| Safe Haskell | Safe-Inferred |
|---|---|
| Language | Haskell2010 |
Tonalude
Synopsis
- newtype Utf8Builder = Utf8Builder {}
- class Display a where
- display :: a -> Utf8Builder
- textDisplay :: a -> Text
- displayShow :: Show a => a -> Utf8Builder
- utf8BuilderToText :: Utf8Builder -> Text
- utf8BuilderToLazyText :: Utf8Builder -> Text
- displayBytesUtf8 :: ByteString -> Utf8Builder
- writeFileUtf8Builder :: FilePath -> Utf8Builder -> RIO env ()
- withLazyFile :: FilePath -> (ByteString -> RIO env a) -> RIO env a
- readFileBinary :: FilePath -> RIO env ByteString
- writeFileBinary :: FilePath -> ByteString -> RIO env ()
- readFileUtf8 :: FilePath -> RIO env Text
- writeFileUtf8 :: FilePath -> Text -> RIO env ()
- hPutBuilder :: Handle -> Builder -> RIO env ()
- newtype RIO env a = RIO {}
- decodeUtf8Lenient :: ByteString -> Text
- tshow :: Show a => a -> Text
- module UnliftIO.Exception
- class Applicative f => Alternative (f :: Type -> Type)
- class Functor f => Applicative (f :: Type -> Type) where
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- many :: Alternative f => f a -> f [a]
- optional :: Alternative f => f a -> f (Maybe a)
- some :: Alternative f => f a -> f [a]
- (<|>) :: Alternative f => f a -> f a -> f a
- first :: Bifunctor p => (a -> b) -> p a c -> p b c
- second :: Bifunctor p => (b -> c) -> p a b -> p a c
- (&&&) :: Arrow a => a b c -> a b c' -> a b (c, c')
- (***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c')
- (>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c
- class NFData a where
- rnf :: a -> ()
- force :: NFData a => a -> a
- ($!!) :: NFData a => (a -> b) -> a -> b
- class Applicative m => Monad (m :: Type -> Type) where
- class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where
- filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a]
- foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b
- foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m ()
- forever :: Applicative f => f a -> f b
- guard :: Alternative f => Bool -> f ()
- join :: Monad m => m (m a) -> m a
- liftM :: Monad m => (a1 -> r) -> m a1 -> m r
- liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r
- replicateM_ :: Applicative m => Int -> m a -> m ()
- unless :: Applicative f => Bool -> f () -> f ()
- when :: Applicative f => Bool -> f () -> f ()
- zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c]
- zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m ()
- (<$!>) :: Monad m => (a -> b) -> m a -> m b
- (<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- (>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
- class Monad m => MonadIO (m :: Type -> Type) where
- class Monad m => MonadThrow (m :: Type -> Type) where
- class Monad m => MonadReader r (m :: Type -> Type) | m -> r
- class MonadTrans (t :: (Type -> Type) -> Type -> Type) where
- type Reader r = ReaderT r Identity
- newtype ReaderT r (m :: Type -> Type) a = ReaderT {
- runReaderT :: r -> m a
- ask :: MonadReader r m => m r
- asks :: MonadReader r m => (r -> a) -> m a
- local :: MonadReader r m => (r -> r) -> m a -> m a
- runReader :: Reader r a -> r -> a
- data Bool
- bool :: a -> a -> Bool -> a
- not :: Bool -> Bool
- otherwise :: Bool
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- data ByteString
- data Builder
- data ShortByteString
- toShort :: ByteString -> ShortByteString
- fromShort :: ShortByteString -> ByteString
- data Char
- class Typeable a => Data a where
- gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a
- gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a
- toConstr :: a -> Constr
- dataTypeOf :: a -> DataType
- dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a)
- dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a)
- gmapT :: (forall b. Data b => b -> b) -> a -> a
- gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
- gmapQ :: (forall d. Data d => d -> u) -> a -> [u]
- gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u
- gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a
- data Either a b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- isLeft :: Either a b -> Bool
- isRight :: Either a b -> Bool
- lefts :: [Either a b] -> [a]
- partitionEithers :: [Either a b] -> ([a], [b])
- rights :: [Either a b] -> [b]
- class Eq a where
- class Foldable (t :: TYPE LiftedRep -> Type)
- all :: Foldable t => (a -> Bool) -> t a -> Bool
- and :: Foldable t => t Bool -> Bool
- any :: Foldable t => (a -> Bool) -> t a -> Bool
- asum :: (Foldable t, Alternative f) => t (f a) -> f a
- concat :: Foldable t => t [a] -> [a]
- concatMap :: Foldable t => (a -> [b]) -> t a -> [b]
- elem :: (Foldable t, Eq a) => a -> t a -> Bool
- fold :: (Foldable t, Monoid m) => t m -> m
- foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m
- foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b
- foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
- forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m ()
- for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f ()
- length :: Foldable t => t a -> Int
- mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()
- msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
- notElem :: (Foldable t, Eq a) => a -> t a -> Bool
- null :: Foldable t => t a -> Bool
- or :: Foldable t => t Bool -> Bool
- product :: (Foldable t, Num a) => t a -> a
- sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f ()
- sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()
- sum :: (Foldable t, Num a) => t a -> a
- toList :: Foldable t => t a -> [a]
- traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f ()
- const :: a -> b -> a
- fix :: (a -> a) -> a
- flip :: (a -> b -> c) -> b -> a -> c
- id :: a -> a
- on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
- ($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- (&) :: a -> (a -> b) -> b
- (.) :: (b -> c) -> (a -> b) -> a -> c
- class Functor (f :: Type -> Type) where
- void :: Functor f => f a -> f ()
- ($>) :: Functor f => f a -> b -> f b
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<&>) :: Functor f => f a -> (a -> b) -> f b
- newtype Const a (b :: k) = Const {
- getConst :: a
- newtype Identity a = Identity {
- runIdentity :: a
- class Eq a => Hashable a
- data HashMap k v
- data HashSet a
- data Int
- data Int8
- data Int16
- data Int32
- data Int64
- data IntMap a
- data IntSet
- break :: (a -> Bool) -> [a] -> ([a], [a])
- drop :: Int -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- lines :: String -> [String]
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- map :: (a -> b) -> [a] -> [b]
- replicate :: Int -> a -> [a]
- reverse :: [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- take :: Int -> [a] -> [a]
- takeWhile :: (a -> Bool) -> [a] -> [a]
- unlines :: [String] -> String
- unwords :: [String] -> String
- words :: String -> [String]
- zip :: [a] -> [b] -> [(a, b)]
- (++) :: [a] -> [a] -> [a]
- data Map k a
- data Maybe a
- catMaybes :: [Maybe a] -> [a]
- fromMaybe :: a -> Maybe a -> a
- isJust :: Maybe a -> Bool
- isNothing :: Maybe a -> Bool
- listToMaybe :: [a] -> Maybe a
- mapMaybe :: (a -> Maybe b) -> [a] -> [b]
- maybe :: b -> (a -> b) -> Maybe a -> b
- maybeToList :: Maybe a -> [a]
- class Semigroup a => Monoid a where
- class Eq a => Ord a where
- data Ordering
- comparing :: Ord a => (b -> a) -> b -> b -> Ordering
- data Proxy (t :: k) = Proxy
- class Semigroup a where
- (<>) :: a -> a -> a
- data Set a
- class IsString a where
- fromString :: String -> a
- data Text
- decodeUtf8' :: ByteString -> Either UnicodeException Text
- decodeUtf8With :: OnDecodeError -> ByteString -> Text
- encodeUtf8 :: Text -> ByteString
- encodeUtf8Builder :: Text -> Builder
- data UnicodeException
- = DecodeError String (Maybe Word8)
- | EncodeError String (Maybe Char)
- lenientDecode :: OnDecodeError
- class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
- for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b)
- forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b)
- data Vector a
- data Void
- absurd :: Void -> a
- data Word
- data Word8
- data Word16
- data Word32
- data Word64
- byteSwap16 :: Word16 -> Word16
- byteSwap32 :: Word32 -> Word32
- byteSwap64 :: Word64 -> Word64
- class Storable a
- class Generic a
- data Natural
- class Bounded a where
- data Double
- class Enum a
- type FilePath = String
- data Float
- class Fractional a => Floating a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- data IO a
- data Integer
- class (Real a, Enum a) => Integral a where
- class Num a where
- type Rational = Ratio Integer
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- class (Real a, Fractional a) => RealFrac a where
- class Show a
- type String = [Char]
- asTypeOf :: a -> a -> a
- curry :: ((a, b) -> c) -> a -> b -> c
- error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a
- even :: Integral a => a -> Bool
- fromEnum :: Enum a => a -> Int
- fromIntegral :: (Integral a, Num b) => a -> b
- fst :: (a, b) -> a
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- odd :: Integral a => a -> Bool
- realToFrac :: (Real a, Fractional b) => a -> b
- seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b
- show :: Show a => a -> String
- snd :: (a, b) -> b
- subtract :: Num a => a -> a -> a
- uncurry :: (a -> b -> c) -> (a, b) -> c
- undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
- ($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- data ExitCode
- class Read a
- readMaybe :: Read a => String -> Maybe a
- class (Vector Vector a, MVector MVector a) => Unbox a
- sappend :: Semigroup s => s -> s -> s
- type LByteString = ByteString
- type LText = Text
- type UVector = Vector
- type SVector = Vector
- type GVector = Vector
- toStrictBytes :: LByteString -> ByteString
- fromStrictBytes :: ByteString -> LByteString
- trace :: Text -> a -> a
- traceId :: Text -> Text
- traceIO :: MonadIO m => Text -> m ()
- traceM :: Applicative f => Text -> f ()
- traceEvent :: Text -> a -> a
- traceEventIO :: MonadIO m => Text -> m ()
- traceMarker :: Text -> a -> a
- traceMarkerIO :: MonadIO m => Text -> m ()
- traceStack :: Text -> a -> a
- traceShow :: Show a => a -> b -> b
- traceShowId :: Show a => a -> a
- traceShowIO :: (Show a, MonadIO m) => a -> m ()
- traceShowM :: (Show a, Applicative f) => a -> f ()
- traceShowEvent :: Show a => a -> b -> b
- traceShowEventIO :: (Show a, MonadIO m) => a -> m ()
- traceShowMarker :: Show a => a -> b -> b
- traceShowMarkerIO :: (Show a, MonadIO m) => a -> m ()
- traceShowStack :: Show a => a -> b -> b
- traceDisplay :: Display a => a -> b -> b
- traceDisplayId :: Display a => a -> a
- traceDisplayIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayM :: (Display a, Applicative f) => a -> f ()
- traceDisplayEvent :: Display a => a -> b -> b
- traceDisplayEventIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayMarker :: Display a => a -> b -> b
- traceDisplayMarkerIO :: (Display a, MonadIO m) => a -> m ()
- traceDisplayStack :: Display a => a -> b -> b
Documentation
newtype Utf8Builder #
A builder of binary data, with the invariant that the underlying data is supposed to be UTF-8 encoded.
Since: rio-0.1.0.0
Constructors
| Utf8Builder | |
Fields | |
Instances
| IsString Utf8Builder | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display Methods fromString :: String -> Utf8Builder # | |
| Monoid Utf8Builder | |
Defined in RIO.Prelude.Display Methods mempty :: Utf8Builder # mappend :: Utf8Builder -> Utf8Builder -> Utf8Builder # mconcat :: [Utf8Builder] -> Utf8Builder # | |
| Semigroup Utf8Builder | |
Defined in RIO.Prelude.Display Methods (<>) :: Utf8Builder -> Utf8Builder -> Utf8Builder # sconcat :: NonEmpty Utf8Builder -> Utf8Builder # stimes :: Integral b => b -> Utf8Builder -> Utf8Builder # | |
| Display Utf8Builder | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
A typeclass for values which can be converted to a
Utf8Builder. The intention of this typeclass is to provide a
human-friendly display of the data.
Since: rio-0.1.0.0
Minimal complete definition
Instances
displayShow :: Show a => a -> Utf8Builder #
Use the Show instance for a value to convert it to a
Utf8Builder.
Since: rio-0.1.0.0
utf8BuilderToText :: Utf8Builder -> Text #
Convert a Utf8Builder value into a strict Text.
Since: rio-0.1.0.0
utf8BuilderToLazyText :: Utf8Builder -> Text #
Convert a Utf8Builder value into a lazy Text.
Since: rio-0.1.0.0
displayBytesUtf8 :: ByteString -> Utf8Builder #
Convert a ByteString into a Utf8Builder.
NOTE This function performs no checks to ensure that the data is, in fact, UTF8 encoded. If you provide non-UTF8 data, later functions may fail.
Since: rio-0.1.0.0
writeFileUtf8Builder :: FilePath -> Utf8Builder -> RIO env () Source #
Write the given Utf8Builder value to a file.
withLazyFile :: FilePath -> (ByteString -> RIO env a) -> RIO env a Source #
Lazily get the contents of a file. Unlike readFile, this
ensures that if an exception is thrown, the file handle is closed
immediately.
readFileBinary :: FilePath -> RIO env ByteString Source #
writeFileBinary :: FilePath -> ByteString -> RIO env () Source #
readFileUtf8 :: FilePath -> RIO env Text Source #
Read a file in UTF8 encoding, throwing an exception on invalid character encoding.
This function will use OS-specific line ending handling.
writeFileUtf8 :: FilePath -> Text -> RIO env () Source #
Write a file in UTF8 encoding
This function will use OS-specific line ending handling.
The Reader+IO monad. This is different from a ReaderT because:
- It's not a transformer, it hardcodes IO for simpler usage and error messages.
- Instances of typeclasses like
MonadLoggerare implemented using classes defined on the environment, instead of using an underlying monad.
Instances
| MonadReader env (RIO env) | |
| HasStateRef s env => MonadState s (RIO env) | |
| (Monoid w, HasWriteRef w env) => MonadWriter w (RIO env) | |
| MonadIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
| Applicative (RIO env) | |
| Functor (RIO env) | |
| Monad (RIO env) | |
| MonadThrow (RIO env) | |
Defined in RIO.Prelude.RIO | |
| PrimMonad (RIO env) | |
| MonadUnliftIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
| Monoid a => Monoid (RIO env a) | |
| Semigroup a => Semigroup (RIO env a) | |
| type PrimState (RIO env) | |
Defined in RIO.Prelude.RIO | |
decodeUtf8Lenient :: ByteString -> Text #
module UnliftIO.Exception
class Applicative f => Alternative (f :: Type -> Type) #
A monoid on applicative functors.
If defined, some and many should be the least solutions
of the equations:
Instances
| Alternative Concurrently | |
Defined in Control.Concurrent.Async Methods empty :: Concurrently a # (<|>) :: Concurrently a -> Concurrently a -> Concurrently a # some :: Concurrently a -> Concurrently [a] # many :: Concurrently a -> Concurrently [a] # | |
| Alternative ZipList | Since: base-4.11.0.0 |
| Alternative STM | Since: base-4.8.0.0 |
| Alternative Seq | Since: containers-0.5.4 |
| Alternative IO | Since: base-4.9.0.0 |
| Alternative Vector | |
| Alternative Maybe | Since: base-2.1 |
| Alternative [] | Since: base-2.1 |
| MonadPlus m => Alternative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods empty :: WrappedMonad m a # (<|>) :: WrappedMonad m a -> WrappedMonad m a -> WrappedMonad m a # some :: WrappedMonad m a -> WrappedMonad m [a] # many :: WrappedMonad m a -> WrappedMonad m [a] # | |
| ArrowPlus a => Alternative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods empty :: ArrowMonad a a0 # (<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 # some :: ArrowMonad a a0 -> ArrowMonad a [a0] # many :: ArrowMonad a a0 -> ArrowMonad a [a0] # | |
| Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Alternative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| MonadUnliftIO m => Alternative (Conc m) | Since: unliftio-0.2.9.0 |
| MonadUnliftIO m => Alternative (Concurrently m) | Composing two unlifted Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods empty :: Concurrently m a # (<|>) :: Concurrently m a -> Concurrently m a -> Concurrently m a # some :: Concurrently m a -> Concurrently m [a] # many :: Concurrently m a -> Concurrently m [a] # | |
| (ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods empty :: WrappedArrow a b a0 # (<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 # some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] # many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] # | |
| Alternative m => Alternative (Kleisli m a) | Since: base-4.14.0.0 |
| Alternative f => Alternative (Rec1 f) | Since: base-4.9.0.0 |
| (Functor m, Monad m, Error e) => Alternative (ErrorT e m) | |
| Alternative m => Alternative (ReaderT r m) | |
| (Alternative f, Alternative g) => Alternative (f :*: g) | Since: base-4.9.0.0 |
| (Alternative f, Applicative g) => Alternative (f :.: g) | Since: base-4.9.0.0 |
| Alternative f => Alternative (M1 i c f) | Since: base-4.9.0.0 |
class Functor f => Applicative (f :: Type -> Type) where #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*> or liftA2. If it defines both, then they must behave
the same as their default definitions:
(<*>) =liftA2id
liftA2f x y = f<$>x<*>y
Further, any definition must satisfy the following:
- Identity
pureid<*>v = v- Composition
pure(.)<*>u<*>v<*>w = u<*>(v<*>w)- Homomorphism
puref<*>purex =pure(f x)- Interchange
u
<*>purey =pure($y)<*>u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor instance for f will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2p (liftA2q u v) =liftA2f u .liftA2g v
If f is also a Monad, it should satisfy
(which implies that pure and <*> satisfy the applicative functor laws).
Methods
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 #
Sequential application.
A few functors support an implementation of <*> that is more
efficient than the default one.
Example
Used in combination with (, <$>)( can be used to build a record.<*>)
>>>data MyState = MyState {arg1 :: Foo, arg2 :: Bar, arg3 :: Baz}
>>>produceFoo :: Applicative f => f Foo
>>>produceBar :: Applicative f => f Bar>>>produceBaz :: Applicative f => f Baz
>>>mkState :: Applicative f => f MyState>>>mkState = MyState <$> produceFoo <*> produceBar <*> produceBaz
liftA2 :: (a -> b -> c) -> f a -> f b -> f c #
Lift a binary function to actions.
Some functors support an implementation of liftA2 that is more
efficient than the default one. In particular, if fmap is an
expensive operation, it is likely better to use liftA2 than to
fmap over the structure and then use <*>.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*> and fmap.
Example
>>>liftA2 (,) (Just 3) (Just 5)Just (3,5)
(*>) :: f a -> f b -> f b infixl 4 #
Sequence actions, discarding the value of the first argument.
Examples
If used in conjunction with the Applicative instance for Maybe,
you can chain Maybe computations, with a possible "early return"
in case of Nothing.
>>>Just 2 *> Just 3Just 3
>>>Nothing *> Just 3Nothing
Of course a more interesting use case would be to have effectful computations instead of just returning pure values.
>>>import Data.Char>>>import Text.ParserCombinators.ReadP>>>let p = string "my name is " *> munch1 isAlpha <* eof>>>readP_to_S p "my name is Simon"[("Simon","")]
(<*) :: f a -> f b -> f a infixl 4 #
Sequence actions, discarding the value of the second argument.
Instances
| Applicative Concurrently | |
Defined in Control.Concurrent.Async Methods pure :: a -> Concurrently a # (<*>) :: Concurrently (a -> b) -> Concurrently a -> Concurrently b # liftA2 :: (a -> b -> c) -> Concurrently a -> Concurrently b -> Concurrently c # (*>) :: Concurrently a -> Concurrently b -> Concurrently b # (<*) :: Concurrently a -> Concurrently b -> Concurrently a # | |
| Applicative ZipList | f <$> ZipList xs1 <*> ... <*> ZipList xsN
= ZipList (zipWithN f xs1 ... xsN)where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..]
= ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..])
= ZipList {getZipList = ["a5","b6b6","c7c7c7"]}Since: base-2.1 |
| Applicative Identity | Since: base-4.8.0.0 |
| Applicative Down | Since: base-4.11.0.0 |
| Applicative STM | Since: base-4.8.0.0 |
| Applicative Par1 | Since: base-4.9.0.0 |
| Applicative Put | |
| Applicative Seq | Since: containers-0.5.4 |
| Applicative IO | Since: base-2.1 |
| Applicative Flat | |
| Applicative FlatApp | |
| Applicative Memoized | |
| Applicative Vector | |
| Applicative NonEmpty | Since: base-4.9.0.0 |
| Applicative Maybe | Since: base-2.1 |
| Applicative Solo | Since: base-4.15 |
| Applicative [] | Since: base-2.1 |
| Monad m => Applicative (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a -> WrappedMonad m a # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Applicative (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods pure :: a0 -> ArrowMonad a a0 # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Applicative (Either e) | Since: base-3.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Applicative (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Applicative (ST s) | Since: base-4.4.0.0 |
| Applicative (RIO env) | |
| MonadUnliftIO m => Applicative (Conc m) | Since: unliftio-0.2.9.0 |
| MonadUnliftIO m => Applicative (Concurrently m) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods pure :: a -> Concurrently m a # (<*>) :: Concurrently m (a -> b) -> Concurrently m a -> Concurrently m b # liftA2 :: (a -> b -> c) -> Concurrently m a -> Concurrently m b -> Concurrently m c # (*>) :: Concurrently m a -> Concurrently m b -> Concurrently m b # (<*) :: Concurrently m a -> Concurrently m b -> Concurrently m a # | |
| Monoid a => Applicative ((,) a) | For tuples, the ("hello ", (+15)) <*> ("world!", 2002)
("hello world!",2017)Since: base-2.1 |
| Arrow a => Applicative (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods pure :: a0 -> WrappedArrow a b a0 # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Applicative m => Applicative (Kleisli m a) | Since: base-4.14.0.0 |
Defined in Control.Arrow | |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Applicative f => Applicative (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Applicative (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMissing f x a # (<*>) :: WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b # liftA2 :: (a -> b -> c) -> WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x c # (*>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # (<*) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x a # | |
| (Functor m, Monad m) => Applicative (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
| Applicative m => Applicative (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
| (Monoid a, Monoid b) => Applicative ((,,) a b) | Since: base-4.14.0.0 |
| (Applicative f, Applicative g) => Applicative (f :*: g) | Since: base-4.9.0.0 |
| Monoid c => Applicative (K1 i c :: Type -> Type) | Since: base-4.12.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods pure :: a -> WhenMatched f x y a # (<*>) :: WhenMatched f x y (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # liftA2 :: (a -> b -> c) -> WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y c # (*>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # (<*) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Applicative (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMissing f k x a # (<*>) :: WhenMissing f k x (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # liftA2 :: (a -> b -> c) -> WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x c # (*>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # (<*) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| (Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) | Since: base-4.14.0.0 |
Defined in GHC.Base | |
| Applicative ((->) r) | Since: base-2.1 |
| (Applicative f, Applicative g) => Applicative (f :.: g) | Since: base-4.9.0.0 |
| Applicative f => Applicative (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Applicative (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods pure :: a -> WhenMatched f k x y a # (<*>) :: WhenMatched f k x y (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # liftA2 :: (a -> b -> c) -> WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y c # (*>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # (<*) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
liftA :: Applicative f => (a -> b) -> f a -> f b #
Lift a function to actions.
