The mappend is (disjoint) union Methodsmappend :: Enumerate a -> Enumerate a -> Enumerate a #mconcat :: [Enumerate a] -> Enumerate a # ## Reversed lists data RevList a Source # A data structure that contains a list and the reversals of all initial segments of the list. Intuitively reversals xs !! n = reverse (take (n+1) (fromRev xs)) Any operation on a RevList typically discards the reversals and constructs new reversals on demand. Constructors  RevList FieldsfromRev :: [a] reversals :: [[a]] Instances  Source # Methodsfmap :: (a -> b) -> RevList a -> RevList b #(<$) :: a -> RevList b -> RevList a # Show a => Show (RevList a) Source # MethodsshowsPrec :: Int -> RevList a -> ShowS #show :: RevList a -> String #showList :: [RevList a] -> ShowS # Monoid a => Monoid (RevList a) Source # Padded zip Methodsmappend :: RevList a -> RevList a -> RevList a #mconcat :: [RevList a] -> RevList a #

toRev :: [a] -> RevList a Source #

Constructs a "Reverse list" variant of a given list. In a sensible Haskell implementation evaluating any inital segment of reversals (toRev xs) uses linear memory in the size of the segment.

## Finite ordered sets

data Finite a Source #

Constructors

 Finite FieldsfCard :: Index fIndex :: Index -> a

Instances

 Source # Methodsfmap :: (a -> b) -> Finite a -> Finite b #(<\$) :: a -> Finite b -> Finite a # Source # Methodspure :: a -> Finite a #(<*>) :: Finite (a -> b) -> Finite a -> Finite b #liftA2 :: (a -> b -> c) -> Finite a -> Finite b -> Finite c #(*>) :: Finite a -> Finite b -> Finite b #(<*) :: Finite a -> Finite b -> Finite a # Source # Methodsempty :: Finite a #(<|>) :: Finite a -> Finite a -> Finite a #some :: Finite a -> Finite [a] #many :: Finite a -> Finite [a] # Show a => Show (Finite a) Source # MethodsshowsPrec :: Int -> Finite a -> ShowS #show :: Finite a -> String #showList :: [Finite a] -> ShowS # Monoid (Finite a) Source # Methodsmappend :: Finite a -> Finite a -> Finite a #mconcat :: [Finite a] -> Finite a #

fromFinite :: Finite a -> (Index, [a]) Source #

## Combinators for building enumerations

singleton :: a -> Enumerate a Source #

The definition of pure for the applicative instance.

pay :: Sized f => forall a. f a -> f a #

Increases the cost/size of all values in the given set.