```{-# LANGUAGE TypeSynonymInstances, FlexibleInstances, BangPatterns #-}

module Sound.Tidal.Core where

import           Prelude hiding ((<*), (*>))

import           Data.Fixed (mod')
import qualified Data.Map.Strict as Map
import           Data.Maybe (fromMaybe)
import           Sound.Tidal.Pattern

-- ** Elemental patterns

-- | An empty pattern
silence :: Pattern a
silence = empty

-- | Takes a function from time to values, and turns it into a 'Pattern'.
sig :: (Time -> a) -> Pattern a
sig f = Pattern q
where q (State (Arc s e) _)
| s > e = []
| otherwise = [Event (Context []) Nothing (Arc s e) (f (s+((e-s)/2)))]

-- | @sine@ returns a 'Pattern' of continuous 'Fractional' values following a
-- sinewave with frequency of one cycle, and amplitude from 0 to 1.
sine :: Fractional a => Pattern a
sine = sig \$ \t -> (sin_rat ((pi :: Double) * 2 * fromRational t) + 1) / 2
where sin_rat = fromRational . toRational . sin

-- | @cosine@ is a synonym for @0.25 ~> sine@.
cosine :: Fractional a => Pattern a
cosine = 0.25 `rotR` sine

-- | @saw@ is the equivalent of 'sine' for (ascending) sawtooth waves.
saw :: (Fractional a, Real a) => Pattern a
saw = sig \$ \t -> mod' (fromRational t) 1

-- | @isaw@ is the equivalent of 'sine' for inverse (descending) sawtooth waves.
isaw :: (Fractional a, Real a) => Pattern a
isaw = (1-) <\$> saw

-- | @tri@ is the equivalent of 'sine' for triangular waves.
tri :: (Fractional a, Real a) => Pattern a
tri = fastAppend saw isaw

-- | @square@ is the equivalent of 'sine' for square waves.
square :: (Fractional a) => Pattern a
square = sig \$
\t -> fromIntegral ((floor \$ mod' (fromRational t :: Double) 1 * 2) :: Integer)

-- | @envL@ is a 'Pattern' of continuous 'Double' values, representing
-- a linear interpolation between 0 and 1 during the first cycle, then
-- staying constant at 1 for all following cycles. Possibly only
-- useful if you're using something like the retrig function defined
-- in tidal.el.
envL :: Pattern Double
envL = sig \$ \t -> max 0 \$ min (fromRational t) 1

-- | like 'envL' but reversed.
envLR :: Pattern Double
envLR = (1-) <\$> envL

-- | 'Equal power' version of 'env', for gain-based transitions
envEq :: Pattern Double
envEq = sig \$ \t -> sqrt (sin (pi/2 * max 0 (min (fromRational (1-t)) 1)))

-- | Equal power reversed
envEqR :: Pattern Double
envEqR = sig \$ \t -> sqrt (cos (pi/2 * max 0 (min (fromRational (1-t)) 1)))

-- ** Pattern algebra

-- class for types that support a left-biased union
class Unionable a where
union :: a -> a -> a

-- default union is just to take the left hand side..