Equivalent to Functor's fmap but implemented using only Applicative's methods:
`liftA f a = pure f * a`
As such this function may be used to implement a Functor instance from an Applicative one.
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d #
Lift a ternary function to actions.
many :: Alternative f => f a -> f [a] #
Zero or more.
optional :: Alternative f => f a -> f (Maybe a) #
One or none.
It is useful for modelling any computation that is allowed to fail.
Examples
Using the Alternative instance of Control.Monad.Except, the following functions:
>>>import Control.Monad.Except
>>>canFail = throwError "it failed" :: Except String Int>>>final = return 42 :: Except String Int
Can be combined by allowing the first function to fail:
>>>runExcept $ canFail *> finalLeft "it failed">>>runExcept $ optional canFail *> finalRight 42
some :: Alternative f => f a -> f [a] #
One or more.
(<|>) :: Alternative f => f a -> f a -> f a infixl 3 #
An associative binary operation
(&&&) :: Arrow a => a b c -> a b c' -> a b (c, c') infixr 3 #
Fanout: send the input to both argument arrows and combine their output.
The default definition may be overridden with a more efficient version if desired.
(***) :: Arrow a => a b c -> a b' c' -> a (b, b') (c, c') infixr 3 #
Split the input between the two argument arrows and combine their output. Note that this is in general not a functor.
The default definition may be overridden with a more efficient version if desired.
(>>>) :: forall {k} cat (a :: k) (b :: k) (c :: k). Category cat => cat a b -> cat b c -> cat a c infixr 1 #
Left-to-right composition
A class of types that can be fully evaluated.
Since: deepseq-1.1.0.0
Minimal complete definition
Nothing
Methods
rnf should reduce its argument to normal form (that is, fully
evaluate all sub-components), and then return ().
Generic NFData deriving
Starting with GHC 7.2, you can automatically derive instances
for types possessing a Generic instance.
Note: Generic1 can be auto-derived starting with GHC 7.4
{-# LANGUAGE DeriveGeneric #-}
import GHC.Generics (Generic, Generic1)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1)
instance NFData a => NFData (Foo a)
instance NFData1 Foo
data Colour = Red | Green | Blue
deriving Generic
instance NFData ColourStarting with GHC 7.10, the example above can be written more
concisely by enabling the new DeriveAnyClass extension:
{-# LANGUAGE DeriveGeneric, DeriveAnyClass #-}
import GHC.Generics (Generic)
import Control.DeepSeq
data Foo a = Foo a String
deriving (Eq, Generic, Generic1, NFData, NFData1)
data Colour = Red | Green | Blue
deriving (Generic, NFData)
Compatibility with previous deepseq versions
Prior to version 1.4.0.0, the default implementation of the rnf
method was defined as
rnfa =seqa ()
However, starting with deepseq-1.4.0.0, the default
implementation is based on DefaultSignatures allowing for
more accurate auto-derived NFData instances. If you need the
previously used exact default rnf method implementation
semantics, use
instance NFData Colour where rnf x = seq x ()
or alternatively
instance NFData Colour where rnf = rwhnf
or
{-# LANGUAGE BangPatterns #-}
instance NFData Colour where rnf !_ = ()Instances
| NFData All | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Any | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData TypeRep | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Unique | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Version | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CBool | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| NFData CChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CClock | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CDouble | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFile | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFloat | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CFpos | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CJmpBuf | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CLLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CPtrdiff | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSUSeconds -> () # | |
| NFData CShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CSigAtomic | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: CSigAtomic -> () # | |
| NFData CSize | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CTime | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUChar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUInt | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUIntMax | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUIntPtr | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CULLong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CULong | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUSeconds | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CUShort | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData CWchar | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData ThreadId | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData Fingerprint | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: Fingerprint -> () # | |
| NFData MaskingState | Since: deepseq-1.4.4.0 |
Defined in Control.DeepSeq Methods rnf :: MaskingState -> () # | |
| NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData Int16 | |
Defined in Control.DeepSeq | |
| NFData Int32 | |
Defined in Control.DeepSeq | |
| NFData Int64 | |
Defined in Control.DeepSeq | |
| NFData Int8 | |
Defined in Control.DeepSeq | |
| NFData CallStack | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData SrcLoc | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData Word16 | |
Defined in Control.DeepSeq | |
| NFData Word32 | |
Defined in Control.DeepSeq | |
| NFData Word64 | |
Defined in Control.DeepSeq | |
| NFData Word8 | |
Defined in Control.DeepSeq | |
| NFData ByteString | |
Defined in Data.ByteString.Internal Methods rnf :: ByteString -> () # | |
| NFData ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods rnf :: ByteString -> () # | |
| NFData ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods rnf :: ShortByteString -> () # | |
| NFData IntSet | |
Defined in Data.IntSet.Internal | |
| NFData Ordering | |
Defined in Control.DeepSeq | |
| NFData TyCon | NOTE: Prior to Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
| NFData LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
| NFData ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime | |
| NFData Integer | |
Defined in Control.DeepSeq | |
| NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData () | |
Defined in Control.DeepSeq | |
| NFData Bool | |
Defined in Control.DeepSeq | |
| NFData Char | |
Defined in Control.DeepSeq | |
| NFData Double | |
Defined in Control.DeepSeq | |
| NFData Float | |
Defined in Control.DeepSeq | |
| NFData Int | |
Defined in Control.DeepSeq | |
| NFData Word | |
Defined in Control.DeepSeq | |
| NFData a => NFData (ZipList a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Complex a) | |
Defined in Control.DeepSeq | |
| NFData a => NFData (Identity a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (First a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Last a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Down a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (First a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Last a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Max a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Min a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData m => NFData (WrappedMonoid m) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq Methods rnf :: WrappedMonoid m -> () # | |
| NFData a => NFData (Dual a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Product a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Sum a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData (IORef a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (MVar a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (FunPtr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData (Ptr a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Ratio a) | |
Defined in Control.DeepSeq | |
| NFData (StableName a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq Methods rnf :: StableName a -> () # | |
| NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
| NFData a => NFData (Digit a) | |
Defined in Data.Sequence.Internal | |
| NFData a => NFData (Elem a) | |
Defined in Data.Sequence.Internal | |
| NFData a => NFData (FingerTree a) | |
Defined in Data.Sequence.Internal Methods rnf :: FingerTree a -> () # | |
| NFData a => NFData (Node a) | |
Defined in Data.Sequence.Internal | |
| NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
| NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
| NFData a => NFData (Hashed a) | |
Defined in Data.Hashable.Class | |
| NFData a => NFData (HashSet a) | |
Defined in Data.HashSet.Internal | |
| NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
| NFData (Vector a) | |
Defined in Data.Vector.Unboxed.Base | |
| NFData a => NFData (NonEmpty a) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
| NFData a => NFData [a] | |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
| NFData (Fixed a) | Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Arg a b) | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (Array a b) | |
Defined in Control.DeepSeq | |
| NFData (STRef s a) | NOTE: Only strict in the reference and not the referenced value. Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| (NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
| (NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Internal | |
| (NFData k, NFData v) => NFData (Leaf k v) | |
Defined in Data.HashMap.Internal | |
| NFData (MVector s a) | |
Defined in Data.Vector.Unboxed.Base | |
| NFData (a -> b) | This instance is for convenience and consistency with Since: deepseq-1.3.0.0 |
Defined in Control.DeepSeq | |
| (NFData a, NFData b) => NFData (a, b) | |
Defined in Control.DeepSeq | |
| NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3) => NFData (a1, a2, a3) | |
Defined in Control.DeepSeq | |
| (NFData1 f, NFData1 g, NFData a) => NFData (Product f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData1 f, NFData1 g, NFData a) => NFData (Sum f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| NFData (a :~~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4) => NFData (a1, a2, a3, a4) | |
Defined in Control.DeepSeq | |
| (NFData1 f, NFData1 g, NFData a) => NFData (Compose f g a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5) => NFData (a1, a2, a3, a4, a5) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6) => NFData (a1, a2, a3, a4, a5, a6) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7) => NFData (a1, a2, a3, a4, a5, a6, a7) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8) => NFData (a1, a2, a3, a4, a5, a6, a7, a8) | |
Defined in Control.DeepSeq | |
| (NFData a1, NFData a2, NFData a3, NFData a4, NFData a5, NFData a6, NFData a7, NFData a8, NFData a9) => NFData (a1, a2, a3, a4, a5, a6, a7, a8, a9) | |
Defined in Control.DeepSeq | |
a variant of deepseq that is useful in some circumstances:
force x = x `deepseq` x
force x fully evaluates x, and then returns it. Note that
force x only performs evaluation when the value of force x
itself is demanded, so essentially it turns shallow evaluation into
deep evaluation.
force can be conveniently used in combination with ViewPatterns:
{-# LANGUAGE BangPatterns, ViewPatterns #-}
import Control.DeepSeq
someFun :: ComplexData -> SomeResult
someFun (force -> !arg) = {- 'arg' will be fully evaluated -}Another useful application is to combine force with
evaluate in order to force deep evaluation
relative to other IO operations:
import Control.Exception (evaluate)
import Control.DeepSeq
main = do
result <- evaluate $ force $ pureComputation
{- 'result' will be fully evaluated at this point -}
return ()Finally, here's an exception safe variant of the readFile' example:
readFile' :: FilePath -> IO String
readFile' fn = bracket (openFile fn ReadMode) hClose $ \h ->
evaluate . force =<< hGetContents hSince: deepseq-1.2.0.0
($!!) :: NFData a => (a -> b) -> a -> b infixr 0 #
the deep analogue of $!. In the expression f $!! x, x is
fully evaluated before the function f is applied to it.
Since: deepseq-1.2.0.0
class Applicative m => Monad (m :: Type -> Type) where #
The Monad class defines the basic operations over a monad,
a concept from a branch of mathematics known as category theory.
From the perspective of a Haskell programmer, however, it is best to
think of a monad as an abstract datatype of actions.
Haskell's do expressions provide a convenient syntax for writing
monadic expressions.
Instances of Monad should satisfy the following:
- Left identity
returna>>=k = k a- Right identity
m>>=return= m- Associativity
m>>=(\x -> k x>>=h) = (m>>=k)>>=h
Furthermore, the Monad and Applicative operations should relate as follows:
The above laws imply:
and that pure and (<*>) satisfy the applicative functor laws.
The instances of Monad for lists, Maybe and IO
defined in the Prelude satisfy these laws.
Minimal complete definition
Methods
(>>=) :: m a -> (a -> m b) -> m b infixl 1 #
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
'as ' can be understood as the >>= bsdo expression
do a <- as bs a
(>>) :: m a -> m b -> m b infixl 1 #
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
'as ' can be understood as the >> bsdo expression
do as bs
Inject a value into the monadic type.
Instances
| Monad Identity | Since: base-4.8.0.0 |
| Monad Down | Since: base-4.11.0.0 |
| Monad STM | Since: base-4.3.0.0 |
| Monad Par1 | Since: base-4.9.0.0 |
| Monad Put | |
| Monad Seq | |
| Monad IO | Since: base-2.1 |
| Monad Memoized | |
| Monad Vector | |
| Monad NonEmpty | Since: base-4.9.0.0 |
| Monad Maybe | Since: base-2.1 |
| Monad Solo | Since: base-4.15 |
| Monad [] | Since: base-2.1 |
| Monad m => Monad (WrappedMonad m) | Since: base-4.7.0.0 |
Defined in Control.Applicative Methods (>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b # (>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b # return :: a -> WrappedMonad m a # | |
| ArrowApply a => Monad (ArrowMonad a) | Since: base-2.1 |
Defined in Control.Arrow Methods (>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b # (>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b # return :: a0 -> ArrowMonad a a0 # | |
| Monad (Either e) | Since: base-4.4.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Monad (ST s) | Since: base-2.1 |
| Monad (RIO env) | |
| Monoid a => Monad ((,) a) | Since: base-4.9.0.0 |
| Monad m => Monad (Kleisli m a) | Since: base-4.14.0.0 |
| Monad f => Monad (Rec1 f) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Monad (WhenMissing f x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b # (>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b # return :: a -> WhenMissing f x a # | |
| (Monad m, Error e) => Monad (ErrorT e m) | |
| Monad m => Monad (ReaderT r m) | |
| (Monoid a, Monoid b) => Monad ((,,) a b) | Since: base-4.14.0.0 |
| (Monad f, Monad g) => Monad (f :*: g) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods (>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b # (>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b # return :: a -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Monad (WhenMissing f k x) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b # (>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b # return :: a -> WhenMissing f k x a # | |
| (Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) | Since: base-4.14.0.0 |
| Monad ((->) r) | Since: base-2.1 |
| Monad f => Monad (M1 i c f) | Since: base-4.9.0.0 |
| (Monad f, Applicative f) => Monad (WhenMatched f k x y) | Equivalent to Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods (>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b # (>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b # return :: a -> WhenMatched f k x y a # | |
class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where #
Monads that also support choice and failure.
Minimal complete definition
Nothing
Methods
The identity of mplus. It should also satisfy the equations
mzero >>= f = mzero v >> mzero = mzero
The default definition is
mzero = empty
An associative operation. The default definition is
mplus = (<|>)
Instances
| MonadPlus STM | Since: base-4.3.0.0 |
| MonadPlus Seq | |
| MonadPlus IO | Since: base-4.9.0.0 |
| MonadPlus Vector | |
| MonadPlus Maybe | Since: base-2.1 |
| MonadPlus [] | Since: base-2.1 |
| (ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow | |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| MonadPlus (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| MonadPlus m => MonadPlus (Kleisli m a) | Since: base-4.14.0.0 |
| MonadPlus f => MonadPlus (Rec1 f) | Since: base-4.9.0.0 |
| (Monad m, Error e) => MonadPlus (ErrorT e m) | |
| MonadPlus m => MonadPlus (ReaderT r m) | |
| (MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) | Since: base-4.9.0.0 |
| MonadPlus f => MonadPlus (M1 i c f) | Since: base-4.9.0.0 |
filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] #
This generalizes the list-based filter function.
foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b #
The foldM function is analogous to foldl, except that its result is
encapsulated in a monad. Note that foldM works from left-to-right over
the list arguments. This could be an issue where ( and the `folded
function' are not commutative.>>)
foldM f a1 [x1, x2, ..., xm] == do a2 <- f a1 x1 a3 <- f a2 x2 ... f am xm
If right-to-left evaluation is required, the input list should be reversed.
foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () #
Like foldM, but discards the result.
forever :: Applicative f => f a -> f b #
Repeat an action indefinitely.
Examples
A common use of forever is to process input from network sockets,
Handles, and channels
(e.g. MVar and
Chan).
For example, here is how we might implement an echo
server, using
forever both to listen for client connections on a network socket
and to echo client input on client connection handles:
echoServer :: Socket -> IO () echoServer socket =forever$ do client <- accept socketforkFinally(echo client) (\_ -> hClose client) where echo :: Handle -> IO () echo client =forever$ hGetLine client >>= hPutStrLn client
Note that "forever" isn't necessarily non-terminating.
If the action is in a and short-circuits after some number of iterations.
then MonadPlus actually returns forevermzero, effectively short-circuiting its caller.
guard :: Alternative f => Bool -> f () #
Conditional failure of Alternative computations. Defined by
guard True =pure() guard False =empty
Examples
Common uses of guard include conditionally signaling an error in
an error monad and conditionally rejecting the current choice in an
Alternative-based parser.
As an example of signaling an error in the error monad Maybe,
consider a safe division function safeDiv x y that returns
Nothing when the denominator y is zero and otherwise. For example:Just (x `div`
y)
>>>safeDiv 4 0Nothing
>>>safeDiv 4 2Just 2
A definition of safeDiv using guards, but not guard:
safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0 = Just (x `div` y)
| otherwise = Nothing
A definition of safeDiv using guard and Monad do-notation:
safeDiv :: Int -> Int -> Maybe Int safeDiv x y = do guard (y /= 0) return (x `div` y)
join :: Monad m => m (m a) -> m a #
The join function is the conventional monad join operator. It
is used to remove one level of monadic structure, projecting its
bound argument into the outer level.
'' can be understood as the join bssdo expression
do bs <- bss bs
Examples
A common use of join is to run an IO computation returned from
an STM transaction, since STM transactions
can't perform IO directly. Recall that
atomically :: STM a -> IO a
is used to run STM transactions atomically. So, by
specializing the types of atomically and join to
atomically:: STM (IO b) -> IO (IO b)join:: IO (IO b) -> IO b
we can compose them as
join.atomically:: STM (IO b) -> IO b
liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r #
Promote a function to a monad, scanning the monadic arguments from left to right. For example,
liftM2 (+) [0,1] [0,2] = [0,2,1,3] liftM2 (+) (Just 1) Nothing = Nothing
replicateM_ :: Applicative m => Int -> m a -> m () #
unless :: Applicative f => Bool -> f () -> f () #
The reverse of when.
when :: Applicative f => Bool -> f () -> f () #
Conditional execution of Applicative expressions. For example,
when debug (putStrLn "Debugging")
will output the string Debugging if the Boolean value debug
is True, and otherwise do nothing.
zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] #
zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () #
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 #
Same as >>=, but with the arguments interchanged.
(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 #
Left-to-right composition of Kleisli arrows.
'(bs ' can be understood as the >=> cs) ado expression
do b <- bs a cs b
class Monad m => MonadIO (m :: Type -> Type) where #
Monads in which IO computations may be embedded.
Any monad built by applying a sequence of monad transformers to the
IO monad will be an instance of this class.
Instances should satisfy the following laws, which state that liftIO
is a transformer of monads:
Methods
Lift a computation from the IO monad.
This allows us to run IO computations in any monadic stack, so long as it supports these kinds of operations
(i.e. IO is the base monad for the stack).
Example
import Control.Monad.Trans.State -- from the "transformers" library printState :: Show s => StateT s IO () printState = do state <- get liftIO $ print state
Had we omitted , we would have ended up with this error:liftIO
• Couldn't match type ‘IO’ with ‘StateT s IO’ Expected type: StateT s IO () Actual type: IO ()
The important part here is the mismatch between StateT s IO () and .IO ()
Luckily, we know of a function that takes an and returns an IO a(m a): ,
enabling us to run the program and see the expected results:liftIO
> evalStateT printState "hello" "hello" > evalStateT printState 3 3
Instances
| MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
| MonadIO (RIO env) | |
Defined in RIO.Prelude.RIO | |
| (Error e, MonadIO m) => MonadIO (ErrorT e m) | |
Defined in Control.Monad.Trans.Error | |
| MonadIO m => MonadIO (ReaderT r m) | |
Defined in Control.Monad.Trans.Reader | |
class Monad m => MonadThrow (m :: Type -> Type) where #
A class for monads in which exceptions may be thrown.
Instances should obey the following law:
throwM e >> x = throwM e
In other words, throwing an exception short-circuits the rest of the monadic computation.
Methods
throwM :: Exception e => e -> m a #
Throw an exception. Note that this throws when this action is run in
the monad m, not when it is applied. It is a generalization of
Control.Exception's throwIO.
Should satisfy the law:
throwM e >> f = throwM e
Instances
class Monad m => MonadReader r (m :: Type -> Type) | m -> r #
See examples in Control.Monad.Reader.
Note, the partially applied function type (->) r is a simple reader monad.
See the instance declaration below.
Instances
| MonadReader env (RIO env) | |
| MonadReader r m => MonadReader r (ListT m) | |
| MonadReader r m => MonadReader r (MaybeT m) | |
| (Error e, MonadReader r m) => MonadReader r (ErrorT e m) | |
| MonadReader r m => MonadReader r (ExceptT e m) | Since: mtl-2.2 |
| MonadReader r m => MonadReader r (IdentityT m) | |
| Monad m => MonadReader r (ReaderT r m) | |
| MonadReader r m => MonadReader r (StateT s m) | |
| MonadReader r m => MonadReader r (StateT s m) | |
| (Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
| (Monoid w, MonadReader r m) => MonadReader r (WriterT w m) | |
| MonadReader r ((->) r) | |
| MonadReader r' m => MonadReader r' (ContT r m) | |
| (Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
| (Monad m, Monoid w) => MonadReader r (RWST r w s m) | |
class MonadTrans (t :: (Type -> Type) -> Type -> Type) where #
The class of monad transformers. Instances should satisfy the
following laws, which state that lift is a monad transformation:
Methods
lift :: Monad m => m a -> t m a #
Lift a computation from the argument monad to the constructed monad.
Instances
| MonadTrans (ErrorT e) | |
Defined in Control.Monad.Trans.Error | |
| MonadTrans (ReaderT r) | |
Defined in Control.Monad.Trans.Reader | |
type Reader r = ReaderT r Identity #
The parameterizable reader monad.
Computations are functions of a shared environment.
The return function ignores the environment, while >>= passes
the inherited environment to both subcomputations.
newtype ReaderT r (m :: Type -> Type) a #
The reader monad transformer, which adds a read-only environment to the given monad.
The return function ignores the environment, while >>= passes
the inherited environment to both subcomputations.
Constructors
| ReaderT | |
Fields
| |
Instances
ask :: MonadReader r m => m r #
Retrieves the monad environment.
Arguments
| :: MonadReader r m | |
| => (r -> a) | The selector function to apply to the environment. |
| -> m a |
Retrieves a function of the current environment.
Arguments
| :: MonadReader r m | |
| => (r -> r) | The function to modify the environment. |
| -> m a |
|
| -> m a |
Executes a computation in a modified environment.
Arguments
| :: Reader r a | A |
| -> r | An initial environment. |
| -> a |
Runs a Reader and extracts the final value from it.
(The inverse of reader.)
Instances
| Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
| Storable Bool | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bounded Bool | Since: base-2.1 |
| Enum Bool | Since: base-2.1 |
| Generic Bool | |
| SingKind Bool | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep Bool | |
| Read Bool | Since: base-2.1 |
| Show Bool | Since: base-2.1 |
| NFData Bool | |
Defined in Control.DeepSeq | |
| Eq Bool | |
| Ord Bool | |
| Hashable Bool | |
Defined in Data.Hashable.Class | |
| Unbox Bool | |
Defined in Data.Vector.Unboxed.Base | |
| SingI 'False | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI 'True | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Vector Vector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Bool -> ST s (Vector Bool) # basicUnsafeThaw :: Vector Bool -> ST s (Mutable Vector s Bool) # basicLength :: Vector Bool -> Int # basicUnsafeSlice :: Int -> Int -> Vector Bool -> Vector Bool # basicUnsafeIndexM :: Vector Bool -> Int -> Box Bool # basicUnsafeCopy :: Mutable Vector s Bool -> Vector Bool -> ST s () # | |
| MVector MVector Bool | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Bool -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Bool -> MVector s Bool # basicOverlaps :: MVector s Bool -> MVector s Bool -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Bool) # basicInitialize :: MVector s Bool -> ST s () # basicUnsafeReplicate :: Int -> Bool -> ST s (MVector s Bool) # basicUnsafeRead :: MVector s Bool -> Int -> ST s Bool # basicUnsafeWrite :: MVector s Bool -> Int -> Bool -> ST s () # basicClear :: MVector s Bool -> ST s () # basicSet :: MVector s Bool -> Bool -> ST s () # basicUnsafeCopy :: MVector s Bool -> MVector s Bool -> ST s () # basicUnsafeMove :: MVector s Bool -> MVector s Bool -> ST s () # basicUnsafeGrow :: MVector s Bool -> Int -> ST s (MVector s Bool) # | |
| type DemoteRep Bool | |
Defined in GHC.Generics | |
| type Rep Bool | Since: base-4.6.0.0 |
| data Sing (a :: Bool) | |
| newtype Vector Bool | |
| newtype MVector s Bool | |
Case analysis for the Bool type. evaluates to bool x y px
when p is False, and evaluates to y when p is True.
This is equivalent to if p then y else x; that is, one can
think of it as an if-then-else construct with its arguments
reordered.
Examples
Basic usage:
>>>bool "foo" "bar" True"bar">>>bool "foo" "bar" False"foo"
Confirm that and bool x y pif p then y else x are
equivalent:
>>>let p = True; x = "bar"; y = "foo">>>bool x y p == if p then y else xTrue>>>let p = False>>>bool x y p == if p then y else xTrue
Since: base-4.7.0.0
data ByteString #
A space-efficient representation of a Word8 vector, supporting many
efficient operations.
A ByteString contains 8-bit bytes, or by using the operations from
Data.ByteString.Char8 it can be interpreted as containing 8-bit
characters.
Instances
Builders denote sequences of bytes.
They are Monoids where
mempty is the zero-length sequence and
mappend is concatenation, which runs in O(1).
data ShortByteString #
A compact representation of a Word8 vector.
It has a lower memory overhead than a ByteString and does not
contribute to heap fragmentation. It can be converted to or from a
ByteString (at the cost of copying the string data). It supports very few
other operations.
It is suitable for use as an internal representation for code that needs
to keep many short strings in memory, but it should not be used as an
interchange type. That is, it should not generally be used in public APIs.
The ByteString type is usually more suitable for use in interfaces; it is
more flexible and it supports a wide range of operations.
Instances
toShort :: ByteString -> ShortByteString #
O(n). Convert a ByteString into a ShortByteString.
This makes a copy, so does not retain the input string.
fromShort :: ShortByteString -> ByteString #
O(n). Convert a ShortByteString into a ByteString.
The character type Char is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char.
To convert a Char to or from the corresponding Int value defined
by Unicode, use toEnum and fromEnum from the
Enum class respectively (or equivalently ord and
chr).
Instances
| Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
| Storable Char | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bounded Char | Since: base-2.1 |
| Enum Char | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Show Char | Since: base-2.1 |
| NFData Char | |
Defined in Control.DeepSeq | |
| Eq Char | |
| Ord Char | |
| Hashable Char | |
Defined in Data.Hashable.Class | |
| Display Char | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
| ErrorList Char | |
Defined in Control.Monad.Trans.Error | |
| Unbox Char | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Char -> ST s (Vector Char) # basicUnsafeThaw :: Vector Char -> ST s (Mutable Vector s Char) # basicLength :: Vector Char -> Int # basicUnsafeSlice :: Int -> Int -> Vector Char -> Vector Char # basicUnsafeIndexM :: Vector Char -> Int -> Box Char # basicUnsafeCopy :: Mutable Vector s Char -> Vector Char -> ST s () # | |
| MVector MVector Char | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Char -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Char -> MVector s Char # basicOverlaps :: MVector s Char -> MVector s Char -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Char) # basicInitialize :: MVector s Char -> ST s () # basicUnsafeReplicate :: Int -> Char -> ST s (MVector s Char) # basicUnsafeRead :: MVector s Char -> Int -> ST s Char # basicUnsafeWrite :: MVector s Char -> Int -> Char -> ST s () # basicClear :: MVector s Char -> ST s () # basicSet :: MVector s Char -> Char -> ST s () # basicUnsafeCopy :: MVector s Char -> MVector s Char -> ST s () # basicUnsafeMove :: MVector s Char -> MVector s Char -> ST s () # basicUnsafeGrow :: MVector s Char -> Int -> ST s (MVector s Char) # | |
| Generic1 (URec Char :: k -> Type) | |
| Foldable (UChar :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Char :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Generic (URec Char p) | |
| Show (URec Char p) | Since: base-4.9.0.0 |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| newtype Vector Char | |
| data URec Char (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Char | |
| type Rep1 (URec Char :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
class Typeable a => Data a where #
The Data class comprehends a fundamental primitive gfoldl for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the gmap combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive gmap combinators. The gfoldl
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators gmapT, gmapQ, gmapM, etc are all provided with
default definitions in terms of gfoldl, leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the gmap combinators as members of class Data
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. Note: gfoldl is more higher-order
than the gmap combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the gmap combinators will be
moved out of the class Data.)
Conceptually, the definition of the gmap combinators in terms of the
primitive gfoldl requires the identification of the gfoldl function
arguments. Technically, we also need to identify the type constructor
c for the construction of the result type from the folded term type.
In the definition of gmapQx combinators, we use phantom type
constructors for the c in the type of gfoldl because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of gmapQl we simply use the plain constant type
constructor because gfoldl is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., (:)). When the query is meant to compute a value
of type r, then the result type within generic folding is r -> r.
So the result of folding is a function to which we finally pass the
right unit.
With the -XDeriveDataTypeable option, GHC can generate instances of the
Data class automatically. For example, given the declaration
data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
instance (Data a, Data b) => Data (T a b) where
gfoldl k z (C1 a b) = z C1 `k` a `k` b
gfoldl k z C2 = z C2
gunfold k z c = case constrIndex c of
1 -> k (k (z C1))
2 -> z C2
toConstr (C1 _ _) = con_C1
toConstr C2 = con_C2
dataTypeOf _ = ty_T
con_C1 = mkConstr ty_T "C1" [] Prefix
con_C2 = mkConstr ty_T "C2" [] Prefix
ty_T = mkDataType "Module.T" [con_C1, con_C2]This is suitable for datatypes that are exported transparently.
Minimal complete definition
Methods
Arguments
| :: (forall d b. Data d => c (d -> b) -> d -> c b) | defines how nonempty constructor applications are folded. It takes the folded tail of the constructor application and its head, i.e., an immediate subterm, and combines them in some way. |
| -> (forall g. g -> c g) | defines how the empty constructor application is folded, like the neutral / start element for list folding. |
| -> a | structure to be folded. |
| -> c a | result, with a type defined in terms of |
Left-associative fold operation for constructor applications.
The type of gfoldl is a headache, but operationally it is a simple
generalisation of a list fold.
The default definition for gfoldl is , which is
suitable for abstract datatypes with no substructures.const id
gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a #
Unfolding constructor applications
Obtaining the constructor from a given datum. For proper terms, this is meant to be the top-level constructor. Primitive datatypes are here viewed as potentially infinite sets of values (i.e., constructors).
dataTypeOf :: a -> DataType #
The outer type constructor of the type
dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c a) #
Mediate types and unary type constructors.
In Data instances of the form
instance (Data a, ...) => Data (T a)
dataCast1 should be defined as gcast1.
The default definition is , which is appropriate
for instances of other forms.const Nothing
dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a) #
Mediate types and binary type constructors.
In Data instances of the form
instance (Data a, Data b, ...) => Data (T a b)
dataCast2 should be defined as gcast2.
The default definition is , which is appropriate
for instances of other forms.const Nothing
gmapT :: (forall b. Data b => b -> b) -> a -> a #
A generic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c in the
type of gfoldl to an identity datatype constructor, using the
isomorphism pair as injection and projection.
gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a left-associative binary operator
gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r #
A generic query with a right-associative binary operator
gmapQ :: (forall d. Data d => d -> u) -> a -> [u] #
A generic query that processes the immediate subterms and returns a list of results. The list is given in the same order as originally specified in the declaration of the data constructors.
gmapQi :: Int -> (forall d. Data d => d -> u) -> a -> u #
A generic query that processes one child by index (zero-based)
gmapM :: Monad m => (forall d. Data d => d -> m d) -> a -> m a #
A generic monadic transformation that maps over the immediate subterms
The default definition instantiates the type constructor c in
the type of gfoldl to the monad datatype constructor, defining
injection and projection using return and >>=.
gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of at least one immediate subterm does not fail
gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> a -> m a #
Transformation of one immediate subterm with success
Instances
| Data All | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> All -> c All # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c All # dataTypeOf :: All -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c All) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c All) # gmapT :: (forall b. Data b => b -> b) -> All -> All # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> All -> r # gmapQ :: (forall d. Data d => d -> u) -> All -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> All -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> All -> m All # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> All -> m All # | |
| Data Any | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Any -> c Any # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Any # dataTypeOf :: Any -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Any) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Any) # gmapT :: (forall b. Data b => b -> b) -> Any -> Any # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Any -> r # gmapQ :: (forall d. Data d => d -> u) -> Any -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Any -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Any -> m Any # | |
| Data Version | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Version -> c Version # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Version # toConstr :: Version -> Constr # dataTypeOf :: Version -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Version) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Version) # gmapT :: (forall b. Data b => b -> b) -> Version -> Version # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Version -> r # gmapQ :: (forall d. Data d => d -> u) -> Version -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Version -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Version -> m Version # | |
| Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
| Data IntPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntPtr -> c IntPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntPtr # toConstr :: IntPtr -> Constr # dataTypeOf :: IntPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntPtr) # gmapT :: (forall b. Data b => b -> b) -> IntPtr -> IntPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> IntPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntPtr -> m IntPtr # | |
| Data WordPtr | Since: base-4.11.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WordPtr -> c WordPtr # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c WordPtr # toConstr :: WordPtr -> Constr # dataTypeOf :: WordPtr -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c WordPtr) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c WordPtr) # gmapT :: (forall b. Data b => b -> b) -> WordPtr -> WordPtr # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WordPtr -> r # gmapQ :: (forall d. Data d => d -> u) -> WordPtr -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WordPtr -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WordPtr -> m WordPtr # | |
| Data Associativity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Associativity -> c Associativity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Associativity # toConstr :: Associativity -> Constr # dataTypeOf :: Associativity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Associativity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Associativity) # gmapT :: (forall b. Data b => b -> b) -> Associativity -> Associativity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Associativity -> r # gmapQ :: (forall d. Data d => d -> u) -> Associativity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Associativity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Associativity -> m Associativity # | |
| Data DecidedStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> DecidedStrictness -> c DecidedStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c DecidedStrictness # toConstr :: DecidedStrictness -> Constr # dataTypeOf :: DecidedStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c DecidedStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DecidedStrictness) # gmapT :: (forall b. Data b => b -> b) -> DecidedStrictness -> DecidedStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> DecidedStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> DecidedStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> DecidedStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> DecidedStrictness -> m DecidedStrictness # | |
| Data Fixity | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity # toConstr :: Fixity -> Constr # dataTypeOf :: Fixity -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity # | |
| Data SourceStrictness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceStrictness -> c SourceStrictness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceStrictness # toConstr :: SourceStrictness -> Constr # dataTypeOf :: SourceStrictness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceStrictness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceStrictness) # gmapT :: (forall b. Data b => b -> b) -> SourceStrictness -> SourceStrictness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceStrictness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceStrictness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceStrictness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceStrictness -> m SourceStrictness # | |
| Data SourceUnpackedness | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SourceUnpackedness -> c SourceUnpackedness # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SourceUnpackedness # toConstr :: SourceUnpackedness -> Constr # dataTypeOf :: SourceUnpackedness -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SourceUnpackedness) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SourceUnpackedness) # gmapT :: (forall b. Data b => b -> b) -> SourceUnpackedness -> SourceUnpackedness # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SourceUnpackedness -> r # gmapQ :: (forall d. Data d => d -> u) -> SourceUnpackedness -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> SourceUnpackedness -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SourceUnpackedness -> m SourceUnpackedness # | |
| Data Int16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int16 -> c Int16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 # dataTypeOf :: Int16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int16) # gmapT :: (forall b. Data b => b -> b) -> Int16 -> Int16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int16 -> m Int16 # | |
| Data Int32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int32 -> c Int32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 # dataTypeOf :: Int32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int32) # gmapT :: (forall b. Data b => b -> b) -> Int32 -> Int32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int32 -> m Int32 # | |
| Data Int64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int64 -> c Int64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 # dataTypeOf :: Int64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int64) # gmapT :: (forall b. Data b => b -> b) -> Int64 -> Int64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int64 -> m Int64 # | |
| Data Int8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int8 -> c Int8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 # dataTypeOf :: Int8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int8) # gmapT :: (forall b. Data b => b -> b) -> Int8 -> Int8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Int8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int8 -> m Int8 # | |
| Data Word16 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word16 -> c Word16 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 # toConstr :: Word16 -> Constr # dataTypeOf :: Word16 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word16) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word16) # gmapT :: (forall b. Data b => b -> b) -> Word16 -> Word16 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word16 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word16 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word16 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word16 -> m Word16 # | |
| Data Word32 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word32 -> c Word32 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 # toConstr :: Word32 -> Constr # dataTypeOf :: Word32 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word32) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word32) # gmapT :: (forall b. Data b => b -> b) -> Word32 -> Word32 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word32 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word32 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word32 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word32 -> m Word32 # | |
| Data Word64 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word64 -> c Word64 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 # toConstr :: Word64 -> Constr # dataTypeOf :: Word64 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word64) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word64) # gmapT :: (forall b. Data b => b -> b) -> Word64 -> Word64 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word64 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word64 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word64 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word64 -> m Word64 # | |
| Data Word8 | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word8 -> c Word8 # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 # dataTypeOf :: Word8 -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word8) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word8) # gmapT :: (forall b. Data b => b -> b) -> Word8 -> Word8 # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word8 -> r # gmapQ :: (forall d. Data d => d -> u) -> Word8 -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word8 -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word8 -> m Word8 # | |
| Data ByteString | |
Defined in Data.ByteString.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
| Data ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ByteString -> c ByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ByteString # toConstr :: ByteString -> Constr # dataTypeOf :: ByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ByteString) # gmapT :: (forall b. Data b => b -> b) -> ByteString -> ByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ByteString -> m ByteString # | |
| Data ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ShortByteString -> c ShortByteString # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ShortByteString # toConstr :: ShortByteString -> Constr # dataTypeOf :: ShortByteString -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ShortByteString) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ShortByteString) # gmapT :: (forall b. Data b => b -> b) -> ShortByteString -> ShortByteString # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ShortByteString -> r # gmapQ :: (forall d. Data d => d -> u) -> ShortByteString -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ShortByteString -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ShortByteString -> m ShortByteString # | |
| Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
| Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
| Data LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> LocalTime -> c LocalTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c LocalTime # toConstr :: LocalTime -> Constr # dataTypeOf :: LocalTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c LocalTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c LocalTime) # gmapT :: (forall b. Data b => b -> b) -> LocalTime -> LocalTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> LocalTime -> r # gmapQ :: (forall d. Data d => d -> u) -> LocalTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> LocalTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> LocalTime -> m LocalTime # | |
| Data ZonedTime | |
Defined in Data.Time.LocalTime.Internal.ZonedTime Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZonedTime -> c ZonedTime # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ZonedTime # toConstr :: ZonedTime -> Constr # dataTypeOf :: ZonedTime -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ZonedTime) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ZonedTime) # gmapT :: (forall b. Data b => b -> b) -> ZonedTime -> ZonedTime # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZonedTime -> r # gmapQ :: (forall d. Data d => d -> u) -> ZonedTime -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZonedTime -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZonedTime -> m ZonedTime # | |
| Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
| Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
| Data () | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> () -> c () # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c () # dataTypeOf :: () -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ()) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ()) # gmapT :: (forall b. Data b => b -> b) -> () -> () # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> () -> r # gmapQ :: (forall d. Data d => d -> u) -> () -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> () -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> () -> m () # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> () -> m () # | |
| Data Bool | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bool -> c Bool # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bool # dataTypeOf :: Bool -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bool) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bool) # gmapT :: (forall b. Data b => b -> b) -> Bool -> Bool # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bool -> r # gmapQ :: (forall d. Data d => d -> u) -> Bool -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bool -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bool -> m Bool # | |
| Data Char | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char # dataTypeOf :: Char -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) # gmapT :: (forall b. Data b => b -> b) -> Char -> Char # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r # gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char # | |
| Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
| Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
| Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
| Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
| Data a => Data (ZipList a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) # toConstr :: ZipList a -> Constr # dataTypeOf :: ZipList a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) # | |
| Data a => Data (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Identity a -> c (Identity a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Identity a) # toConstr :: Identity a -> Constr # dataTypeOf :: Identity a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Identity a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Identity a)) # gmapT :: (forall b. Data b => b -> b) -> Identity a -> Identity a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Identity a -> r # gmapQ :: (forall d. Data d => d -> u) -> Identity a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Identity a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Identity a -> m (Identity a) # | |
| Data a => Data (First a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> First a -> c (First a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (First a) # toConstr :: First a -> Constr # dataTypeOf :: First a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (First a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (First a)) # gmapT :: (forall b. Data b => b -> b) -> First a -> First a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> First a -> r # gmapQ :: (forall d. Data d => d -> u) -> First a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> First a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> First a -> m (First a) # | |
| Data a => Data (Last a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Last a -> c (Last a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Last a) # toConstr :: Last a -> Constr # dataTypeOf :: Last a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Last a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Last a)) # gmapT :: (forall b. Data b => b -> b) -> Last a -> Last a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Last a -> r # gmapQ :: (forall d. Data d => d -> u) -> Last a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Last a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Last a -> m (Last a) # | |
| Data a => Data (Down a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Down a -> c (Down a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Down a) # toConstr :: Down a -> Constr # dataTypeOf :: Down a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Down a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Down a)) # gmapT :: (forall b. Data b => b -> b) -> Down a -> Down a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Down a -> r # gmapQ :: (forall d. Data d => d -> u) -> Down a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Down a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Down a -> m (Down a) # | |
| Data a => Data (Dual a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Dual a -> c (Dual a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Dual a) # toConstr :: Dual a -> Constr # dataTypeOf :: Dual a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Dual a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Dual a)) # gmapT :: (forall b. Data b => b -> b) -> Dual a -> Dual a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Dual a -> r # gmapQ :: (forall d. Data d => d -> u) -> Dual a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Dual a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Dual a -> m (Dual a) # | |