instance Unionable a where
union = const

instance {-# OVERLAPPING #-} Unionable ControlMap where
union = Map.union

(|+|) :: (Applicative a, Num b) => a b -> a b -> a b
a |+| b = (+) <\$> a <*> b
(|+ ) :: Num a => Pattern a -> Pattern a -> Pattern a
a |+  b = (+) <\$> a <* b
( +|) :: Num a => Pattern a -> Pattern a -> Pattern a
a  +| b = (+) <\$> a *> b

(|++|) :: Applicative a => a String -> a String -> a String
a |++| b = (++) <\$> a <*> b
(|++ ) :: Pattern String -> Pattern String -> Pattern String
a |++  b = (++) <\$> a <* b
( ++|) :: Pattern String -> Pattern String -> Pattern String
a  ++| b = (++) <\$> a *> b

(|/|) :: (Applicative a, Fractional b) => a b -> a b -> a b
a |/| b = (/) <\$> a <*> b
(|/ ) :: Fractional a => Pattern a -> Pattern a -> Pattern a
a |/  b = (/) <\$> a <* b
( /|) :: Fractional a => Pattern a -> Pattern a -> Pattern a
a  /| b = (/) <\$> a *> b

(|*|) :: (Applicative a, Num b) => a b -> a b -> a b
a |*| b = (*) <\$> a <*> b
(|* ) :: Num a => Pattern a -> Pattern a -> Pattern a
a |*  b = (*) <\$> a <* b
( *|) :: Num a => Pattern a -> Pattern a -> Pattern a
a  *| b = (*) <\$> a *> b

(|-|) :: (Applicative a, Num b) => a b -> a b -> a b
a |-| b = (-) <\$> a <*> b
(|- ) :: Num a => Pattern a -> Pattern a -> Pattern a
a |-  b = (-) <\$> a <* b
( -|) :: Num a => Pattern a -> Pattern a -> Pattern a
a  -| b = (-) <\$> a *> b

(|%|) :: (Applicative a, Real b) => a b -> a b -> a b
a |%| b = mod' <\$> a <*> b
(|% ) :: Real a => Pattern a -> Pattern a -> Pattern a
a |%  b = mod' <\$> a <* b
( %|) :: Real a => Pattern a -> Pattern a -> Pattern a
a  %| b = mod' <\$> a *> b

(|**|) :: (Applicative a, Floating b) => a b -> a b -> a b
a |**| b = (**) <\$> a <*> b
(|** ) :: Floating a => Pattern a -> Pattern a -> Pattern a
a |**  b = (**) <\$> a <* b
( **|) :: Floating a => Pattern a -> Pattern a -> Pattern a
a  **| b = (**) <\$> a *> b

(|>|) :: (Applicative a, Unionable b) => a b -> a b -> a b
a |>| b = flip union <\$> a <*> b
(|> ) :: Unionable a => Pattern a -> Pattern a -> Pattern a
a |>  b = flip union <\$> a <* b
( >|) :: Unionable a => Pattern a -> Pattern a -> Pattern a
a  >| b = flip union <\$> a *> b

(|<|) :: (Applicative a, Unionable b) => a b -> a b -> a b
a |<| b = union <\$> a <*> b
(|< ) :: Unionable a => Pattern a -> Pattern a -> Pattern a
a |<  b = union <\$> a <* b
( <|) :: Unionable a => Pattern a -> Pattern a -> Pattern a
a  <| b = union <\$> a *> b

-- Backward compatibility - structure from left, values from right.
(#) :: Unionable b => Pattern b -> Pattern b -> Pattern b
(#) = (|>)

-- ** Constructing patterns

-- | Turns a list of values into a pattern, playing one of them per cycle.
fromList :: [a] -> Pattern a
fromList = cat . map pure

-- | Turns a list of values into a pattern, playing all of them per cycle.
fastFromList :: [a] -> Pattern a
fastFromList = fastcat . map pure

-- | A synonym for 'fastFromList'
listToPat :: [a] -> Pattern a
listToPat = fastFromList

-- | 'fromMaybes; is similar to 'fromList', but allows values to
-- be optional using the 'Maybe' type, so that 'Nothing' results in
-- gaps in the pattern.
fromMaybes :: [Maybe a] -> Pattern a
fromMaybes = fastcat . map f
where f Nothing = silence
f (Just x) = pure x

-- | A pattern of whole numbers from 0 to the given number, in a single cycle.
run :: (Enum a, Num a) => Pattern a -> Pattern a
run = (>>= _run)

_run :: (Enum a, Num a) => a -> Pattern a
_run n = fastFromList [0 .. n-1]

-- | From @1@ for the first cycle, successively adds a number until it gets up to @n@
scan :: (Enum a, Num a) => Pattern a -> Pattern a
scan = (>>= _scan)

_scan :: (Enum a, Num a) => a -> Pattern a
_scan n = slowcat \$ map _run [1 .. n]

-- ** Combining patterns

-- | Alternate between cycles of the two given patterns
append :: Pattern a -> Pattern a -> Pattern a
append a b = cat [a,b]

-- | Like 'append', but for a list of patterns. Interlaces them, playing the first cycle from each
-- in turn, then the second cycle from each, and so on.