| Data a => Data (Product a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Product a -> c (Product a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Product a) # toConstr :: Product a -> Constr # dataTypeOf :: Product a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Product a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Product a)) # gmapT :: (forall b. Data b => b -> b) -> Product a -> Product a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Product a -> r # gmapQ :: (forall d. Data d => d -> u) -> Product a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Product a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Product a -> m (Product a) # | |
| Data a => Data (Sum a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Sum a -> c (Sum a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Sum a) # dataTypeOf :: Sum a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Sum a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Sum a)) # gmapT :: (forall b. Data b => b -> b) -> Sum a -> Sum a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Sum a -> r # gmapQ :: (forall d. Data d => d -> u) -> Sum a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Sum a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Sum a -> m (Sum a) # | |
| Data a => Data (ForeignPtr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ForeignPtr a -> c (ForeignPtr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) # toConstr :: ForeignPtr a -> Constr # dataTypeOf :: ForeignPtr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ForeignPtr a)) # gmapT :: (forall b. Data b => b -> b) -> ForeignPtr a -> ForeignPtr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ForeignPtr a -> r # gmapQ :: (forall d. Data d => d -> u) -> ForeignPtr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ForeignPtr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ForeignPtr a -> m (ForeignPtr a) # | |
| Data p => Data (Par1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Par1 p -> c (Par1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Par1 p) # toConstr :: Par1 p -> Constr # dataTypeOf :: Par1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Par1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Par1 p)) # gmapT :: (forall b. Data b => b -> b) -> Par1 p -> Par1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Par1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> Par1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Par1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Par1 p -> m (Par1 p) # | |
| Data a => Data (Ptr a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) # dataTypeOf :: Ptr a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) # gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) # | |
| (Data a, Integral a) => Data (Ratio a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) # toConstr :: Ratio a -> Constr # dataTypeOf :: Ratio a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ratio a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ratio a)) # gmapT :: (forall b. Data b => b -> b) -> Ratio a -> Ratio a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ratio a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ratio a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ratio a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ratio a -> m (Ratio a) # | |
| Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
| Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
| Data a => Data (ViewL a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewL a -> c (ViewL a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewL a) # toConstr :: ViewL a -> Constr # dataTypeOf :: ViewL a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewL a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewL a)) # gmapT :: (forall b. Data b => b -> b) -> ViewL a -> ViewL a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewL a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewL a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewL a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewL a -> m (ViewL a) # | |
| Data a => Data (ViewR a) | |
Defined in Data.Sequence.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ViewR a -> c (ViewR a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ViewR a) # toConstr :: ViewR a -> Constr # dataTypeOf :: ViewR a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ViewR a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ViewR a)) # gmapT :: (forall b. Data b => b -> b) -> ViewR a -> ViewR a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ViewR a -> r # gmapQ :: (forall d. Data d => d -> u) -> ViewR a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> ViewR a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ViewR a -> m (ViewR a) # | |
| (Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
| (Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
| Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
| (Data a, Unbox a) => Data (Vector a) | |
Defined in Data.Vector.Unboxed.Base Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
| Data a => Data (NonEmpty a) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NonEmpty a -> c (NonEmpty a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (NonEmpty a) # toConstr :: NonEmpty a -> Constr # dataTypeOf :: NonEmpty a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (NonEmpty a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (NonEmpty a)) # gmapT :: (forall b. Data b => b -> b) -> NonEmpty a -> NonEmpty a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NonEmpty a -> r # gmapQ :: (forall d. Data d => d -> u) -> NonEmpty a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> NonEmpty a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NonEmpty a -> m (NonEmpty a) # | |
| Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
| Data a => Data (a) | Since: base-4.15 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> (a) -> c (a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a) # dataTypeOf :: (a) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a)) # gmapT :: (forall b. Data b => b -> b) -> (a) -> (a) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a) -> m (a) # | |
| Data a => Data [a] | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] # dataTypeOf :: [a] -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c [a]) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c [a]) # gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> [a] -> r # gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> [a] -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> [a] -> m [a] # | |
| (Typeable m, Typeable a, Data (m a)) => Data (WrappedMonad m a) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> WrappedMonad m a -> c (WrappedMonad m a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (WrappedMonad m a) # toConstr :: WrappedMonad m a -> Constr # dataTypeOf :: WrappedMonad m a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (WrappedMonad m a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (WrappedMonad m a)) # gmapT :: (forall b. Data b => b -> b) -> WrappedMonad m a -> WrappedMonad m a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedMonad m a -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedMonad m a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedMonad m a -> u # gmapM :: Monad m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMp :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # gmapMo :: MonadPlus m0 => (forall d. Data d => d -> m0 d) -> WrappedMonad m a -> m0 (WrappedMonad m a) # | |
| (Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
| Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
| (Data a, Data b, Ix a) => Data (Array a b) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Array a b -> c (Array a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) # toConstr :: Array a b -> Constr # dataTypeOf :: Array a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Array a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Array a b -> Array a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Array a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Array a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Array a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Array a b -> m (Array a b) # | |
| Data p => Data (U1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) # dataTypeOf :: U1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) # gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) # | |
| Data p => Data (V1 p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) # dataTypeOf :: V1 p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) # gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r # gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) # | |
| (Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
| (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
| (Data a, Data b) => Data (a, b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a, b) -> c (a, b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a, b) # toConstr :: (a, b) -> Constr # dataTypeOf :: (a, b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a, b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a, b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b) -> (a, b) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b) -> m (a, b) # | |
| (Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) | Since: base-4.14.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) # toConstr :: WrappedArrow a b c -> Constr # dataTypeOf :: WrappedArrow a b c -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) # | |
| (Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
| (Data (f a), Data a, Typeable f) => Data (Ap f a) | Since: base-4.12.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ap f a -> c (Ap f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ap f a) # toConstr :: Ap f a -> Constr # dataTypeOf :: Ap f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ap f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ap f a)) # gmapT :: (forall b. Data b => b -> b) -> Ap f a -> Ap f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ap f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Ap f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ap f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ap f a -> m (Ap f a) # | |
| (Data (f a), Data a, Typeable f) => Data (Alt f a) | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) # toConstr :: Alt f a -> Constr # dataTypeOf :: Alt f a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) # gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r # gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) # | |
| (Coercible a b, Data a, Data b) => Data (Coercion a b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) # toConstr :: Coercion a b -> Constr # dataTypeOf :: Coercion a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) # | |
| (a ~ b, Data a) => Data (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) # toConstr :: (a :~: b) -> Constr # dataTypeOf :: (a :~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) # | |
| (Data (f p), Typeable f, Data p) => Data (Rec1 f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) # toConstr :: Rec1 f p -> Constr # dataTypeOf :: Rec1 f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) # gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r # gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) # | |
| (Data a, Data b, Data c) => Data (a, b, c) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c) -> c0 (a, b, c) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c) # toConstr :: (a, b, c) -> Constr # dataTypeOf :: (a, b, c) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (a, b, c)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (a, b, c)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c) -> (a, b, c) # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a, b, c) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a, b, c) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a, b, c) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a, b, c) -> m (a, b, c) # | |
| (Typeable i, Typeable j, Typeable a, Typeable b, a ~~ b) => Data (a :~~: b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~~: b) -> c (a :~~: b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~~: b) # toConstr :: (a :~~: b) -> Constr # dataTypeOf :: (a :~~: b) -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~~: b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~~: b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~~: b) -> a :~~: b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~~: b) -> r # gmapQ :: (forall d. Data d => d -> u) -> (a :~~: b) -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~~: b) -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~~: b) -> m (a :~~: b) # | |
| (Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) # toConstr :: (f :*: g) p -> Constr # dataTypeOf :: (f :*: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) # | |
| (Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) # toConstr :: (f :+: g) p -> Constr # dataTypeOf :: (f :+: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) # | |
| (Typeable i, Data p, Data c) => Data (K1 i c p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) # toConstr :: K1 i c p -> Constr # dataTypeOf :: K1 i c p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) # gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r # gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) # | |
| (Data a, Data b, Data c, Data d) => Data (a, b, c, d) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d) -> c0 (a, b, c, d) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d) # toConstr :: (a, b, c, d) -> Constr # dataTypeOf :: (a, b, c, d) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d)) # dataCast2 :: Typeable t => (forall d0 e. (Data d0, Data e) => c0 (t d0 e)) -> Maybe (c0 (a, b, c, d)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d) -> (a, b, c, d) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d) -> m (a, b, c, d) # | |
| (Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) # toConstr :: (f :.: g) p -> Constr # dataTypeOf :: (f :.: g) p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) # gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r # gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) # | |
| (Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) | Since: base-4.9.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) # toConstr :: M1 i c f p -> Constr # dataTypeOf :: M1 i c f p -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) # gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r # gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) # | |
| (Data a, Data b, Data c, Data d, Data e) => Data (a, b, c, d, e) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e) -> c0 (a, b, c, d, e) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e) # toConstr :: (a, b, c, d, e) -> Constr # dataTypeOf :: (a, b, c, d, e) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e) -> (a, b, c, d, e) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e) -> m (a, b, c, d, e) # | |
| (Data a, Data b, Data c, Data d, Data e, Data f) => Data (a, b, c, d, e, f) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g. g -> c0 g) -> (a, b, c, d, e, f) -> c0 (a, b, c, d, e, f) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f) # toConstr :: (a, b, c, d, e, f) -> Constr # dataTypeOf :: (a, b, c, d, e, f) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f) -> m (a, b, c, d, e, f) # | |
| (Data a, Data b, Data c, Data d, Data e, Data f, Data g) => Data (a, b, c, d, e, f, g) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d0 b0. Data d0 => c0 (d0 -> b0) -> d0 -> c0 b0) -> (forall g0. g0 -> c0 g0) -> (a, b, c, d, e, f, g) -> c0 (a, b, c, d, e, f, g) # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (a, b, c, d, e, f, g) # toConstr :: (a, b, c, d, e, f, g) -> Constr # dataTypeOf :: (a, b, c, d, e, f, g) -> DataType # dataCast1 :: Typeable t => (forall d0. Data d0 => c0 (t d0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # dataCast2 :: Typeable t => (forall d0 e0. (Data d0, Data e0) => c0 (t d0 e0)) -> Maybe (c0 (a, b, c, d, e, f, g)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # gmapQl :: (r -> r' -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d0. Data d0 => d0 -> r') -> (a, b, c, d, e, f, g) -> r # gmapQ :: (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> [u] # gmapQi :: Int -> (forall d0. Data d0 => d0 -> u) -> (a, b, c, d, e, f, g) -> u # gmapM :: Monad m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMp :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # gmapMo :: MonadPlus m => (forall d0. Data d0 => d0 -> m d0) -> (a, b, c, d, e, f, g) -> m (a, b, c, d, e, f, g) # | |
The Either type represents values with two possibilities: a value of
type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is
either correct or an error; by convention, the Left constructor is
used to hold an error value and the Right constructor is used to
hold a correct value (mnemonic: "right" also means "correct").
Examples
The type is the type of values which can be either
a Either String IntString or an Int. The Left constructor can be used only on
Strings, and the Right constructor can be used only on Ints:
>>>let s = Left "foo" :: Either String Int>>>sLeft "foo">>>let n = Right 3 :: Either String Int>>>nRight 3>>>:type ss :: Either String Int>>>:type nn :: Either String Int
The fmap from our Functor instance will ignore Left values, but
will apply the supplied function to values contained in a Right:
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>fmap (*2) sLeft "foo">>>fmap (*2) nRight 6
The Monad instance for Either allows us to chain together multiple
actions which may fail, and fail overall if any of the individual
steps failed. First we'll write a function that can either parse an
Int from a Char, or fail.
>>>import Data.Char ( digitToInt, isDigit )>>>:{let parseEither :: Char -> Either String Int parseEither c | isDigit c = Right (digitToInt c) | otherwise = Left "parse error">>>:}
The following should work, since both '1' and '2' can be
parsed as Ints.
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither '1' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleRight 3
But the following should fail overall, since the first operation where
we attempt to parse 'm' as an Int will fail:
>>>:{let parseMultiple :: Either String Int parseMultiple = do x <- parseEither 'm' y <- parseEither '2' return (x + y)>>>:}
>>>parseMultipleLeft "parse error"
Instances
| Bifoldable Either | Since: base-4.10.0.0 |
| Bifunctor Either | Since: base-4.8.0.0 |
| Bitraversable Either | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Either a b -> f (Either c d) # | |
| NFData2 Either | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Hashable2 Either | |
Defined in Data.Hashable.Class | |
| Generic1 (Either a :: Type -> Type) | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Applicative (Either e) | Since: base-3.0 |
| Functor (Either a) | Since: base-3.0 |
| Monad (Either e) | Since: base-4.4.0.0 |
| NFData a => NFData1 (Either a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| e ~ SomeException => MonadCatch (Either e) | Since: exceptions-0.8.3 |
| e ~ SomeException => MonadMask (Either e) | Since: exceptions-0.8.3 |
Defined in Control.Monad.Catch | |
| e ~ SomeException => MonadThrow (Either e) | |
Defined in Control.Monad.Catch | |
| Hashable a => Hashable1 (Either a) | |
Defined in Data.Hashable.Class | |
| (Data a, Data b) => Data (Either a b) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Either a b -> c (Either a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Either a b) # toConstr :: Either a b -> Constr # dataTypeOf :: Either a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Either a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Either a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Either a b -> Either a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Either a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Either a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Either a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Either a b -> m (Either a b) # | |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Generic (Either a b) | |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| (Show a, Show b) => Show (Either a b) | Since: base-3.0 |
| (NFData a, NFData b) => NFData (Either a b) | |
Defined in Control.DeepSeq | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| (Hashable a, Hashable b) => Hashable (Either a b) | |
Defined in Data.Hashable.Class | |
| type Rep1 (Either a :: Type -> Type) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep1 (Either a :: Type -> Type) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) Par1)) | |
| type Rep (Either a b) | Since: base-4.6.0.0 |
Defined in GHC.Generics type Rep (Either a b) = D1 ('MetaData "Either" "Data.Either" "base" 'False) (C1 ('MetaCons "Left" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Right" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 b))) | |
either :: (a -> c) -> (b -> c) -> Either a b -> c #
Case analysis for the Either type.
If the value is , apply the first function to Left aa;
if it is , apply the second function to Right bb.
Examples
We create two values of type , one using the
Either String IntLeft constructor and another using the Right constructor. Then
we apply "either" the length function (if we have a String)
or the "times-two" function (if we have an Int):
>>>let s = Left "foo" :: Either String Int>>>let n = Right 3 :: Either String Int>>>either length (*2) s3>>>either length (*2) n6
isLeft :: Either a b -> Bool #
Return True if the given value is a Left-value, False otherwise.
Examples
Basic usage:
>>>isLeft (Left "foo")True>>>isLeft (Right 3)False
Assuming a Left value signifies some sort of error, we can use
isLeft to write a very simple error-reporting function that does
absolutely nothing in the case of success, and outputs "ERROR" if
any error occurred.
This example shows how isLeft might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>import Control.Monad ( when )>>>let report e = when (isLeft e) $ putStrLn "ERROR">>>report (Right 1)>>>report (Left "parse error")ERROR
Since: base-4.7.0.0
isRight :: Either a b -> Bool #
Return True if the given value is a Right-value, False otherwise.
Examples
Basic usage:
>>>isRight (Left "foo")False>>>isRight (Right 3)True
Assuming a Left value signifies some sort of error, we can use
isRight to write a very simple reporting function that only
outputs "SUCCESS" when a computation has succeeded.
This example shows how isRight might be used to avoid pattern
matching when one does not care about the value contained in the
constructor:
>>>import Control.Monad ( when )>>>let report e = when (isRight e) $ putStrLn "SUCCESS">>>report (Left "parse error")>>>report (Right 1)SUCCESS
Since: base-4.7.0.0
partitionEithers :: [Either a b] -> ([a], [b]) #
Partitions a list of Either into two lists.
All the Left elements are extracted, in order, to the first
component of the output. Similarly the Right elements are extracted
to the second component of the output.
Examples
Basic usage:
>>>let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]>>>partitionEithers list(["foo","bar","baz"],[3,7])
The pair returned by should be the same
pair as partitionEithers x(:lefts x, rights x)
>>>let list = [ Left "foo", Right 3, Left "bar", Right 7, Left "baz" ]>>>partitionEithers list == (lefts list, rights list)True
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
The Haskell Report defines no laws for Eq. However, instances are
encouraged to follow these properties:
Instances
| Eq AsyncCancelled | |
Defined in Control.Concurrent.Async Methods (==) :: AsyncCancelled -> AsyncCancelled -> Bool # (/=) :: AsyncCancelled -> AsyncCancelled -> Bool # | |
| Eq Constr | Equality of constructors Since: base-4.0.0.0 |
| Eq ConstrRep | Since: base-4.0.0.0 |
| Eq DataRep | Since: base-4.0.0.0 |
| Eq Fixity | Since: base-4.0.0.0 |
| Eq SomeTypeRep | |
Defined in Data.Typeable.Internal | |
| Eq Void | Since: base-4.8.0.0 |
| Eq BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
| Eq ThreadId | Since: base-4.2.0.0 |
| Eq ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync | |
| Eq ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods (==) :: ArithException -> ArithException -> Bool # (/=) :: ArithException -> ArithException -> Bool # | |
| Eq Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods (==) :: Associativity -> Associativity -> Bool # (/=) :: Associativity -> Associativity -> Bool # | |
| Eq DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: DecidedStrictness -> DecidedStrictness -> Bool # (/=) :: DecidedStrictness -> DecidedStrictness -> Bool # | |
| Eq Fixity | Since: base-4.6.0.0 |
| Eq SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceStrictness -> SourceStrictness -> Bool # (/=) :: SourceStrictness -> SourceStrictness -> Bool # | |
| Eq SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods (==) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (/=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # | |
| Eq MaskingState | Since: base-4.3.0.0 |
Defined in GHC.IO | |
| Eq IODeviceType | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Eq SeekMode | Since: base-4.2.0.0 |
| Eq ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: ArrayException -> ArrayException -> Bool # (/=) :: ArrayException -> ArrayException -> Bool # | |
| Eq AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods (==) :: AsyncException -> AsyncException -> Bool # (/=) :: AsyncException -> AsyncException -> Bool # | |
| Eq ExitCode | |
| Eq IOErrorType | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq IOException | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception | |
| Eq BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq Handle | Since: base-4.1.0.0 |
| Eq Newline | Since: base-4.2.0.0 |
| Eq NewlineMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
| Eq IOMode | Since: base-4.2.0.0 |
| Eq Int16 | Since: base-2.1 |
| Eq Int32 | Since: base-2.1 |
| Eq Int64 | Since: base-2.1 |
| Eq Int8 | Since: base-2.1 |
| Eq SrcLoc | Since: base-4.9.0.0 |
| Eq Word16 | Since: base-2.1 |
| Eq Word32 | Since: base-2.1 |
| Eq Word64 | Since: base-2.1 |
| Eq Word8 | Since: base-2.1 |
| Eq ByteString | |
Defined in Data.ByteString.Internal | |
| Eq ByteString | |
Defined in Data.ByteString.Lazy.Internal | |
| Eq ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (==) :: ShortByteString -> ShortByteString -> Bool # (/=) :: ShortByteString -> ShortByteString -> Bool # | |
| Eq IntSet | |
| Eq Module | |
| Eq Ordering | |
| Eq TrName | |
| Eq TyCon | |
| Eq LogLevel | |
| Eq CodePoint | |
| Eq DecoderState | |
| Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
| Eq LocalTime | |
| Eq StringException | Since: unliftio-0.2.19 |
Defined in UnliftIO.Exception Methods (==) :: StringException -> StringException -> Bool # (/=) :: StringException -> StringException -> Bool # | |
| Eq ConcException | |
Defined in UnliftIO.Internals.Async Methods (==) :: ConcException -> ConcException -> Bool # (/=) :: ConcException -> ConcException -> Bool # | |
| Eq Integer | |
| Eq Natural | |
| Eq () | |
| Eq Bool | |
| Eq Char | |
| Eq Double | Note that due to the presence of
Also note that
|
| Eq Float | Note that due to the presence of
Also note that
|
| Eq Int | |
| Eq Word | |
| Eq (Async a) | |
| Eq a => Eq (ZipList a) | Since: base-4.7.0.0 |
| Eq (Chan a) | Since: base-4.4.0.0 |
| Eq a => Eq (Identity a) | Since: base-4.8.0.0 |
| Eq a => Eq (Down a) | Since: base-4.6.0.0 |
| Eq (TVar a) | Since: base-4.8.0.0 |
| Eq p => Eq (Par1 p) | Since: base-4.7.0.0 |
| Eq (IORef a) | Pointer equality. Since: base-4.0.0.0 |
| Eq (MVar a) | Since: base-4.1.0.0 |
| Eq a => Eq (Ratio a) | Since: base-2.1 |
| Eq a => Eq (IntMap a) | |
| Eq a => Eq (Seq a) | |
| Eq a => Eq (ViewL a) | |
| Eq a => Eq (ViewR a) | |
| Eq a => Eq (Set a) | |
| Eq a => Eq (Hashed a) | Uses precomputed hash to detect inequality faster |
| Eq (TBQueue a) | |
| Eq (TChan a) | |
| Eq (TMVar a) | |
| Eq (TQueue a) | |
| Eq a => Eq (HashSet a) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
| Eq a => Eq (Vector a) | |
| Eq a => Eq (NonEmpty a) | Since: base-4.9.0.0 |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Eq a => Eq (a) | |
| Eq a => Eq [a] | |
| (Eq a, Eq b) => Eq (Either a b) | Since: base-2.1 |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Eq (TypeRep a) | Since: base-2.1 |
| Eq (U1 p) | Since: base-4.9.0.0 |
| Eq (V1 p) | Since: base-4.9.0.0 |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Eq k, Eq v) => Eq (HashMap k v) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
| (Eq k, Eq v) => Eq (Leaf k v) | |
| (Eq a, Eq b) => Eq (a, b) | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Eq (f p) => Eq (Rec1 f p) | Since: base-4.7.0.0 |
| Eq (URec (Ptr ()) p) | Since: base-4.9.0.0 |
| Eq (URec Char p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Float p) | |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| (Eq e, Eq1 m, Eq a) => Eq (ErrorT e m a) | |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| (Eq (f p), Eq (g p)) => Eq ((f :*: g) p) | Since: base-4.7.0.0 |
| (Eq (f p), Eq (g p)) => Eq ((f :+: g) p) | Since: base-4.7.0.0 |
| Eq c => Eq (K1 i c p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| Eq (f (g p)) => Eq ((f :.: g) p) | Since: base-4.7.0.0 |
| Eq (f p) => Eq (M1 i c f p) | Since: base-4.7.0.0 |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
class Foldable (t :: TYPE LiftedRep -> Type) #
The Foldable class represents data structures that can be reduced to a summary value one element at a time. Strict left-associative folds are a good fit for space-efficient reduction, while lazy right-associative folds are a good fit for corecursive iteration, or for folds that short-circuit after processing an initial subsequence of the structure's elements.
Instances can be derived automatically by enabling the DeriveFoldable
extension. For example, a derived instance for a binary tree might be:
{-# LANGUAGE DeriveFoldable #-}
data Tree a = Empty
| Leaf a
| Node (Tree a) a (Tree a)
deriving FoldableA more detailed description can be found in the Overview section of Data.Foldable.