cat :: [Pattern a] -> Pattern a
cat [] = silence
cat ps = Pattern \$ q
where n = length ps
q st = concatMap (f st) \$ arcCyclesZW (arc st)
f st a = query (withResultTime (+offset) p) \$ st {arc = Arc (subtract offset (start a)) (subtract offset (stop a))}
where p = ps !! i
cyc = (floor \$ start a) :: Int
i = cyc `mod` n
offset = (fromIntegral \$ cyc - ((cyc - i) `div` n)) :: Time

-- | Alias for 'cat'
slowCat :: [Pattern a] -> Pattern a
slowCat = cat
slowcat :: [Pattern a] -> Pattern a
slowcat = slowCat

-- | Alias for 'append'
slowAppend :: Pattern a -> Pattern a -> Pattern a
slowAppend = append
slowappend :: Pattern a -> Pattern a -> Pattern a
slowappend = append

-- | Like 'append', but twice as fast
fastAppend :: Pattern a -> Pattern a -> Pattern a
fastAppend a b = _fast 2 \$ append a b
fastappend :: Pattern a -> Pattern a -> Pattern a
fastappend = fastAppend

-- | The same as 'cat', but speeds up the result by the number of
-- patterns there are, so the cycles from each are squashed to fit a
-- single cycle.
fastCat :: [Pattern a] -> Pattern a
fastCat ps = _fast (toTime \$ length ps) \$ cat ps

fastcat :: [Pattern a] -> Pattern a
fastcat = fastCat

-- | Similar to @fastCat@, but each pattern is given a relative duration
timeCat :: [(Time, Pattern a)] -> Pattern a
timeCat tps = stack \$ map (\(s,e,p) -> compressArc (Arc (s/total) (e/total)) p) \$ arrange 0 tps
where total = sum \$ map fst tps
arrange :: Time -> [(Time, Pattern a)] -> [(Time, Time, Pattern a)]
arrange _ [] = []
arrange t ((t',p):tps') = (t,t+t',p) : arrange (t+t') tps'

-- | 'overlay' combines two 'Pattern's into a new pattern, so that
-- their events are combined over time.
overlay :: Pattern a -> Pattern a -> Pattern a
overlay !p !p' = Pattern \$ \st -> query p st ++ query p' st

-- | An infix alias of @overlay@
(<>) :: Pattern a -> Pattern a -> Pattern a
(<>) = overlay

-- | 'stack' combines a list of 'Pattern's into a new pattern, so that
-- their events are combined over time.
stack :: [Pattern a] -> Pattern a
stack = foldr overlay silence

-- ** Manipulating time

-- | Shifts a pattern back in time by the given amount, expressed in cycles
(<~) :: Pattern Time -> Pattern a -> Pattern a
(<~) = tParam rotL

-- | Shifts a pattern forward in time by the given amount, expressed in cycles
(~>) :: Pattern Time -> Pattern a -> Pattern a
(~>) = tParam rotR

-- | Speed up a pattern by the given time pattern
fast :: Pattern Time -> Pattern a -> Pattern a
fast = tParam _fast

-- | Slow down a pattern by the factors in the given time pattern, 'squeezing'
-- the pattern to fit the slot given in the time pattern
fastSqueeze :: Pattern Time -> Pattern a -> Pattern a
fastSqueeze = tParamSqueeze _fast

-- | An alias for @fast@
density :: Pattern Time -> Pattern a -> Pattern a
density = fast

_fast :: Time -> Pattern a -> Pattern a
_fast r p | r == 0 = silence
| r < 0 = rev \$ _fast (negate r) p
| otherwise = withResultTime (/ r) \$ withQueryTime (* r) p

-- | Slow down a pattern by the given time pattern
slow :: Pattern Time -> Pattern a -> Pattern a
slow = tParam _slow
_slow :: Time -> Pattern a -> Pattern a
_slow 0 _ = silence
_slow r p = _fast (1/r) p

-- | Slow down a pattern by the factors in the given time pattern, 'squeezing'
-- the pattern to fit the slot given in the time pattern
slowSqueeze :: Pattern Time -> Pattern a -> Pattern a
slowSqueeze = tParamSqueeze _slow

-- | An alias for @slow@
sparsity :: Pattern Time -> Pattern a -> Pattern a
sparsity = slow

-- | @rev p@ returns @p@ with the event positions in each cycle
-- reversed (or mirrored).