For the class laws see the Laws section of Data.Foldable.
Instances
| Foldable ZipList | Since: base-4.9.0.0 |
Defined in Control.Applicative Methods fold :: Monoid m => ZipList m -> m # foldMap :: Monoid m => (a -> m) -> ZipList a -> m # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m # foldr :: (a -> b -> b) -> b -> ZipList a -> b # foldr' :: (a -> b -> b) -> b -> ZipList a -> b # foldl :: (b -> a -> b) -> b -> ZipList a -> b # foldl' :: (b -> a -> b) -> b -> ZipList a -> b # foldr1 :: (a -> a -> a) -> ZipList a -> a # foldl1 :: (a -> a -> a) -> ZipList a -> a # elem :: Eq a => a -> ZipList a -> Bool # maximum :: Ord a => ZipList a -> a # minimum :: Ord a => ZipList a -> a # | |
| Foldable Identity | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity Methods fold :: Monoid m => Identity m -> m # foldMap :: Monoid m => (a -> m) -> Identity a -> m # foldMap' :: Monoid m => (a -> m) -> Identity a -> m # foldr :: (a -> b -> b) -> b -> Identity a -> b # foldr' :: (a -> b -> b) -> b -> Identity a -> b # foldl :: (b -> a -> b) -> b -> Identity a -> b # foldl' :: (b -> a -> b) -> b -> Identity a -> b # foldr1 :: (a -> a -> a) -> Identity a -> a # foldl1 :: (a -> a -> a) -> Identity a -> a # elem :: Eq a => a -> Identity a -> Bool # maximum :: Ord a => Identity a -> a # minimum :: Ord a => Identity a -> a # | |
| Foldable First | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => First m -> m # foldMap :: Monoid m => (a -> m) -> First a -> m # foldMap' :: Monoid m => (a -> m) -> First a -> m # foldr :: (a -> b -> b) -> b -> First a -> b # foldr' :: (a -> b -> b) -> b -> First a -> b # foldl :: (b -> a -> b) -> b -> First a -> b # foldl' :: (b -> a -> b) -> b -> First a -> b # foldr1 :: (a -> a -> a) -> First a -> a # foldl1 :: (a -> a -> a) -> First a -> a # elem :: Eq a => a -> First a -> Bool # maximum :: Ord a => First a -> a # minimum :: Ord a => First a -> a # | |
| Foldable Last | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Last m -> m # foldMap :: Monoid m => (a -> m) -> Last a -> m # foldMap' :: Monoid m => (a -> m) -> Last a -> m # foldr :: (a -> b -> b) -> b -> Last a -> b # foldr' :: (a -> b -> b) -> b -> Last a -> b # foldl :: (b -> a -> b) -> b -> Last a -> b # foldl' :: (b -> a -> b) -> b -> Last a -> b # foldr1 :: (a -> a -> a) -> Last a -> a # foldl1 :: (a -> a -> a) -> Last a -> a # elem :: Eq a => a -> Last a -> Bool # maximum :: Ord a => Last a -> a # | |
| Foldable Down | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Down m -> m # foldMap :: Monoid m => (a -> m) -> Down a -> m # foldMap' :: Monoid m => (a -> m) -> Down a -> m # foldr :: (a -> b -> b) -> b -> Down a -> b # foldr' :: (a -> b -> b) -> b -> Down a -> b # foldl :: (b -> a -> b) -> b -> Down a -> b # foldl' :: (b -> a -> b) -> b -> Down a -> b # foldr1 :: (a -> a -> a) -> Down a -> a # foldl1 :: (a -> a -> a) -> Down a -> a # elem :: Eq a => a -> Down a -> Bool # maximum :: Ord a => Down a -> a # | |
| Foldable Dual | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Dual m -> m # foldMap :: Monoid m => (a -> m) -> Dual a -> m # foldMap' :: Monoid m => (a -> m) -> Dual a -> m # foldr :: (a -> b -> b) -> b -> Dual a -> b # foldr' :: (a -> b -> b) -> b -> Dual a -> b # foldl :: (b -> a -> b) -> b -> Dual a -> b # foldl' :: (b -> a -> b) -> b -> Dual a -> b # foldr1 :: (a -> a -> a) -> Dual a -> a # foldl1 :: (a -> a -> a) -> Dual a -> a # elem :: Eq a => a -> Dual a -> Bool # maximum :: Ord a => Dual a -> a # | |
| Foldable Product | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Product m -> m # foldMap :: Monoid m => (a -> m) -> Product a -> m # foldMap' :: Monoid m => (a -> m) -> Product a -> m # foldr :: (a -> b -> b) -> b -> Product a -> b # foldr' :: (a -> b -> b) -> b -> Product a -> b # foldl :: (b -> a -> b) -> b -> Product a -> b # foldl' :: (b -> a -> b) -> b -> Product a -> b # foldr1 :: (a -> a -> a) -> Product a -> a # foldl1 :: (a -> a -> a) -> Product a -> a # elem :: Eq a => a -> Product a -> Bool # maximum :: Ord a => Product a -> a # minimum :: Ord a => Product a -> a # | |
| Foldable Sum | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Sum m -> m # foldMap :: Monoid m => (a -> m) -> Sum a -> m # foldMap' :: Monoid m => (a -> m) -> Sum a -> m # foldr :: (a -> b -> b) -> b -> Sum a -> b # foldr' :: (a -> b -> b) -> b -> Sum a -> b # foldl :: (b -> a -> b) -> b -> Sum a -> b # foldl' :: (b -> a -> b) -> b -> Sum a -> b # foldr1 :: (a -> a -> a) -> Sum a -> a # foldl1 :: (a -> a -> a) -> Sum a -> a # elem :: Eq a => a -> Sum a -> Bool # maximum :: Ord a => Sum a -> a # | |
| Foldable Par1 | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Par1 m -> m # foldMap :: Monoid m => (a -> m) -> Par1 a -> m # foldMap' :: Monoid m => (a -> m) -> Par1 a -> m # foldr :: (a -> b -> b) -> b -> Par1 a -> b # foldr' :: (a -> b -> b) -> b -> Par1 a -> b # foldl :: (b -> a -> b) -> b -> Par1 a -> b # foldl' :: (b -> a -> b) -> b -> Par1 a -> b # foldr1 :: (a -> a -> a) -> Par1 a -> a # foldl1 :: (a -> a -> a) -> Par1 a -> a # elem :: Eq a => a -> Par1 a -> Bool # maximum :: Ord a => Par1 a -> a # | |
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Foldable Digit | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Digit m -> m # foldMap :: Monoid m => (a -> m) -> Digit a -> m # foldMap' :: Monoid m => (a -> m) -> Digit a -> m # foldr :: (a -> b -> b) -> b -> Digit a -> b # foldr' :: (a -> b -> b) -> b -> Digit a -> b # foldl :: (b -> a -> b) -> b -> Digit a -> b # foldl' :: (b -> a -> b) -> b -> Digit a -> b # foldr1 :: (a -> a -> a) -> Digit a -> a # foldl1 :: (a -> a -> a) -> Digit a -> a # elem :: Eq a => a -> Digit a -> Bool # maximum :: Ord a => Digit a -> a # minimum :: Ord a => Digit a -> a # | |
| Foldable Elem | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Elem m -> m # foldMap :: Monoid m => (a -> m) -> Elem a -> m # foldMap' :: Monoid m => (a -> m) -> Elem a -> m # foldr :: (a -> b -> b) -> b -> Elem a -> b # foldr' :: (a -> b -> b) -> b -> Elem a -> b # foldl :: (b -> a -> b) -> b -> Elem a -> b # foldl' :: (b -> a -> b) -> b -> Elem a -> b # foldr1 :: (a -> a -> a) -> Elem a -> a # foldl1 :: (a -> a -> a) -> Elem a -> a # elem :: Eq a => a -> Elem a -> Bool # maximum :: Ord a => Elem a -> a # | |
| Foldable FingerTree | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => FingerTree m -> m # foldMap :: Monoid m => (a -> m) -> FingerTree a -> m # foldMap' :: Monoid m => (a -> m) -> FingerTree a -> m # foldr :: (a -> b -> b) -> b -> FingerTree a -> b # foldr' :: (a -> b -> b) -> b -> FingerTree a -> b # foldl :: (b -> a -> b) -> b -> FingerTree a -> b # foldl' :: (b -> a -> b) -> b -> FingerTree a -> b # foldr1 :: (a -> a -> a) -> FingerTree a -> a # foldl1 :: (a -> a -> a) -> FingerTree a -> a # toList :: FingerTree a -> [a] # null :: FingerTree a -> Bool # length :: FingerTree a -> Int # elem :: Eq a => a -> FingerTree a -> Bool # maximum :: Ord a => FingerTree a -> a # minimum :: Ord a => FingerTree a -> a # sum :: Num a => FingerTree a -> a # product :: Num a => FingerTree a -> a # | |
| Foldable Node | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Node m -> m # foldMap :: Monoid m => (a -> m) -> Node a -> m # foldMap' :: Monoid m => (a -> m) -> Node a -> m # foldr :: (a -> b -> b) -> b -> Node a -> b # foldr' :: (a -> b -> b) -> b -> Node a -> b # foldl :: (b -> a -> b) -> b -> Node a -> b # foldl' :: (b -> a -> b) -> b -> Node a -> b # foldr1 :: (a -> a -> a) -> Node a -> a # foldl1 :: (a -> a -> a) -> Node a -> a # elem :: Eq a => a -> Node a -> Bool # maximum :: Ord a => Node a -> a # | |
| Foldable Seq | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldMap' :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
| Foldable ViewL | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewL m -> m # foldMap :: Monoid m => (a -> m) -> ViewL a -> m # foldMap' :: Monoid m => (a -> m) -> ViewL a -> m # foldr :: (a -> b -> b) -> b -> ViewL a -> b # foldr' :: (a -> b -> b) -> b -> ViewL a -> b # foldl :: (b -> a -> b) -> b -> ViewL a -> b # foldl' :: (b -> a -> b) -> b -> ViewL a -> b # foldr1 :: (a -> a -> a) -> ViewL a -> a # foldl1 :: (a -> a -> a) -> ViewL a -> a # elem :: Eq a => a -> ViewL a -> Bool # maximum :: Ord a => ViewL a -> a # minimum :: Ord a => ViewL a -> a # | |
| Foldable ViewR | |
Defined in Data.Sequence.Internal Methods fold :: Monoid m => ViewR m -> m # foldMap :: Monoid m => (a -> m) -> ViewR a -> m # foldMap' :: Monoid m => (a -> m) -> ViewR a -> m # foldr :: (a -> b -> b) -> b -> ViewR a -> b # foldr' :: (a -> b -> b) -> b -> ViewR a -> b # foldl :: (b -> a -> b) -> b -> ViewR a -> b # foldl' :: (b -> a -> b) -> b -> ViewR a -> b # foldr1 :: (a -> a -> a) -> ViewR a -> a # foldl1 :: (a -> a -> a) -> ViewR a -> a # elem :: Eq a => a -> ViewR a -> Bool # maximum :: Ord a => ViewR a -> a # minimum :: Ord a => ViewR a -> a # | |
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Foldable Hashed | |
Defined in Data.Hashable.Class Methods fold :: Monoid m => Hashed m -> m # foldMap :: Monoid m => (a -> m) -> Hashed a -> m # foldMap' :: Monoid m => (a -> m) -> Hashed a -> m # foldr :: (a -> b -> b) -> b -> Hashed a -> b # foldr' :: (a -> b -> b) -> b -> Hashed a -> b # foldl :: (b -> a -> b) -> b -> Hashed a -> b # foldl' :: (b -> a -> b) -> b -> Hashed a -> b # foldr1 :: (a -> a -> a) -> Hashed a -> a # foldl1 :: (a -> a -> a) -> Hashed a -> a # elem :: Eq a => a -> Hashed a -> Bool # maximum :: Ord a => Hashed a -> a # minimum :: Ord a => Hashed a -> a # | |
| Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
| Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
| Foldable NonEmpty | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => NonEmpty m -> m # foldMap :: Monoid m => (a -> m) -> NonEmpty a -> m # foldMap' :: Monoid m => (a -> m) -> NonEmpty a -> m # foldr :: (a -> b -> b) -> b -> NonEmpty a -> b # foldr' :: (a -> b -> b) -> b -> NonEmpty a -> b # foldl :: (b -> a -> b) -> b -> NonEmpty a -> b # foldl' :: (b -> a -> b) -> b -> NonEmpty a -> b # foldr1 :: (a -> a -> a) -> NonEmpty a -> a # foldl1 :: (a -> a -> a) -> NonEmpty a -> a # elem :: Eq a => a -> NonEmpty a -> Bool # maximum :: Ord a => NonEmpty a -> a # minimum :: Ord a => NonEmpty a -> a # | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Foldable Solo | Since: base-4.15 |
Defined in Data.Foldable Methods fold :: Monoid m => Solo m -> m # foldMap :: Monoid m => (a -> m) -> Solo a -> m # foldMap' :: Monoid m => (a -> m) -> Solo a -> m # foldr :: (a -> b -> b) -> b -> Solo a -> b # foldr' :: (a -> b -> b) -> b -> Solo a -> b # foldl :: (b -> a -> b) -> b -> Solo a -> b # foldl' :: (b -> a -> b) -> b -> Solo a -> b # foldr1 :: (a -> a -> a) -> Solo a -> a # foldl1 :: (a -> a -> a) -> Solo a -> a # elem :: Eq a => a -> Solo a -> Bool # maximum :: Ord a => Solo a -> a # | |
| Foldable [] | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => [m] -> m # foldMap :: Monoid m => (a -> m) -> [a] -> m # foldMap' :: Monoid m => (a -> m) -> [a] -> m # foldr :: (a -> b -> b) -> b -> [a] -> b # foldr' :: (a -> b -> b) -> b -> [a] -> b # foldl :: (b -> a -> b) -> b -> [a] -> b # foldl' :: (b -> a -> b) -> b -> [a] -> b # foldr1 :: (a -> a -> a) -> [a] -> a # foldl1 :: (a -> a -> a) -> [a] -> a # elem :: Eq a => a -> [a] -> Bool # maximum :: Ord a => [a] -> a # | |
| Foldable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Either a m -> m # foldMap :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldMap' :: Monoid m => (a0 -> m) -> Either a a0 -> m # foldr :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldr' :: (a0 -> b -> b) -> b -> Either a a0 -> b # foldl :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldl' :: (b -> a0 -> b) -> b -> Either a a0 -> b # foldr1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # foldl1 :: (a0 -> a0 -> a0) -> Either a a0 -> a0 # toList :: Either a a0 -> [a0] # length :: Either a a0 -> Int # elem :: Eq a0 => a0 -> Either a a0 -> Bool # maximum :: Ord a0 => Either a a0 -> a0 # minimum :: Ord a0 => Either a a0 -> a0 # | |
| Foldable (Proxy :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Foldable (Array i) | Since: base-4.8.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Array i m -> m # foldMap :: Monoid m => (a -> m) -> Array i a -> m # foldMap' :: Monoid m => (a -> m) -> Array i a -> m # foldr :: (a -> b -> b) -> b -> Array i a -> b # foldr' :: (a -> b -> b) -> b -> Array i a -> b # foldl :: (b -> a -> b) -> b -> Array i a -> b # foldl' :: (b -> a -> b) -> b -> Array i a -> b # foldr1 :: (a -> a -> a) -> Array i a -> a # foldl1 :: (a -> a -> a) -> Array i a -> a # elem :: Eq a => a -> Array i a -> Bool # maximum :: Ord a => Array i a -> a # minimum :: Ord a => Array i a -> a # | |
| Foldable (U1 :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => U1 m -> m # foldMap :: Monoid m => (a -> m) -> U1 a -> m # foldMap' :: Monoid m => (a -> m) -> U1 a -> m # foldr :: (a -> b -> b) -> b -> U1 a -> b # foldr' :: (a -> b -> b) -> b -> U1 a -> b # foldl :: (b -> a -> b) -> b -> U1 a -> b # foldl' :: (b -> a -> b) -> b -> U1 a -> b # foldr1 :: (a -> a -> a) -> U1 a -> a # foldl1 :: (a -> a -> a) -> U1 a -> a # elem :: Eq a => a -> U1 a -> Bool # maximum :: Ord a => U1 a -> a # | |
| Foldable (UAddr :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UAddr m -> m # foldMap :: Monoid m => (a -> m) -> UAddr a -> m # foldMap' :: Monoid m => (a -> m) -> UAddr a -> m # foldr :: (a -> b -> b) -> b -> UAddr a -> b # foldr' :: (a -> b -> b) -> b -> UAddr a -> b # foldl :: (b -> a -> b) -> b -> UAddr a -> b # foldl' :: (b -> a -> b) -> b -> UAddr a -> b # foldr1 :: (a -> a -> a) -> UAddr a -> a # foldl1 :: (a -> a -> a) -> UAddr a -> a # elem :: Eq a => a -> UAddr a -> Bool # maximum :: Ord a => UAddr a -> a # minimum :: Ord a => UAddr a -> a # | |
| Foldable (UChar :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UChar m -> m # foldMap :: Monoid m => (a -> m) -> UChar a -> m # foldMap' :: Monoid m => (a -> m) -> UChar a -> m # foldr :: (a -> b -> b) -> b -> UChar a -> b # foldr' :: (a -> b -> b) -> b -> UChar a -> b # foldl :: (b -> a -> b) -> b -> UChar a -> b # foldl' :: (b -> a -> b) -> b -> UChar a -> b # foldr1 :: (a -> a -> a) -> UChar a -> a # foldl1 :: (a -> a -> a) -> UChar a -> a # elem :: Eq a => a -> UChar a -> Bool # maximum :: Ord a => UChar a -> a # minimum :: Ord a => UChar a -> a # | |
| Foldable (UDouble :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Foldable (UFloat :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Foldable (UInt :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Foldable (UWord :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Foldable (V1 :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => V1 m -> m # foldMap :: Monoid m => (a -> m) -> V1 a -> m # foldMap' :: Monoid m => (a -> m) -> V1 a -> m # foldr :: (a -> b -> b) -> b -> V1 a -> b # foldr' :: (a -> b -> b) -> b -> V1 a -> b # foldl :: (b -> a -> b) -> b -> V1 a -> b # foldl' :: (b -> a -> b) -> b -> V1 a -> b # foldr1 :: (a -> a -> a) -> V1 a -> a # foldl1 :: (a -> a -> a) -> V1 a -> a # elem :: Eq a => a -> V1 a -> Bool # maximum :: Ord a => V1 a -> a # | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
| Foldable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (a, m) -> m # foldMap :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldMap' :: Monoid m => (a0 -> m) -> (a, a0) -> m # foldr :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldr' :: (a0 -> b -> b) -> b -> (a, a0) -> b # foldl :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldl' :: (b -> a0 -> b) -> b -> (a, a0) -> b # foldr1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # foldl1 :: (a0 -> a0 -> a0) -> (a, a0) -> a0 # elem :: Eq a0 => a0 -> (a, a0) -> Bool # maximum :: Ord a0 => (a, a0) -> a0 # minimum :: Ord a0 => (a, a0) -> a0 # | |
| Foldable (Const m :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Foldable f => Foldable (Ap f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Ap f m -> m # foldMap :: Monoid m => (a -> m) -> Ap f a -> m # foldMap' :: Monoid m => (a -> m) -> Ap f a -> m # foldr :: (a -> b -> b) -> b -> Ap f a -> b # foldr' :: (a -> b -> b) -> b -> Ap f a -> b # foldl :: (b -> a -> b) -> b -> Ap f a -> b # foldl' :: (b -> a -> b) -> b -> Ap f a -> b # foldr1 :: (a -> a -> a) -> Ap f a -> a # foldl1 :: (a -> a -> a) -> Ap f a -> a # elem :: Eq a => a -> Ap f a -> Bool # maximum :: Ord a => Ap f a -> a # | |
| Foldable f => Foldable (Alt f) | Since: base-4.12.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Alt f m -> m # foldMap :: Monoid m => (a -> m) -> Alt f a -> m # foldMap' :: Monoid m => (a -> m) -> Alt f a -> m # foldr :: (a -> b -> b) -> b -> Alt f a -> b # foldr' :: (a -> b -> b) -> b -> Alt f a -> b # foldl :: (b -> a -> b) -> b -> Alt f a -> b # foldl' :: (b -> a -> b) -> b -> Alt f a -> b # foldr1 :: (a -> a -> a) -> Alt f a -> a # foldl1 :: (a -> a -> a) -> Alt f a -> a # elem :: Eq a => a -> Alt f a -> Bool # maximum :: Ord a => Alt f a -> a # minimum :: Ord a => Alt f a -> a # | |
| Foldable f => Foldable (Rec1 f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Rec1 f m -> m # foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m # foldMap' :: Monoid m => (a -> m) -> Rec1 f a -> m # foldr :: (a -> b -> b) -> b -> Rec1 f a -> b # foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b # foldl :: (b -> a -> b) -> b -> Rec1 f a -> b # foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b # foldr1 :: (a -> a -> a) -> Rec1 f a -> a # foldl1 :: (a -> a -> a) -> Rec1 f a -> a # elem :: Eq a => a -> Rec1 f a -> Bool # maximum :: Ord a => Rec1 f a -> a # minimum :: Ord a => Rec1 f a -> a # | |
| Foldable f => Foldable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error Methods fold :: Monoid m => ErrorT e f m -> m # foldMap :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldMap' :: Monoid m => (a -> m) -> ErrorT e f a -> m # foldr :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldr' :: (a -> b -> b) -> b -> ErrorT e f a -> b # foldl :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldl' :: (b -> a -> b) -> b -> ErrorT e f a -> b # foldr1 :: (a -> a -> a) -> ErrorT e f a -> a # foldl1 :: (a -> a -> a) -> ErrorT e f a -> a # toList :: ErrorT e f a -> [a] # null :: ErrorT e f a -> Bool # length :: ErrorT e f a -> Int # elem :: Eq a => a -> ErrorT e f a -> Bool # maximum :: Ord a => ErrorT e f a -> a # minimum :: Ord a => ErrorT e f a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :*: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :*: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b # foldr1 :: (a -> a -> a) -> (f :*: g) a -> a # foldl1 :: (a -> a -> a) -> (f :*: g) a -> a # toList :: (f :*: g) a -> [a] # length :: (f :*: g) a -> Int # elem :: Eq a => a -> (f :*: g) a -> Bool # maximum :: Ord a => (f :*: g) a -> a # minimum :: Ord a => (f :*: g) a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :+: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :+: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b # foldr1 :: (a -> a -> a) -> (f :+: g) a -> a # foldl1 :: (a -> a -> a) -> (f :+: g) a -> a # toList :: (f :+: g) a -> [a] # length :: (f :+: g) a -> Int # elem :: Eq a => a -> (f :+: g) a -> Bool # maximum :: Ord a => (f :+: g) a -> a # minimum :: Ord a => (f :+: g) a -> a # | |
| Foldable (K1 i c :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => K1 i c m -> m # foldMap :: Monoid m => (a -> m) -> K1 i c a -> m # foldMap' :: Monoid m => (a -> m) -> K1 i c a -> m # foldr :: (a -> b -> b) -> b -> K1 i c a -> b # foldr' :: (a -> b -> b) -> b -> K1 i c a -> b # foldl :: (b -> a -> b) -> b -> K1 i c a -> b # foldl' :: (b -> a -> b) -> b -> K1 i c a -> b # foldr1 :: (a -> a -> a) -> K1 i c a -> a # foldl1 :: (a -> a -> a) -> K1 i c a -> a # elem :: Eq a => a -> K1 i c a -> Bool # maximum :: Ord a => K1 i c a -> a # minimum :: Ord a => K1 i c a -> a # | |
| (Foldable f, Foldable g) => Foldable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => (f :.: g) m -> m # foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldMap' :: Monoid m => (a -> m) -> (f :.: g) a -> m # foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b # foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b # foldr1 :: (a -> a -> a) -> (f :.: g) a -> a # foldl1 :: (a -> a -> a) -> (f :.: g) a -> a # toList :: (f :.: g) a -> [a] # length :: (f :.: g) a -> Int # elem :: Eq a => a -> (f :.: g) a -> Bool # maximum :: Ord a => (f :.: g) a -> a # minimum :: Ord a => (f :.: g) a -> a # | |
| Foldable f => Foldable (M1 i c f) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => M1 i c f m -> m # foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m # foldMap' :: Monoid m => (a -> m) -> M1 i c f a -> m # foldr :: (a -> b -> b) -> b -> M1 i c f a -> b # foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b # foldl :: (b -> a -> b) -> b -> M1 i c f a -> b # foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b # foldr1 :: (a -> a -> a) -> M1 i c f a -> a # foldl1 :: (a -> a -> a) -> M1 i c f a -> a # elem :: Eq a => a -> M1 i c f a -> Bool # maximum :: Ord a => M1 i c f a -> a # minimum :: Ord a => M1 i c f a -> a # | |
all :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether all elements of the structure satisfy the predicate.