rev :: Pattern a -> Pattern a
rev p =
splitQueries \$ p {
query = \st -> map makeWholeAbsolute \$
mapParts (mirrorArc (midCycle \$ arc st)) \$
map makeWholeRelative
(query p st
{arc = mirrorArc (midCycle \$ arc st) (arc st)
})
}
where makeWholeRelative :: Event a -> Event a
makeWholeRelative (e@(Event {whole = Nothing})) = e
makeWholeRelative (Event c (Just (Arc s e)) p'@(Arc s' e') v) =
Event c (Just \$ Arc (s'-s) (e-e')) p' v
makeWholeAbsolute :: Event a -> Event a
makeWholeAbsolute (e@(Event {whole = Nothing})) = e
makeWholeAbsolute (Event c (Just (Arc s e)) p'@(Arc s' e') v) =
Event c (Just \$ Arc (s'-e) (e'+s)) p' v
midCycle :: Arc -> Time
midCycle (Arc s _) = sam s + 0.5
mapParts :: (Arc -> Arc) -> [Event a] -> [Event a]
mapParts f es = (\(Event c w p' v) -> Event c w (f p') v) <\$> es
-- | Returns the `mirror image' of a 'Arc' around the given point in time
mirrorArc :: Time -> Arc -> Arc
mirrorArc mid' (Arc s e) = Arc (mid' - (e-mid')) (mid'+(mid'-s))

{- | Plays a portion of a pattern, specified by a time arc (start and end time).
The new resulting pattern is played over the time period of the original pattern:

@
d1 \$ zoom (0.25, 0.75) \$ sound "bd*2 hh*3 [sn bd]*2 drum"
@

In the pattern above, `zoom` is used with an arc from 25% to 75%. It is equivalent to this pattern:

@
d1 \$ sound "hh*3 [sn bd]*2"
@
-}
zoom :: (Time, Time) -> Pattern a -> Pattern a
zoom (s,e) = zoomArc (Arc s e)

zoomArc :: Arc -> Pattern a -> Pattern a
zoomArc (Arc s e) p = splitQueries \$
withResultArc (mapCycle ((/d) . subtract s)) \$ withQueryArc (mapCycle ((+s) . (*d))) p
where d = e-s

-- | @fastGap@ is similar to 'fast' but maintains its cyclic
-- alignment. For example, @fastGap 2 p@ would squash the events in
-- pattern @p@ into the first half of each cycle (and the second
-- halves would be empty). The factor should be at least 1
fastGap :: Pattern Time -> Pattern a -> Pattern a
fastGap = tParam _fastGap

-- | An alias for @fastGap@
densityGap :: Pattern Time -> Pattern a -> Pattern a
densityGap = fastGap

compress :: (Time,Time) -> Pattern a -> Pattern a
compress (s,e) = compressArc (Arc s e)

compressTo :: (Time,Time) -> Pattern a -> Pattern a
compressTo (s,e) = compressArcTo (Arc s e)

repeatCycles :: Int -> Pattern a -> Pattern a
repeatCycles n p = cat (replicate n p)

fastRepeatCycles :: Int -> Pattern a -> Pattern a
fastRepeatCycles n p = cat (replicate n p)

-- | * Higher order functions

-- | Functions which work on other functions (higher order functions)

-- | @every n f p@ applies the function @f@ to @p@, but only affects
-- every @n@ cycles.