Examples
Basic usage:
>>>all (> 3) []True
>>>all (> 3) [1,2]False
>>>all (> 3) [1,2,3,4,5]False
>>>all (> 3) [1..]False
>>>all (> 3) [4..]* Hangs forever *
and :: Foldable t => t Bool -> Bool #
and returns the conjunction of a container of Bools. For the
result to be True, the container must be finite; False, however,
results from a False value finitely far from the left end.
Examples
Basic usage:
>>>and []True
>>>and [True]True
>>>and [False]False
>>>and [True, True, False]False
>>>and (False : repeat True) -- Infinite list [False,True,True,True,...False
>>>and (repeat True)* Hangs forever *
any :: Foldable t => (a -> Bool) -> t a -> Bool #
Determines whether any element of the structure satisfies the predicate.
Examples
Basic usage:
>>>any (> 3) []False
>>>any (> 3) [1,2]False
>>>any (> 3) [1,2,3,4,5]True
>>>any (> 3) [1..]True
>>>any (> 3) [0, -1..]* Hangs forever *
asum :: (Foldable t, Alternative f) => t (f a) -> f a #
The sum of a collection of actions, generalizing concat.
asum is just like msum, but generalised to Alternative.
Examples
Basic usage:
>>>asum [Just "Hello", Nothing, Just "World"]Just "Hello"
concat :: Foldable t => t [a] -> [a] #
The concatenation of all the elements of a container of lists.
Examples
Basic usage:
>>>concat (Just [1, 2, 3])[1,2,3]
>>>concat (Left 42)[]
>>>concat [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
concatMap :: Foldable t => (a -> [b]) -> t a -> [b] #
Map a function over all the elements of a container and concatenate the resulting lists.
Examples
Basic usage:
>>>concatMap (take 3) [[1..], [10..], [100..], [1000..]][1,2,3,10,11,12,100,101,102,1000,1001,1002]
>>>concatMap (take 3) (Just [1..])[1,2,3]
elem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
Does the element occur in the structure?
Note: elem is often used in infix form.
Examples
Basic usage:
>>>3 `elem` []False
>>>3 `elem` [1,2]False
>>>3 `elem` [1,2,3,4,5]True
For infinite structures, the default implementation of elem
terminates if the sought-after value exists at a finite distance
from the left side of the structure:
>>>3 `elem` [1..]True
>>>3 `elem` ([4..] ++ [3])* Hangs forever *
Since: base-4.8.0.0
fold :: (Foldable t, Monoid m) => t m -> m #
Given a structure with elements whose type is a Monoid, combine them
via the monoid's ( operator. This fold is right-associative and
lazy in the accumulator. When you need a strict left-associative fold,
use <>)foldMap' instead, with id as the map.
Examples
Basic usage:
>>>fold [[1, 2, 3], [4, 5], [6], []][1,2,3,4,5,6]
>>>fold $ Node (Leaf (Sum 1)) (Sum 3) (Leaf (Sum 5))Sum {getSum = 9}
Folds of unbounded structures do not terminate when the monoid's
( operator is strict:<>)
>>>fold (repeat Nothing)* Hangs forever *
Lazy corecursive folds of unbounded structures are fine:
>>>take 12 $ fold $ map (\i -> [i..i+2]) [0..][0,1,2,1,2,3,2,3,4,3,4,5]>>>sum $ take 4000000 $ fold $ map (\i -> [i..i+2]) [0..]2666668666666
foldMap :: (Foldable t, Monoid m) => (a -> m) -> t a -> m #
Map each element of the structure into a monoid, and combine the
results with (. This fold is right-associative and lazy in the
accumulator. For strict left-associative folds consider <>)foldMap'
instead.
Examples
Basic usage:
>>>foldMap Sum [1, 3, 5]Sum {getSum = 9}
>>>foldMap Product [1, 3, 5]Product {getProduct = 15}
>>>foldMap (replicate 3) [1, 2, 3][1,1,1,2,2,2,3,3,3]
When a Monoid's ( is lazy in its second argument, <>)foldMap can
return a result even from an unbounded structure. For example, lazy
accumulation enables Data.ByteString.Builder to efficiently serialise
large data structures and produce the output incrementally:
>>>import qualified Data.ByteString.Lazy as L>>>import qualified Data.ByteString.Builder as B>>>let bld :: Int -> B.Builder; bld i = B.intDec i <> B.word8 0x20>>>let lbs = B.toLazyByteString $ foldMap bld [0..]>>>L.take 64 lbs"0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24"
foldl' :: Foldable t => (b -> a -> b) -> b -> t a -> b #
Left-associative fold of a structure but with strict application of the operator.
This ensures that each step of the fold is forced to Weak Head Normal
Form before being applied, avoiding the collection of thunks that would
otherwise occur. This is often what you want to strictly reduce a
finite structure to a single strict result (e.g. sum).
For a general Foldable structure this should be semantically identical
to,
foldl' f z =foldl'f z .toList
Since: base-4.6.0.0
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b #
Right-associative fold of a structure, lazy in the accumulator.
In the case of lists, foldr, when applied to a binary operator, a
starting value (typically the right-identity of the operator), and a
list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Note that since the head of the resulting expression is produced by an
application of the operator to the first element of the list, given an
operator lazy in its right argument, foldr can produce a terminating
expression from an unbounded list.
For a general Foldable structure this should be semantically identical
to,
foldr f z =foldrf z .toList
Examples
Basic usage:
>>>foldr (||) False [False, True, False]True
>>>foldr (||) False []False
>>>foldr (\c acc -> acc ++ [c]) "foo" ['a', 'b', 'c', 'd']"foodcba"
Infinite structures
⚠️ Applying foldr to infinite structures usually doesn't terminate.
It may still terminate under one of the following conditions:
- the folding function is short-circuiting
- the folding function is lazy on its second argument
Short-circuiting
( short-circuits on ||)True values, so the following terminates
because there is a True value finitely far from the left side:
>>>foldr (||) False (True : repeat False)True
But the following doesn't terminate:
>>>foldr (||) False (repeat False ++ [True])* Hangs forever *
Laziness in the second argument
Applying foldr to infinite structures terminates when the operator is
lazy in its second argument (the initial accumulator is never used in
this case, and so could be left undefined, but [] is more clear):
>>>take 5 $ foldr (\i acc -> i : fmap (+3) acc) [] (repeat 1)[1,4,7,10,13]
for_ :: (Foldable t, Applicative f) => t a -> (a -> f b) -> f () #
for_ is traverse_ with its arguments flipped. For a version
that doesn't ignore the results see for. This
is forM_ generalised to Applicative actions.
for_ is just like forM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>for_ [1..4] print1 2 3 4
length :: Foldable t => t a -> Int #
Returns the size/length of a finite structure as an Int. The
default implementation just counts elements starting with the leftmost.
Instances for structures that can compute the element count faster
than via element-by-element counting, should provide a specialised
implementation.
Examples
Basic usage:
>>>length []0
>>>length ['a', 'b', 'c']3>>>length [1..]* Hangs forever *
Since: base-4.8.0.0
notElem :: (Foldable t, Eq a) => a -> t a -> Bool infix 4 #
notElem is the negation of elem.
Examples
Basic usage:
>>>3 `notElem` []True
>>>3 `notElem` [1,2]True
>>>3 `notElem` [1,2,3,4,5]False
For infinite structures, notElem terminates if the value exists at a
finite distance from the left side of the structure:
>>>3 `notElem` [1..]False
>>>3 `notElem` ([4..] ++ [3])* Hangs forever *
null :: Foldable t => t a -> Bool #
Test whether the structure is empty. The default implementation is Left-associative and lazy in both the initial element and the accumulator. Thus optimised for structures where the first element can be accessed in constant time. Structures where this is not the case should have a non-default implementation.
Examples
Basic usage:
>>>null []True
>>>null [1]False
null is expected to terminate even for infinite structures.
The default implementation terminates provided the structure
is bounded on the left (there is a leftmost element).
>>>null [1..]False
Since: base-4.8.0.0
or :: Foldable t => t Bool -> Bool #
or returns the disjunction of a container of Bools. For the
result to be False, the container must be finite; True, however,
results from a True value finitely far from the left end.
Examples
Basic usage:
>>>or []False
>>>or [True]True
>>>or [False]False
>>>or [True, True, False]True
>>>or (True : repeat False) -- Infinite list [True,False,False,False,...True
>>>or (repeat False)* Hangs forever *
product :: (Foldable t, Num a) => t a -> a #
The product function computes the product of the numbers of a
structure.
Examples
Basic usage:
>>>product []1
>>>product [42]42
>>>product [1..10]3628800
>>>product [4.1, 2.0, 1.7]13.939999999999998
>>>product [1..]* Hangs forever *
Since: base-4.8.0.0
sequenceA_ :: (Foldable t, Applicative f) => t (f a) -> f () #
Evaluate each action in the structure from left to right, and
ignore the results. For a version that doesn't ignore the results
see sequenceA.
sequenceA_ is just like sequence_, but generalised to Applicative
actions.
Examples
Basic usage:
>>>sequenceA_ [print "Hello", print "world", print "!"]"Hello" "world" "!"
sequence_ :: (Foldable t, Monad m) => t (m a) -> m () #
Evaluate each monadic action in the structure from left to right,
and ignore the results. For a version that doesn't ignore the
results see sequence.
sequence_ is just like sequenceA_, but specialised to monadic
actions.
sum :: (Foldable t, Num a) => t a -> a #
The sum function computes the sum of the numbers of a structure.
Examples
Basic usage:
>>>sum []0
>>>sum [42]42
>>>sum [1..10]55
>>>sum [4.1, 2.0, 1.7]7.8
>>>sum [1..]* Hangs forever *
Since: base-4.8.0.0
toList :: Foldable t => t a -> [a] #
List of elements of a structure, from left to right. If the entire list is intended to be reduced via a fold, just fold the structure directly bypassing the list.
Examples
Basic usage:
>>>toList Nothing[]
>>>toList (Just 42)[42]
>>>toList (Left "foo")[]
>>>toList (Node (Leaf 5) 17 (Node Empty 12 (Leaf 8)))[5,17,12,8]
For lists, toList is the identity:
>>>toList [1, 2, 3][1,2,3]
Since: base-4.8.0.0
traverse_ :: (Foldable t, Applicative f) => (a -> f b) -> t a -> f () #
Map each element of a structure to an Applicative action, evaluate these
actions from left to right, and ignore the results. For a version that
doesn't ignore the results see traverse.
traverse_ is just like mapM_, but generalised to Applicative actions.
Examples
Basic usage:
>>>traverse_ print ["Hello", "world", "!"]"Hello" "world" "!"
const x is a unary function which evaluates to x for all inputs.
>>>const 42 "hello"42
>>>map (const 42) [0..3][42,42,42,42]
is the least fixed point of the function fix ff,
i.e. the least defined x such that f x = x.
For example, we can write the factorial function using direct recursion as
>>>let fac n = if n <= 1 then 1 else n * fac (n-1) in fac 5120
This uses the fact that Haskell’s let introduces recursive bindings. We can
rewrite this definition using fix,
>>>fix (\rec n -> if n <= 1 then 1 else n * rec (n-1)) 5120
Instead of making a recursive call, we introduce a dummy parameter rec;
when used within fix, this parameter then refers to fix’s argument, hence
the recursion is reintroduced.
flip :: (a -> b -> c) -> b -> a -> c #
takes its (first) two arguments in the reverse order of flip ff.
>>>flip (++) "hello" "world""worldhello"
($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Application operator. This operator is redundant, since ordinary
application (f x) means the same as (f . However, $ x)$ has
low, right-associative binding precedence, so it sometimes allows
parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as ,
or map ($ 0) xs.zipWith ($) fs xs
Note that ( is levity-polymorphic in its result type, so that
$)foo where $ Truefoo :: Bool -> Int# is well-typed.
class Functor (f :: Type -> Type) where #
A type f is a Functor if it provides a function fmap which, given any types a and b
lets you apply any function from (a -> b) to turn an f a into an f b, preserving the
structure of f. Furthermore f needs to adhere to the following:
Note, that the second law follows from the free theorem of the type fmap and
the first law, so you need only check that the former condition holds.
Minimal complete definition
Methods
fmap :: (a -> b) -> f a -> f b #
fmap is used to apply a function of type (a -> b) to a value of type f a,
where f is a functor, to produce a value of type f b.
Note that for any type constructor with more than one parameter (e.g., Either),
only the last type parameter can be modified with fmap (e.g., b in `Either a b`).
Some type constructors with two parameters or more have a instance that allows
both the last and the penultimate parameters to be mapped over.Bifunctor
Examples
Convert from a to a Maybe IntMaybe String
using show:
>>>fmap show NothingNothing>>>fmap show (Just 3)Just "3"
Convert from an to an
Either Int IntEither Int String using show:
>>>fmap show (Left 17)Left 17>>>fmap show (Right 17)Right "17"
Double each element of a list:
>>>fmap (*2) [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>fmap even (2,2)(2,True)
It may seem surprising that the function is only applied to the last element of the tuple
compared to the list example above which applies it to every element in the list.
To understand, remember that tuples are type constructors with multiple type parameters:
a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance
is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over
with fmap).
It explains why fmap can be used with tuples containing values of different types as in the
following example:
>>>fmap even ("hello", 1.0, 4)("hello",1.0,True)
Instances
| Functor Async | |
| Functor Concurrently | |
Defined in Control.Concurrent.Async Methods fmap :: (a -> b) -> Concurrently a -> Concurrently b # (<$) :: a -> Concurrently b -> Concurrently a # | |
| Functor ZipList | Since: base-2.1 |
| Functor Identity | Since: base-4.8.0.0 |
| Functor Down | Since: base-4.11.0.0 |
| Functor STM | Since: base-4.3.0.0 |
| Functor Par1 | Since: base-4.9.0.0 |
| Functor Put | |
| Functor IntMap | |
| Functor Digit | |
| Functor Elem | |
| Functor FingerTree | |
Defined in Data.Sequence.Internal Methods fmap :: (a -> b) -> FingerTree a -> FingerTree b # (<$) :: a -> FingerTree b -> FingerTree a # | |
| Functor Node | |
| Functor Seq | |
| Functor ViewL | |
| Functor ViewR | |
| Functor IO | Since: base-2.1 |
| Functor Flat | |
| Functor FlatApp | |
| Functor Memoized | |
| Functor Vector | |
| Functor NonEmpty | Since: base-4.9.0.0 |
| Functor Maybe | Since: base-2.1 |
| Functor Solo | Since: base-4.15 |
| Functor [] | Since: base-2.1 |
| Monad m => Functor (WrappedMonad m) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b # (<$) :: a -> WrappedMonad m b -> WrappedMonad m a # | |
| Arrow a => Functor (ArrowMonad a) | Since: base-4.6.0.0 |
Defined in Control.Arrow Methods fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b # (<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 # | |
| Functor (Either a) | Since: base-3.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (V1 :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (ST s) | Since: base-2.1 |
| Functor (Map k) | |
| Monad m => Functor (Handler m) | |
| Functor (RIO env) | |
| Functor m => Functor (Conc m) | |
| Monad m => Functor (Concurrently m) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods fmap :: (a -> b) -> Concurrently m a -> Concurrently m b # (<$) :: a -> Concurrently m b -> Concurrently m a # | |
| Functor (HashMap k) | |
| Functor ((,) a) | Since: base-2.1 |
| Arrow a => Functor (WrappedArrow a b) | Since: base-2.1 |
Defined in Control.Applicative Methods fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 # | |
| Functor m => Functor (Kleisli m a) | Since: base-4.14.0.0 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| Functor f => Functor (Rec1 f) | Since: base-4.9.0.0 |
| Functor (URec (Ptr ()) :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (URec Char :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| (Applicative f, Monad f) => Functor (WhenMissing f x) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b # (<$) :: a -> WhenMissing f x b -> WhenMissing f x a # | |
| Functor m => Functor (ErrorT e m) | |
| Functor m => Functor (ReaderT r m) | |
| Functor ((,,) a b) | Since: base-4.14.0.0 |
| (Functor f, Functor g) => Functor (f :*: g) | Since: base-4.9.0.0 |
| (Functor f, Functor g) => Functor (f :+: g) | Since: base-4.9.0.0 |
| Functor (K1 i c :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Functor f => Functor (WhenMatched f x y) | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal Methods fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b # (<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a # | |
| (Applicative f, Monad f) => Functor (WhenMissing f k x) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b # (<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a # | |
| Functor ((,,,) a b c) | Since: base-4.14.0.0 |
| Functor ((->) r) | Since: base-2.1 |
| (Functor f, Functor g) => Functor (f :.: g) | Since: base-4.9.0.0 |
| Functor f => Functor (M1 i c f) | Since: base-4.9.0.0 |
| Functor f => Functor (WhenMatched f k x y) | Since: containers-0.5.9 |
Defined in Data.Map.Internal Methods fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b # (<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a # | |
void :: Functor f => f a -> f () #
discards or ignores the result of evaluation, such
as the return value of an void valueIO action.
Examples
Replace the contents of a with unit:Maybe Int
>>>void NothingNothing>>>void (Just 3)Just ()
Replace the contents of an
with unit, resulting in an Either Int Int:Either Int ()
>>>void (Left 8675309)Left 8675309>>>void (Right 8675309)Right ()
Replace every element of a list with unit:
>>>void [1,2,3][(),(),()]
Replace the second element of a pair with unit:
>>>void (1,2)(1,())
Discard the result of an IO action:
>>>mapM print [1,2]1 2 [(),()]>>>void $ mapM print [1,2]1 2
($>) :: Functor f => f a -> b -> f b infixl 4 #
Flipped version of <$.
Examples
Replace the contents of a with a constant
Maybe IntString:
>>>Nothing $> "foo"Nothing>>>Just 90210 $> "foo"Just "foo"
Replace the contents of an
with a constant Either Int IntString, resulting in an :Either
Int String
>>>Left 8675309 $> "foo"Left 8675309>>>Right 8675309 $> "foo"Right "foo"
Replace each element of a list with a constant String:
>>>[1,2,3] $> "foo"["foo","foo","foo"]
Replace the second element of a pair with a constant String:
>>>(1,2) $> "foo"(1,"foo")
Since: base-4.7.0.0
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 #
An infix synonym for fmap.
The name of this operator is an allusion to $.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $ is function application, <$> is function
application lifted over a Functor.
Examples
Convert from a to a Maybe Int using Maybe
Stringshow:
>>>show <$> NothingNothing>>>show <$> Just 3Just "3"
Convert from an to an
Either Int IntEither IntString using show:
>>>show <$> Left 17Left 17>>>show <$> Right 17Right "17"
Double each element of a list:
>>>(*2) <$> [1,2,3][2,4,6]
Apply even to the second element of a pair:
>>>even <$> (2,2)(2,True)
The Const functor.
Instances
| Generic1 (Const a :: k -> Type) | |
| Unbox a => Vector Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s (Const a b) -> ST s (Vector (Const a b)) # basicUnsafeThaw :: Vector (Const a b) -> ST s (Mutable Vector s (Const a b)) # basicLength :: Vector (Const a b) -> Int # basicUnsafeSlice :: Int -> Int -> Vector (Const a b) -> Vector (Const a b) # basicUnsafeIndexM :: Vector (Const a b) -> Int -> Box (Const a b) # basicUnsafeCopy :: Mutable Vector s (Const a b) -> Vector (Const a b) -> ST s () # | |
| Unbox a => MVector MVector (Const a b) | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s (Const a b) -> Int # basicUnsafeSlice :: Int -> Int -> MVector s (Const a b) -> MVector s (Const a b) # basicOverlaps :: MVector s (Const a b) -> MVector s (Const a b) -> Bool # basicUnsafeNew :: Int -> ST s (MVector s (Const a b)) # basicInitialize :: MVector s (Const a b) -> ST s () # basicUnsafeReplicate :: Int -> Const a b -> ST s (MVector s (Const a b)) # basicUnsafeRead :: MVector s (Const a b) -> Int -> ST s (Const a b) # basicUnsafeWrite :: MVector s (Const a b) -> Int -> Const a b -> ST s () # basicClear :: MVector s (Const a b) -> ST s () # basicSet :: MVector s (Const a b) -> Const a b -> ST s () # basicUnsafeCopy :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () # basicUnsafeMove :: MVector s (Const a b) -> MVector s (Const a b) -> ST s () # basicUnsafeGrow :: MVector s (Const a b) -> Int -> ST s (MVector s (Const a b)) # | |
| Bifoldable (Const :: Type -> TYPE LiftedRep -> Type) | Since: base-4.10.0.0 |
| Bifunctor (Const :: Type -> Type -> Type) | Since: base-4.8.0.0 |
| Bitraversable (Const :: Type -> Type -> Type) | Since: base-4.10.0.0 |
Defined in Data.Bitraversable Methods bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) # | |
| NFData2 (Const :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Hashable2 (Const :: Type -> Type -> Type) | |
Defined in Data.Hashable.Class | |
| Foldable (Const m :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Functor.Const Methods fold :: Monoid m0 => Const m m0 -> m0 # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 # foldr :: (a -> b -> b) -> b -> Const m a -> b # foldr' :: (a -> b -> b) -> b -> Const m a -> b # foldl :: (b -> a -> b) -> b -> Const m a -> b # foldl' :: (b -> a -> b) -> b -> Const m a -> b # foldr1 :: (a -> a -> a) -> Const m a -> a # foldl1 :: (a -> a -> a) -> Const m a -> a # elem :: Eq a => a -> Const m a -> Bool # maximum :: Ord a => Const m a -> a # minimum :: Ord a => Const m a -> a # | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Monoid m => Applicative (Const m :: Type -> Type) | Since: base-2.0.1 |
| Functor (Const m :: Type -> Type) | Since: base-2.1 |
| NFData a => NFData1 (Const a :: TYPE LiftedRep -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Hashable a => Hashable1 (Const a :: Type -> Type) | |
Defined in Data.Hashable.Class | |
| (Typeable k, Data a, Typeable b) => Data (Const a b) | Since: base-4.10.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) # toConstr :: Const a b -> Constr # dataTypeOf :: Const a b -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
| Storable a => Storable (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| Bits a => Bits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods (.&.) :: Const a b -> Const a b -> Const a b # (.|.) :: Const a b -> Const a b -> Const a b # xor :: Const a b -> Const a b -> Const a b # complement :: Const a b -> Const a b # shift :: Const a b -> Int -> Const a b # rotate :: Const a b -> Int -> Const a b # setBit :: Const a b -> Int -> Const a b # clearBit :: Const a b -> Int -> Const a b # complementBit :: Const a b -> Int -> Const a b # testBit :: Const a b -> Int -> Bool # bitSizeMaybe :: Const a b -> Maybe Int # isSigned :: Const a b -> Bool # shiftL :: Const a b -> Int -> Const a b # unsafeShiftL :: Const a b -> Int -> Const a b # shiftR :: Const a b -> Int -> Const a b # unsafeShiftR :: Const a b -> Int -> Const a b # rotateL :: Const a b -> Int -> Const a b # | |
| FiniteBits a => FiniteBits (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods finiteBitSize :: Const a b -> Int # countLeadingZeros :: Const a b -> Int # countTrailingZeros :: Const a b -> Int # | |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| Enum a => Enum (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods succ :: Const a b -> Const a b # pred :: Const a b -> Const a b # fromEnum :: Const a b -> Int # enumFrom :: Const a b -> [Const a b] # enumFromThen :: Const a b -> Const a b -> [Const a b] # enumFromTo :: Const a b -> Const a b -> [Const a b] # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] # | |
| Floating a => Floating (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods exp :: Const a b -> Const a b # log :: Const a b -> Const a b # sqrt :: Const a b -> Const a b # (**) :: Const a b -> Const a b -> Const a b # logBase :: Const a b -> Const a b -> Const a b # sin :: Const a b -> Const a b # cos :: Const a b -> Const a b # tan :: Const a b -> Const a b # asin :: Const a b -> Const a b # acos :: Const a b -> Const a b # atan :: Const a b -> Const a b # sinh :: Const a b -> Const a b # cosh :: Const a b -> Const a b # tanh :: Const a b -> Const a b # asinh :: Const a b -> Const a b # acosh :: Const a b -> Const a b # atanh :: Const a b -> Const a b # log1p :: Const a b -> Const a b # expm1 :: Const a b -> Const a b # | |
| RealFloat a => RealFloat (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods floatRadix :: Const a b -> Integer # floatDigits :: Const a b -> Int # floatRange :: Const a b -> (Int, Int) # decodeFloat :: Const a b -> (Integer, Int) # encodeFloat :: Integer -> Int -> Const a b # exponent :: Const a b -> Int # significand :: Const a b -> Const a b # scaleFloat :: Int -> Const a b -> Const a b # isInfinite :: Const a b -> Bool # isDenormalized :: Const a b -> Bool # isNegativeZero :: Const a b -> Bool # | |
| Generic (Const a b) | |
| Ix a => Ix (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods range :: (Const a b, Const a b) -> [Const a b] # index :: (Const a b, Const a b) -> Const a b -> Int # unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int # inRange :: (Const a b, Const a b) -> Const a b -> Bool # rangeSize :: (Const a b, Const a b) -> Int # unsafeRangeSize :: (Const a b, Const a b) -> Int # | |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
| RealFrac a => RealFrac (Const a b) | Since: base-4.9.0.0 |
| Show a => Show (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| NFData a => NFData (Const a b) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq a => Eq (Const a b) | Since: base-4.9.0.0 |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Hashable a => Hashable (Const a b) | |
Defined in Data.Hashable.Class | |
| Unbox a => Unbox (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep1 (Const a :: k -> Type) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| newtype MVector s (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
| type Rep (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
| newtype Vector (Const a b) | |
Defined in Data.Vector.Unboxed.Base | |
Identity functor and monad. (a non-strict monad)
Since: base-4.8.0.0
Constructors
| Identity | |
Fields
| |
Instances
The class of types that can be converted to a hash value.
Minimal implementation: hashWithSalt.
Note: the hash is not guaranteed to be stable across library versions, operating systems or architectures. For stable hashing use named hashes: SHA256, CRC32 etc.
If you are looking for Hashable instance in time package,
check time-compat
Instances
A map from keys to values. A map cannot contain duplicate keys; each key can map to at most one value.
Instances
| Bifoldable HashMap | Since: unordered-containers-0.2.11 |
| Eq2 HashMap | |
| Ord2 HashMap | |
Defined in Data.HashMap.Internal | |
| Show2 HashMap | |
| NFData2 HashMap | Since: unordered-containers-0.2.14.0 |
Defined in Data.HashMap.Internal | |
| Hashable2 HashMap | |
Defined in Data.HashMap.Internal | |
| (Lift k, Lift v) => Lift (HashMap k v :: Type) | Since: unordered-containers-0.2.17.0 |
| Foldable (HashMap k) | |
Defined in Data.HashMap.Internal Methods fold :: Monoid m => HashMap k m -> m # foldMap :: Monoid m => (a -> m) -> HashMap k a -> m # foldMap' :: Monoid m => (a -> m) -> HashMap k a -> m # foldr :: (a -> b -> b) -> b -> HashMap k a -> b # foldr' :: (a -> b -> b) -> b -> HashMap k a -> b # foldl :: (b -> a -> b) -> b -> HashMap k a -> b # foldl' :: (b -> a -> b) -> b -> HashMap k a -> b # foldr1 :: (a -> a -> a) -> HashMap k a -> a # foldl1 :: (a -> a -> a) -> HashMap k a -> a # toList :: HashMap k a -> [a] # length :: HashMap k a -> Int # elem :: Eq a => a -> HashMap k a -> Bool # maximum :: Ord a => HashMap k a -> a # minimum :: Ord a => HashMap k a -> a # | |
| Eq k => Eq1 (HashMap k) | |
| Ord k => Ord1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
| (Eq k, Hashable k, Read k) => Read1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
| Show k => Show1 (HashMap k) | |
| Traversable (HashMap k) | |
Defined in Data.HashMap.Internal | |
| Functor (HashMap k) | |
| NFData k => NFData1 (HashMap k) | Since: unordered-containers-0.2.14.0 |
Defined in Data.HashMap.Internal | |
| Hashable k => Hashable1 (HashMap k) | |
Defined in Data.HashMap.Internal | |
| (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) | |
Defined in Data.HashMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashMap k v -> c (HashMap k v) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashMap k v) # toConstr :: HashMap k v -> Constr # dataTypeOf :: HashMap k v -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashMap k v)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashMap k v)) # gmapT :: (forall b. Data b => b -> b) -> HashMap k v -> HashMap k v # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashMap k v -> r # gmapQ :: (forall d. Data d => d -> u) -> HashMap k v -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashMap k v -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashMap k v -> m (HashMap k v) # | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| (Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| (Eq k, Hashable k) => IsList (HashMap k v) | |
| (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
| (Show k, Show v) => Show (HashMap k v) | |
| (NFData k, NFData v) => NFData (HashMap k v) | |
Defined in Data.HashMap.Internal | |
| (Eq k, Eq v) => Eq (HashMap k v) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
| (Ord k, Ord v) => Ord (HashMap k v) | The ordering is total and consistent with the |
Defined in Data.HashMap.Internal | |
| (Hashable k, Hashable v) => Hashable (HashMap k v) | |
Defined in Data.HashMap.Internal | |
| type Item (HashMap k v) | |
Defined in Data.HashMap.Internal | |
A set of values. A set cannot contain duplicate values.
Instances
| Foldable HashSet | |
Defined in Data.HashSet.Internal Methods fold :: Monoid m => HashSet m -> m # foldMap :: Monoid m => (a -> m) -> HashSet a -> m # foldMap' :: Monoid m => (a -> m) -> HashSet a -> m # foldr :: (a -> b -> b) -> b -> HashSet a -> b # foldr' :: (a -> b -> b) -> b -> HashSet a -> b # foldl :: (b -> a -> b) -> b -> HashSet a -> b # foldl' :: (b -> a -> b) -> b -> HashSet a -> b # foldr1 :: (a -> a -> a) -> HashSet a -> a # foldl1 :: (a -> a -> a) -> HashSet a -> a # elem :: Eq a => a -> HashSet a -> Bool # maximum :: Ord a => HashSet a -> a # minimum :: Ord a => HashSet a -> a # | |
| Eq1 HashSet | |
| Ord1 HashSet | |
Defined in Data.HashSet.Internal | |
| Show1 HashSet | |
| NFData1 HashSet | Since: unordered-containers-0.2.14.0 |
Defined in Data.HashSet.Internal | |
| Hashable1 HashSet | |
Defined in Data.HashSet.Internal | |
| Lift a => Lift (HashSet a :: TYPE LiftedRep) | Since: unordered-containers-0.2.17.0 |
| (Data a, Eq a, Hashable a) => Data (HashSet a) | |
Defined in Data.HashSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> HashSet a -> c (HashSet a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (HashSet a) # toConstr :: HashSet a -> Constr # dataTypeOf :: HashSet a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (HashSet a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (HashSet a)) # gmapT :: (forall b. Data b => b -> b) -> HashSet a -> HashSet a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> HashSet a -> r # gmapQ :: (forall d. Data d => d -> u) -> HashSet a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> HashSet a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> HashSet a -> m (HashSet a) # | |
| (Hashable a, Eq a) => Monoid (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| (Hashable a, Eq a) => Semigroup (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| (Eq a, Hashable a) => IsList (HashSet a) | |
| (Eq a, Hashable a, Read a) => Read (HashSet a) | |
| Show a => Show (HashSet a) | |
| NFData a => NFData (HashSet a) | |
Defined in Data.HashSet.Internal | |
| Eq a => Eq (HashSet a) | Note that, in the presence of hash collisions, equal
In general, the lack of substitutivity can be observed with any function that depends on the key ordering, such as folds and traversals. |
| Ord a => Ord (HashSet a) | |
| Hashable a => Hashable (HashSet a) | |
Defined in Data.HashSet.Internal | |
| type Item (HashSet a) | |
Defined in Data.HashSet.Internal | |
A fixed-precision integer type with at least the range [-2^29 .. 2^29-1].
The exact range for a given implementation can be determined by using
minBound and maxBound from the Bounded class.
Instances
| Data Int | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int # dataTypeOf :: Int -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) # gmapT :: (forall b. Data b => b -> b) -> Int -> Int # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r # gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int # | |
| Storable Int | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bounded Int | Since: base-2.1 |
| Enum Int | Since: base-2.1 |
| Num Int | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Integral Int | Since: base-2.0.1 |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Show Int | Since: base-2.1 |
| NFData Int | |
Defined in Control.DeepSeq | |
| Eq Int | |
| Ord Int | |
| Hashable Int | |
Defined in Data.Hashable.Class | |
| Display Int | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
| Unbox Int | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Int -> ST s (Vector Int) # basicUnsafeThaw :: Vector Int -> ST s (Mutable Vector s Int) # basicLength :: Vector Int -> Int # basicUnsafeSlice :: Int -> Int -> Vector Int -> Vector Int # basicUnsafeIndexM :: Vector Int -> Int -> Box Int # basicUnsafeCopy :: Mutable Vector s Int -> Vector Int -> ST s () # | |
| MVector MVector Int | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Int -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Int -> MVector s Int # basicOverlaps :: MVector s Int -> MVector s Int -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Int) # basicInitialize :: MVector s Int -> ST s () # basicUnsafeReplicate :: Int -> Int -> ST s (MVector s Int) # basicUnsafeRead :: MVector s Int -> Int -> ST s Int # basicUnsafeWrite :: MVector s Int -> Int -> Int -> ST s () # basicClear :: MVector s Int -> ST s () # basicSet :: MVector s Int -> Int -> ST s () # basicUnsafeCopy :: MVector s Int -> MVector s Int -> ST s () # basicUnsafeMove :: MVector s Int -> MVector s Int -> ST s () # basicUnsafeGrow :: MVector s Int -> Int -> ST s (MVector s Int) # | |
| Generic1 (URec Int :: k -> Type) | |
| Foldable (UInt :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UInt m -> m # foldMap :: Monoid m => (a -> m) -> UInt a -> m # foldMap' :: Monoid m => (a -> m) -> UInt a -> m # foldr :: (a -> b -> b) -> b -> UInt a -> b # foldr' :: (a -> b -> b) -> b -> UInt a -> b # foldl :: (b -> a -> b) -> b -> UInt a -> b # foldl' :: (b -> a -> b) -> b -> UInt a -> b # foldr1 :: (a -> a -> a) -> UInt a -> a # foldl1 :: (a -> a -> a) -> UInt a -> a # elem :: Eq a => a -> UInt a -> Bool # maximum :: Ord a => UInt a -> a # | |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Int :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Generic (URec Int p) | |
| Show (URec Int p) | Since: base-4.9.0.0 |
| Eq (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| newtype Vector Int | |
| data URec Int (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Int | |
| type Rep1 (URec Int :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Int p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit signed integer type
Instances
16-bit signed integer type
Instances
32-bit signed integer type
Instances
64-bit signed integer type
Instances
A map of integers to values a.
Instances
| Foldable IntMap | Folds in order of increasing key. |
Defined in Data.IntMap.Internal Methods fold :: Monoid m => IntMap m -> m # foldMap :: Monoid m => (a -> m) -> IntMap a -> m # foldMap' :: Monoid m => (a -> m) -> IntMap a -> m # foldr :: (a -> b -> b) -> b -> IntMap a -> b # foldr' :: (a -> b -> b) -> b -> IntMap a -> b # foldl :: (b -> a -> b) -> b -> IntMap a -> b # foldl' :: (b -> a -> b) -> b -> IntMap a -> b # foldr1 :: (a -> a -> a) -> IntMap a -> a # foldl1 :: (a -> a -> a) -> IntMap a -> a # elem :: Eq a => a -> IntMap a -> Bool # maximum :: Ord a => IntMap a -> a # minimum :: Ord a => IntMap a -> a # | |
| Eq1 IntMap | Since: containers-0.5.9 |
| Ord1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
| Read1 IntMap | Since: containers-0.5.9 |
Defined in Data.IntMap.Internal | |
| Show1 IntMap | Since: containers-0.5.9 |
| Traversable IntMap | Traverses in order of increasing key. |
| Functor IntMap | |
| Hashable1 IntMap | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| Data a => Data (IntMap a) | |
Defined in Data.IntMap.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntMap a -> c (IntMap a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (IntMap a) # toConstr :: IntMap a -> Constr # dataTypeOf :: IntMap a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (IntMap a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (IntMap a)) # gmapT :: (forall b. Data b => b -> b) -> IntMap a -> IntMap a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntMap a -> r # gmapQ :: (forall d. Data d => d -> u) -> IntMap a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntMap a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntMap a -> m (IntMap a) # | |
| Monoid (IntMap a) | |
| Semigroup (IntMap a) | Since: containers-0.5.7 |
| IsList (IntMap a) | Since: containers-0.5.6.2 |
| Read e => Read (IntMap e) | |
| Show a => Show (IntMap a) | |
| NFData a => NFData (IntMap a) | |
Defined in Data.IntMap.Internal | |
| Eq a => Eq (IntMap a) | |
| Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
| Hashable v => Hashable (IntMap v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| type Item (IntMap a) | |
Defined in Data.IntMap.Internal | |
A set of integers.
Instances
| Data IntSet | |
Defined in Data.IntSet.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> IntSet -> c IntSet # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c IntSet # toConstr :: IntSet -> Constr # dataTypeOf :: IntSet -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c IntSet) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c IntSet) # gmapT :: (forall b. Data b => b -> b) -> IntSet -> IntSet # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> IntSet -> r # gmapQ :: (forall d. Data d => d -> u) -> IntSet -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> IntSet -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> IntSet -> m IntSet # | |
| Monoid IntSet | |
| Semigroup IntSet | Since: containers-0.5.7 |
| IsList IntSet | Since: containers-0.5.6.2 |
| Read IntSet | |
| Show IntSet | |
| NFData IntSet | |
Defined in Data.IntSet.Internal | |
| Eq IntSet | |
| Ord IntSet | |
| Hashable IntSet | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| type Item IntSet | |
Defined in Data.IntSet.Internal | |
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
do not satisfy p and second element is the remainder of the list:
>>>break (> 3) [1,2,3,4,1,2,3,4]([1,2,3],[4,1,2,3,4])>>>break (< 9) [1,2,3]([],[1,2,3])>>>break (> 9) [1,2,3]([1,2,3],[])
drop n xs returns the suffix of xs
after the first n elements, or [] if n >= .length xs
>>>drop 6 "Hello World!""World!">>>drop 3 [1,2,3,4,5][4,5]>>>drop 3 [1,2][]>>>drop 3 [][]>>>drop (-1) [1,2][1,2]>>>drop 0 [1,2][1,2]
It is an instance of the more general genericDrop,
in which n may be of any integral type.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>filter odd [1, 2, 3][1,3]
lines breaks a string up into a list of strings at newline
characters. The resulting strings do not contain newlines.
Note that after splitting the string at newline characters, the last part of the string is considered a line even if it doesn't end with a newline. For example,
>>>lines ""[]
>>>lines "\n"[""]
>>>lines "one"["one"]
>>>lines "one\n"["one"]
>>>lines "one\n\n"["one",""]
>>>lines "one\ntwo"["one","two"]
>>>lines "one\ntwo\n"["one","two"]
Thus contains at least as many elements as newlines in lines ss.
lookup :: Eq a => a -> [(a, b)] -> Maybe b #
\(\mathcal{O}(n)\). lookup key assocs looks up a key in an association
list.
>>>lookup 2 []Nothing>>>lookup 2 [(1, "first")]Nothing>>>lookup 2 [(1, "first"), (2, "second"), (3, "third")]Just "second"
map :: (a -> b) -> [a] -> [b] #
\(\mathcal{O}(n)\). map f xs is the list obtained by applying f to
each element of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
>>>map (+1) [1, 2, 3][2,3,4]
replicate :: Int -> a -> [a] #
replicate n x is a list of length n with x the value of
every element.
It is an instance of the more general genericReplicate,
in which n may be of any integral type.
>>>replicate 0 True[]>>>replicate (-1) True[]>>>replicate 4 True[True,True,True,True]
reverse xs returns the elements of xs in reverse order.
xs must be finite.