every :: Pattern Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
every tp f p = innerJoin \$ (\t -> _every t f p) <\$> tp

_every :: Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_every 0 _ p = p
_every n f p = when ((== 0) . (`mod` n)) f p

-- | @every n o f'@ is like @every n f@ with an offset of @o@ cycles
every' :: Pattern Int -> Pattern Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
every' np op f p = do { n <- np; o <- op; _every' n o f p }

_every' :: Int -> Int -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
_every' n o = when ((== o) . (`mod` n))

-- | @foldEvery ns f p@ applies the function @f@ to @p@, and is applied for
-- each cycle in @ns@.
foldEvery :: [Int] -> (Pattern a -> Pattern a) -> Pattern a -> Pattern a
foldEvery ns f p = foldr (`_every` f) p ns

{-|
Only `when` the given test function returns `True` the given pattern
transformation is applied. The test function will be called with the
current cycle as a number.

@
d1 \$ when ((elem '4').show)
(striate 4)
\$ sound "hh hc"
@

The above will only apply `striate 4` to the pattern if the current
cycle number contains the number 4. So the fourth cycle will be
striated and the fourteenth and so on. Expect lots of striates after
cycle number 399.
-}
when :: (Int -> Bool) -> (Pattern a -> Pattern a) ->  Pattern a -> Pattern a
when test f p = splitQueries \$ p {query = apply}
where apply st | test (floor \$ start \$ arc st) = query (f p) st
| otherwise = query p st

-- | Like 'when', but works on continuous time values rather than cycle numbers.
whenT :: (Time -> Bool) -> (Pattern a -> Pattern a) ->  Pattern a -> Pattern a
whenT test f p = splitQueries \$ p {query = apply}
where apply st | test (start \$ arc st) = query (f p) st
| otherwise = query p st

_getP_ :: (Value -> Maybe a) -> Pattern Value -> Pattern a
_getP_ f pat = filterJust \$ f <\$> pat

_getP :: a -> (Value -> Maybe a) -> Pattern Value -> Pattern a
_getP d f pat = (fromMaybe d . f) <\$> pat

_cX :: a -> (Value -> Maybe a) -> String -> Pattern a
_cX d f s = Pattern \$ \(State a m) -> queryArc (maybe (pure d) (_getP d f) \$ Map.lookup s m) a

_cX_ :: (Value -> Maybe a) -> String -> Pattern a
_cX_ f s = Pattern \$ \(State a m) -> queryArc (maybe silence (_getP_ f) \$ Map.lookup s m) a

cF :: Double -> String -> Pattern Double
cF d = _cX d getF
cF_ :: String -> Pattern Double
cF_ = _cX_ getF
cF0 :: String -> Pattern Double
cF0 = _cX 0 getF

cI :: Int -> String -> Pattern Int
cI d = _cX d getI
cI_ :: String -> Pattern Int
cI_ = _cX_ getI
cI0 :: String -> Pattern Int
cI0 = _cX 0 getI

cB :: Bool -> String -> Pattern Bool
cB d = _cX d getB
cB_ :: String -> Pattern Bool
cB_ = _cX_ getB
cB0 :: String -> Pattern Bool
cB0 = _cX False getB

cR :: Rational -> String -> Pattern Rational
cR d = _cX d getR
cR_ :: String -> Pattern Rational
cR_ = _cX_ getR
cR0 :: String -> Pattern Rational
cR0 = _cX 0 getR

cT :: Time -> String -> Pattern Time
cT = cR
cT0 :: String -> Pattern Time
cT0 = cR0
cT_ :: String -> Pattern Time
cT_ = cR_

cS :: String -> String -> Pattern String
cS d = _cX d getS
cS_ :: String -> Pattern String
cS_ = _cX_ getS
cS0 :: String -> Pattern String
cS0 = _cX "" getS

-- Default controller inputs (for MIDI)
in0 :: Pattern Double
in0 = cF 0 "0"
in1 :: Pattern Double
in1 = cF 0 "1"
in2 :: Pattern Double
in2 = cF 0 "2"
in3 :: Pattern Double
in3 = cF 0 "3"
in4 :: Pattern Double
in4 = cF 0 "4"
in5 :: Pattern Double
in5 = cF 0 "5"
in6 :: Pattern Double
in6 = cF 0 "6"
in7 :: Pattern Double
in7 = cF 0 "7"
in8 :: Pattern Double
in8 = cF 0 "8"
in9 :: Pattern Double
in9 = cF 0 "9"
in10 :: Pattern Double
in10 = cF 0 "10"
in11 :: Pattern Double
in11 = cF 0 "11"
in12 :: Pattern Double
in12 = cF 0 "12"
in13 :: Pattern Double
in13 = cF 0 "13"
in14 :: Pattern Double
in14 = cF 0 "14"
in15 :: Pattern Double
in15 = cF 0 "15"
in16 :: Pattern Double
in16 = cF 0 "16"
in17 :: Pattern Double
in17 = cF 0 "17"
in18 :: Pattern Double
in18 = cF 0 "18"
in19 :: Pattern Double
in19 = cF 0 "19"
in20 :: Pattern Double
in20 = cF 0 "20"
in21 :: Pattern Double
in21 = cF 0 "21"
in22 :: Pattern Double
in22 = cF 0 "22"
in23 :: Pattern Double
in23 = cF 0 "23"
in24 :: Pattern Double
in24 = cF 0 "24"
in25 :: Pattern Double
in25 = cF 0 "25"
in26 :: Pattern Double
in26 = cF 0 "26"
in27 :: Pattern Double
in27 = cF 0 "27"
in28 :: Pattern Double
in28 = cF 0 "28"
in29 :: Pattern Double
in29 = cF 0 "29"
in30 :: Pattern Double
in30 = cF 0 "30"
in31 :: Pattern Double
in31 = cF 0 "31"
in32 :: Pattern Double
in32 = cF 0 "32"
in33 :: Pattern Double
in33 = cF 0 "33"
in34 :: Pattern Double
in34 = cF 0 "34"
in35 :: Pattern Double
in35 = cF 0 "35"
in36 :: Pattern Double
in36 = cF 0 "36"
in37 :: Pattern Double
in37 = cF 0 "37"
in38 :: Pattern Double
in38 = cF 0 "38"
in39 :: Pattern Double
in39 = cF 0 "39"
in40 :: Pattern Double
in40 = cF 0 "40"
in41 :: Pattern Double
in41 = cF 0 "41"
in42 :: Pattern Double
in42 = cF 0 "42"
in43 :: Pattern Double
in43 = cF 0 "43"
in44 :: Pattern Double
in44 = cF 0 "44"
in45 :: Pattern Double
in45 = cF 0 "45"
in46 :: Pattern Double
in46 = cF 0 "46"
in47 :: Pattern Double
in47 = cF 0 "47"
in48 :: Pattern Double
in48 = cF 0 "48"
in49 :: Pattern Double
in49 = cF 0 "49"
in50 :: Pattern Double
in50 = cF 0 "50"
in51 :: Pattern Double
in51 = cF 0 "51"
in52 :: Pattern Double
in52 = cF 0 "52"
in53 :: Pattern Double
in53 = cF 0 "53"
in54 :: Pattern Double
in54 = cF 0 "54"
in55 :: Pattern Double
in55 = cF 0 "55"
in56 :: Pattern Double
in56 = cF 0 "56"
in57 :: Pattern Double
in57 = cF 0 "57"
in58 :: Pattern Double
in58 = cF 0 "58"
in59 :: Pattern Double
in59 = cF 0 "59"
in60 :: Pattern Double
in60 = cF 0 "60"
in61 :: Pattern Double
in61 = cF 0 "61"
in62 :: Pattern Double
in62 = cF 0 "62"
in63 :: Pattern Double
in63 = cF 0 "63"
in64 :: Pattern Double
in64 = cF 0 "64"
in65 :: Pattern Double
in65 = cF 0 "65"
in66 :: Pattern Double
in66 = cF 0 "66"
in67 :: Pattern Double
in67 = cF 0 "67"
in68 :: Pattern Double
in68 = cF 0 "68"
in69 :: Pattern Double
in69 = cF 0 "69"
in70 :: Pattern Double
in70 = cF 0 "70"
in71 :: Pattern Double
in71 = cF 0 "71"
in72 :: Pattern Double
in72 = cF 0 "72"
in73 :: Pattern Double
in73 = cF 0 "73"
in74 :: Pattern Double
in74 = cF 0 "74"
in75 :: Pattern Double
in75 = cF 0 "75"
in76 :: Pattern Double
in76 = cF 0 "76"
in77 :: Pattern Double
in77 = cF 0 "77"
in78 :: Pattern Double
in78 = cF 0 "78"
in79 :: Pattern Double
in79 = cF 0 "79"
in80 :: Pattern Double
in80 = cF 0 "80"
in81 :: Pattern Double
in81 = cF 0 "81"
in82 :: Pattern Double
in82 = cF 0 "82"
in83 :: Pattern Double
in83 = cF 0 "83"
in84 :: Pattern Double
in84 = cF 0 "84"
in85 :: Pattern Double
in85 = cF 0 "85"
in86 :: Pattern Double
in86 = cF 0 "86"
in87 :: Pattern Double
in87 = cF 0 "87"
in88 :: Pattern Double
in88 = cF 0 "88"
in89 :: Pattern Double
in89 = cF 0 "89"
in90 :: Pattern Double
in90 = cF 0 "90"
in91 :: Pattern Double
in91 = cF 0 "91"
in92 :: Pattern Double
in92 = cF 0 "92"
in93 :: Pattern Double
in93 = cF 0 "93"
in94 :: Pattern Double
in94 = cF 0 "94"
in95 :: Pattern Double
in95 = cF 0 "95"
in96 :: Pattern Double
in96 = cF 0 "96"
in97 :: Pattern Double
in97 = cF 0 "97"
in98 :: Pattern Double
in98 = cF 0 "98"
in99 :: Pattern Double
in99 = cF 0 "99"
in100 :: Pattern Double
in100 = cF 0 "100"
in101 :: Pattern Double
in101 = cF 0 "101"
in102 :: Pattern Double
in102 = cF 0 "102"
in103 :: Pattern Double
in103 = cF 0 "103"
in104 :: Pattern Double
in104 = cF 0 "104"
in105 :: Pattern Double
in105 = cF 0 "105"
in106 :: Pattern Double
in106 = cF 0 "106"
in107 :: Pattern Double
in107 = cF 0 "107"
in108 :: Pattern Double
in108 = cF 0 "108"
in109 :: Pattern Double
in109 = cF 0 "109"
in110 :: Pattern Double
in110 = cF 0 "110"
in111 :: Pattern Double
in111 = cF 0 "111"
in112 :: Pattern Double
in112 = cF 0 "112"
in113 :: Pattern Double
in113 = cF 0 "113"
in114 :: Pattern Double
in114 = cF 0 "114"
in115 :: Pattern Double
in115 = cF 0 "115"
in116 :: Pattern Double
in116 = cF 0 "116"
in117 :: Pattern Double
in117 = cF 0 "117"
in118 :: Pattern Double
in118 = cF 0 "118"
in119 :: Pattern Double
in119 = cF 0 "119"
in120 :: Pattern Double
in120 = cF 0 "120"
in121 :: Pattern Double
in121 = cF 0 "121"
in122 :: Pattern Double
in122 = cF 0 "122"
in123 :: Pattern Double
in123 = cF 0 "123"
in124 :: Pattern Double
in124 = cF 0 "124"
in125 :: Pattern Double
in125 = cF 0 "125"
in126 :: Pattern Double
in126 = cF 0 "126"
in127 :: Pattern Double
in127 = cF 0 "127"
```