>>>reverse [][]>>>reverse [42][42]>>>reverse [2,5,7][7,5,2]>>>reverse [1..]* Hangs forever *
span :: (a -> Bool) -> [a] -> ([a], [a]) #
span, applied to a predicate p and a list xs, returns a tuple where
first element is longest prefix (possibly empty) of xs of elements that
satisfy p and second element is the remainder of the list:
>>>span (< 3) [1,2,3,4,1,2,3,4]([1,2],[3,4,1,2,3,4])>>>span (< 9) [1,2,3]([1,2,3],[])>>>span (< 0) [1,2,3]([],[1,2,3])
take n, applied to a list xs, returns the prefix of xs
of length n, or xs itself if n >= .length xs
>>>take 5 "Hello World!""Hello">>>take 3 [1,2,3,4,5][1,2,3]>>>take 3 [1,2][1,2]>>>take 3 [][]>>>take (-1) [1,2][]>>>take 0 [1,2][]
It is an instance of the more general genericTake,
in which n may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile, applied to a predicate p and a list xs, returns the
longest prefix (possibly empty) of xs of elements that satisfy p.
>>>takeWhile (< 3) [1,2,3,4,1,2,3,4][1,2]>>>takeWhile (< 9) [1,2,3][1,2,3]>>>takeWhile (< 0) [1,2,3][]
words breaks a string up into a list of words, which were delimited
by white space.
>>>words "Lorem ipsum\ndolor"["Lorem","ipsum","dolor"]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of
corresponding pairs.
>>>zip [1, 2] ['a', 'b'][(1,'a'),(2,'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>zip [1] ['a', 'b'][(1,'a')]>>>zip [1, 2] ['a'][(1,'a')]>>>zip [] [1..][]>>>zip [1..] [][]
zip is right-lazy:
>>>zip [] undefined[]>>>zip undefined []*** Exception: Prelude.undefined ...
zip is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
A Map from keys k to values a.
The Semigroup operation for Map is union, which prefers
values from the left operand. If m1 maps a key k to a value
a1, and m2 maps the same key to a different value a2, then
their union m1 <> m2 maps k to a1.
Instances
| Bifoldable Map | Since: containers-0.6.3.1 |
| Eq2 Map | Since: containers-0.5.9 |
| Ord2 Map | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
| Show2 Map | Since: containers-0.5.9 |
| Hashable2 Map | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| Foldable (Map k) | Folds in order of increasing key. |
Defined in Data.Map.Internal Methods fold :: Monoid m => Map k m -> m # foldMap :: Monoid m => (a -> m) -> Map k a -> m # foldMap' :: Monoid m => (a -> m) -> Map k a -> m # foldr :: (a -> b -> b) -> b -> Map k a -> b # foldr' :: (a -> b -> b) -> b -> Map k a -> b # foldl :: (b -> a -> b) -> b -> Map k a -> b # foldl' :: (b -> a -> b) -> b -> Map k a -> b # foldr1 :: (a -> a -> a) -> Map k a -> a # foldl1 :: (a -> a -> a) -> Map k a -> a # elem :: Eq a => a -> Map k a -> Bool # maximum :: Ord a => Map k a -> a # minimum :: Ord a => Map k a -> a # | |
| Eq k => Eq1 (Map k) | Since: containers-0.5.9 |
| Ord k => Ord1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
| (Ord k, Read k) => Read1 (Map k) | Since: containers-0.5.9 |
Defined in Data.Map.Internal | |
| Show k => Show1 (Map k) | Since: containers-0.5.9 |
| Traversable (Map k) | Traverses in order of increasing key. |
| Functor (Map k) | |
| Hashable k => Hashable1 (Map k) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| (Data k, Data a, Ord k) => Data (Map k a) | |
Defined in Data.Map.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Map k a -> c (Map k a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Map k a) # toConstr :: Map k a -> Constr # dataTypeOf :: Map k a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Map k a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Map k a)) # gmapT :: (forall b. Data b => b -> b) -> Map k a -> Map k a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Map k a -> r # gmapQ :: (forall d. Data d => d -> u) -> Map k a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Map k a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Map k a -> m (Map k a) # | |
| Ord k => Monoid (Map k v) | |
| Ord k => Semigroup (Map k v) | |
| Ord k => IsList (Map k v) | Since: containers-0.5.6.2 |
| (Ord k, Read k, Read e) => Read (Map k e) | |
| (Show k, Show a) => Show (Map k a) | |
| (NFData k, NFData a) => NFData (Map k a) | |
Defined in Data.Map.Internal | |
| (Eq k, Eq a) => Eq (Map k a) | |
| (Ord k, Ord v) => Ord (Map k v) | |
| (Hashable k, Hashable v) => Hashable (Map k v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| type Item (Map k v) | |
Defined in Data.Map.Internal | |
The Maybe type encapsulates an optional value. A value of type
either contains a value of type Maybe aa (represented as ),
or it is empty (represented as Just aNothing). Using Maybe is a good way to
deal with errors or exceptional cases without resorting to drastic
measures such as error.
The Maybe type is also a monad. It is a simple kind of error
monad, where all errors are represented by Nothing. A richer
error monad can be built using the Either type.
Instances
| MonadFail Maybe | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| Foldable Maybe | Since: base-2.1 |
Defined in Data.Foldable Methods fold :: Monoid m => Maybe m -> m # foldMap :: Monoid m => (a -> m) -> Maybe a -> m # foldMap' :: Monoid m => (a -> m) -> Maybe a -> m # foldr :: (a -> b -> b) -> b -> Maybe a -> b # foldr' :: (a -> b -> b) -> b -> Maybe a -> b # foldl :: (b -> a -> b) -> b -> Maybe a -> b # foldl' :: (b -> a -> b) -> b -> Maybe a -> b # foldr1 :: (a -> a -> a) -> Maybe a -> a # foldl1 :: (a -> a -> a) -> Maybe a -> a # elem :: Eq a => a -> Maybe a -> Bool # maximum :: Ord a => Maybe a -> a # minimum :: Ord a => Maybe a -> a # | |
| Traversable Maybe | Since: base-2.1 |
| Alternative Maybe | Since: base-2.1 |
| Applicative Maybe | Since: base-2.1 |
| Functor Maybe | Since: base-2.1 |
| Monad Maybe | Since: base-2.1 |
| MonadPlus Maybe | Since: base-2.1 |
| NFData1 Maybe | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| MonadThrow Maybe | |
Defined in Control.Monad.Catch | |
| Hashable1 Maybe | |
Defined in Data.Hashable.Class | |
| Generic1 Maybe | |
| Data a => Data (Maybe a) | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Maybe a -> c (Maybe a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Maybe a) # toConstr :: Maybe a -> Constr # dataTypeOf :: Maybe a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Maybe a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Maybe a)) # gmapT :: (forall b. Data b => b -> b) -> Maybe a -> Maybe a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Maybe a -> r # gmapQ :: (forall d. Data d => d -> u) -> Maybe a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Maybe a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Maybe a -> m (Maybe a) # | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Generic (Maybe a) | |
| SingKind a => SingKind (Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics Associated Types type DemoteRep (Maybe a) | |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Show a => Show (Maybe a) | Since: base-2.1 |
| NFData a => NFData (Maybe a) | |
Defined in Control.DeepSeq | |
| Eq a => Eq (Maybe a) | Since: base-2.1 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Hashable a => Hashable (Maybe a) | |
Defined in Data.Hashable.Class | |
| SingI ('Nothing :: Maybe a) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| SingI a2 => SingI ('Just a2 :: Maybe a1) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep1 Maybe | Since: base-4.6.0.0 |
| type DemoteRep (Maybe a) | |
Defined in GHC.Generics | |
| type Rep (Maybe a) | Since: base-4.6.0.0 |
Defined in GHC.Generics | |
| data Sing (b :: Maybe a) | |
catMaybes :: [Maybe a] -> [a] #
The catMaybes function takes a list of Maybes and returns
a list of all the Just values.
Examples
Basic usage:
>>>catMaybes [Just 1, Nothing, Just 3][1,3]
When constructing a list of Maybe values, catMaybes can be used
to return all of the "success" results (if the list is the result
of a map, then mapMaybe would be more appropriate):
>>>import Text.Read ( readMaybe )>>>[readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][Just 1,Nothing,Just 3]>>>catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ][1,3]
fromMaybe :: a -> Maybe a -> a #
The fromMaybe function takes a default value and a Maybe
value. If the Maybe is Nothing, it returns the default value;
otherwise, it returns the value contained in the Maybe.
Examples
Basic usage:
>>>fromMaybe "" (Just "Hello, World!")"Hello, World!"
>>>fromMaybe "" Nothing""
Read an integer from a string using readMaybe. If we fail to
parse an integer, we want to return 0 by default:
>>>import Text.Read ( readMaybe )>>>fromMaybe 0 (readMaybe "5")5>>>fromMaybe 0 (readMaybe "")0
listToMaybe :: [a] -> Maybe a #
The listToMaybe function returns Nothing on an empty list
or where Just aa is the first element of the list.
Examples
Basic usage:
>>>listToMaybe []Nothing
>>>listToMaybe [9]Just 9
>>>listToMaybe [1,2,3]Just 1
Composing maybeToList with listToMaybe should be the identity
on singleton/empty lists:
>>>maybeToList $ listToMaybe [5][5]>>>maybeToList $ listToMaybe [][]
But not on lists with more than one element:
>>>maybeToList $ listToMaybe [1,2,3][1]
mapMaybe :: (a -> Maybe b) -> [a] -> [b] #
The mapMaybe function is a version of map which can throw
out elements. In particular, the functional argument returns
something of type . If this is Maybe bNothing, no element
is added on to the result list. If it is , then Just bb is
included in the result list.
Examples
Using is a shortcut for mapMaybe f x
in most cases:catMaybes $ map f x
>>>import Text.Read ( readMaybe )>>>let readMaybeInt = readMaybe :: String -> Maybe Int>>>mapMaybe readMaybeInt ["1", "Foo", "3"][1,3]>>>catMaybes $ map readMaybeInt ["1", "Foo", "3"][1,3]
If we map the Just constructor, the entire list should be returned:
>>>mapMaybe Just [1,2,3][1,2,3]
maybe :: b -> (a -> b) -> Maybe a -> b #
The maybe function takes a default value, a function, and a Maybe
value. If the Maybe value is Nothing, the function returns the
default value. Otherwise, it applies the function to the value inside
the Just and returns the result.
Examples
Basic usage:
>>>maybe False odd (Just 3)True
>>>maybe False odd NothingFalse
Read an integer from a string using readMaybe. If we succeed,
return twice the integer; that is, apply (*2) to it. If instead
we fail to parse an integer, return 0 by default:
>>>import Text.Read ( readMaybe )>>>maybe 0 (*2) (readMaybe "5")10>>>maybe 0 (*2) (readMaybe "")0
Apply show to a Maybe Int. If we have Just n, we want to show
the underlying Int n. But if we have Nothing, we return the
empty string instead of (for example) "Nothing":
>>>maybe "" show (Just 5)"5">>>maybe "" show Nothing""
maybeToList :: Maybe a -> [a] #
The maybeToList function returns an empty list when given
Nothing or a singleton list when given Just.
Examples
Basic usage:
>>>maybeToList (Just 7)[7]
>>>maybeToList Nothing[]
One can use maybeToList to avoid pattern matching when combined
with a function that (safely) works on lists:
>>>import Text.Read ( readMaybe )>>>sum $ maybeToList (readMaybe "3")3>>>sum $ maybeToList (readMaybe "")0
class Semigroup a => Monoid a where #
The class of monoids (types with an associative binary operation that has an identity). Instances should satisfy the following:
- Right identity
x<>mempty= x- Left identity
mempty<>x = x- Associativity
x(<>(y<>z) = (x<>y)<>zSemigrouplaw)- Concatenation
mconcat=foldr(<>)mempty
The method names refer to the monoid of lists under concatenation, but there are many other instances.
Some types can be viewed as a monoid in more than one way,
e.g. both addition and multiplication on numbers.
In such cases we often define newtypes and make those instances
of Monoid, e.g. Sum and Product.
NOTE: Semigroup is a superclass of Monoid since base-4.11.0.0.
Minimal complete definition
Methods
Identity of mappend
>>>"Hello world" <> mempty"Hello world"
An associative operation
NOTE: This method is redundant and has the default
implementation since base-4.11.0.0.
Should it be implemented manually, since mappend = (<>)mappend is a synonym for
(<>), it is expected that the two functions are defined the same
way. In a future GHC release mappend will be removed from Monoid.
Fold a list using the monoid.
For most types, the default definition for mconcat will be
used, but the function is included in the class definition so
that an optimized version can be provided for specific types.
>>>mconcat ["Hello", " ", "Haskell", "!"]"Hello Haskell!"
Instances
| Monoid Builder | |
| Monoid ByteString | |
Defined in Data.ByteString.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods mempty :: ByteString # mappend :: ByteString -> ByteString -> ByteString # mconcat :: [ByteString] -> ByteString # | |
| Monoid ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods mappend :: ShortByteString -> ShortByteString -> ShortByteString # mconcat :: [ShortByteString] -> ShortByteString # | |
| Monoid IntSet | |
| Monoid Ordering | Since: base-2.1 |
| Monoid Utf8Builder | |
Defined in RIO.Prelude.Display Methods mempty :: Utf8Builder # mappend :: Utf8Builder -> Utf8Builder -> Utf8Builder # mconcat :: [Utf8Builder] -> Utf8Builder # | |
| Monoid LogFunc |
Since: rio-0.0.0.0 |
| Monoid () | Since: base-2.1 |
| (Semigroup a, Monoid a) => Monoid (Concurrently a) | Since: async-2.1.0 |
Defined in Control.Concurrent.Async Methods mempty :: Concurrently a # mappend :: Concurrently a -> Concurrently a -> Concurrently a # mconcat :: [Concurrently a] -> Concurrently a # | |
| Monoid a => Monoid (Identity a) | Since: base-4.9.0.0 |
| Monoid a => Monoid (Down a) | Since: base-4.11.0.0 |
| Monoid p => Monoid (Par1 p) | Since: base-4.12.0.0 |
| Monoid (IntMap a) | |
| Monoid (Seq a) | |
| Monoid (MergeSet a) | |
| Ord a => Monoid (Set a) | |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Monoid (GLogFunc msg) |
Since: rio-0.1.13.0 |
| (Hashable a, Eq a) => Monoid (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| Monoid (Vector a) | |
| Semigroup a => Monoid (Maybe a) | Lift a semigroup into Since 4.11.0: constraint on inner Since: base-2.1 |
| Monoid a => Monoid (a) | Since: base-4.15 |
| Monoid [a] | Since: base-2.1 |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Monoid (U1 p) | Since: base-4.12.0.0 |
| Monoid a => Monoid (ST s a) | Since: base-4.11.0.0 |
| Ord k => Monoid (Map k v) | |
| Monoid a => Monoid (RIO env a) | |
| (Monoid a, MonadUnliftIO m) => Monoid (Conc m a) | Since: unliftio-0.2.9.0 |
| (Semigroup a, Monoid a, MonadUnliftIO m) => Monoid (Concurrently m a) | Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods mempty :: Concurrently m a # mappend :: Concurrently m a -> Concurrently m a -> Concurrently m a # mconcat :: [Concurrently m a] -> Concurrently m a # | |
| (Eq k, Hashable k) => Monoid (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| Monoid b => Monoid (a -> b) | Since: base-2.1 |
| (Monoid a, Monoid b) => Monoid (a, b) | Since: base-2.1 |
| Monoid a => Monoid (Const a b) | Since: base-4.9.0.0 |
| Monoid (f p) => Monoid (Rec1 f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c) => Monoid (a, b, c) | Since: base-2.1 |
| (Monoid (f p), Monoid (g p)) => Monoid ((f :*: g) p) | Since: base-4.12.0.0 |
| Monoid c => Monoid (K1 i c p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d) => Monoid (a, b, c, d) | Since: base-2.1 |
| Monoid (f (g p)) => Monoid ((f :.: g) p) | Since: base-4.12.0.0 |
| Monoid (f p) => Monoid (M1 i c f p) | Since: base-4.12.0.0 |
| (Monoid a, Monoid b, Monoid c, Monoid d, Monoid e) => Monoid (a, b, c, d, e) | Since: base-2.1 |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose
constituent types are in Ord. The declared order of the constructors in
the data declaration determines the ordering in derived Ord instances. The
Ordering datatype allows a single comparison to determine the precise
ordering of two objects.
Ord, as defined by the Haskell report, implements a total order and has the
following properties:
- Comparability
x <= y || y <= x=True- Transitivity
- if
x <= y && y <= z=True, thenx <= z=True - Reflexivity
x <= x=True- Antisymmetry
- if
x <= y && y <= x=True, thenx == y=True
The following operator interactions are expected to hold:
x >= y=y <= xx < y=x <= y && x /= yx > y=y < xx < y=compare x y == LTx > y=compare x y == GTx == y=compare x y == EQmin x y == if x <= y then x else y=Truemax x y == if x >= y then x else y=True
Note that (7.) and (8.) do not require min and max to return either of
their arguments. The result is merely required to equal one of the
arguments in terms of (==).
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Methods
compare :: a -> a -> Ordering #
(<) :: a -> a -> Bool infix 4 #
(<=) :: a -> a -> Bool infix 4 #
(>) :: a -> a -> Bool infix 4 #
Instances
| Ord SomeTypeRep | |
Defined in Data.Typeable.Internal Methods compare :: SomeTypeRep -> SomeTypeRep -> Ordering # (<) :: SomeTypeRep -> SomeTypeRep -> Bool # (<=) :: SomeTypeRep -> SomeTypeRep -> Bool # (>) :: SomeTypeRep -> SomeTypeRep -> Bool # (>=) :: SomeTypeRep -> SomeTypeRep -> Bool # max :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # min :: SomeTypeRep -> SomeTypeRep -> SomeTypeRep # | |
| Ord Void | Since: base-4.8.0.0 |
| Ord BlockReason | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: BlockReason -> BlockReason -> Ordering # (<) :: BlockReason -> BlockReason -> Bool # (<=) :: BlockReason -> BlockReason -> Bool # (>) :: BlockReason -> BlockReason -> Bool # (>=) :: BlockReason -> BlockReason -> Bool # max :: BlockReason -> BlockReason -> BlockReason # min :: BlockReason -> BlockReason -> BlockReason # | |
| Ord ThreadId | Since: base-4.2.0.0 |
Defined in GHC.Conc.Sync | |
| Ord ThreadStatus | Since: base-4.3.0.0 |
Defined in GHC.Conc.Sync Methods compare :: ThreadStatus -> ThreadStatus -> Ordering # (<) :: ThreadStatus -> ThreadStatus -> Bool # (<=) :: ThreadStatus -> ThreadStatus -> Bool # (>) :: ThreadStatus -> ThreadStatus -> Bool # (>=) :: ThreadStatus -> ThreadStatus -> Bool # max :: ThreadStatus -> ThreadStatus -> ThreadStatus # min :: ThreadStatus -> ThreadStatus -> ThreadStatus # | |
| Ord ArithException | Since: base-3.0 |
Defined in GHC.Exception.Type Methods compare :: ArithException -> ArithException -> Ordering # (<) :: ArithException -> ArithException -> Bool # (<=) :: ArithException -> ArithException -> Bool # (>) :: ArithException -> ArithException -> Bool # (>=) :: ArithException -> ArithException -> Bool # max :: ArithException -> ArithException -> ArithException # min :: ArithException -> ArithException -> ArithException # | |
| Ord Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods compare :: Associativity -> Associativity -> Ordering # (<) :: Associativity -> Associativity -> Bool # (<=) :: Associativity -> Associativity -> Bool # (>) :: Associativity -> Associativity -> Bool # (>=) :: Associativity -> Associativity -> Bool # max :: Associativity -> Associativity -> Associativity # min :: Associativity -> Associativity -> Associativity # | |
| Ord DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: DecidedStrictness -> DecidedStrictness -> Ordering # (<) :: DecidedStrictness -> DecidedStrictness -> Bool # (<=) :: DecidedStrictness -> DecidedStrictness -> Bool # (>) :: DecidedStrictness -> DecidedStrictness -> Bool # (>=) :: DecidedStrictness -> DecidedStrictness -> Bool # max :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # min :: DecidedStrictness -> DecidedStrictness -> DecidedStrictness # | |
| Ord Fixity | Since: base-4.6.0.0 |
| Ord SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceStrictness -> SourceStrictness -> Ordering # (<) :: SourceStrictness -> SourceStrictness -> Bool # (<=) :: SourceStrictness -> SourceStrictness -> Bool # (>) :: SourceStrictness -> SourceStrictness -> Bool # (>=) :: SourceStrictness -> SourceStrictness -> Bool # max :: SourceStrictness -> SourceStrictness -> SourceStrictness # min :: SourceStrictness -> SourceStrictness -> SourceStrictness # | |
| Ord SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: SourceUnpackedness -> SourceUnpackedness -> Ordering # (<) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (<=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>) :: SourceUnpackedness -> SourceUnpackedness -> Bool # (>=) :: SourceUnpackedness -> SourceUnpackedness -> Bool # max :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # min :: SourceUnpackedness -> SourceUnpackedness -> SourceUnpackedness # | |
| Ord SeekMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
| Ord ArrayException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: ArrayException -> ArrayException -> Ordering # (<) :: ArrayException -> ArrayException -> Bool # (<=) :: ArrayException -> ArrayException -> Bool # (>) :: ArrayException -> ArrayException -> Bool # (>=) :: ArrayException -> ArrayException -> Bool # max :: ArrayException -> ArrayException -> ArrayException # min :: ArrayException -> ArrayException -> ArrayException # | |
| Ord AsyncException | Since: base-4.2.0.0 |
Defined in GHC.IO.Exception Methods compare :: AsyncException -> AsyncException -> Ordering # (<) :: AsyncException -> AsyncException -> Bool # (<=) :: AsyncException -> AsyncException -> Bool # (>) :: AsyncException -> AsyncException -> Bool # (>=) :: AsyncException -> AsyncException -> Bool # max :: AsyncException -> AsyncException -> AsyncException # min :: AsyncException -> AsyncException -> AsyncException # | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| Ord BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: BufferMode -> BufferMode -> Ordering # (<) :: BufferMode -> BufferMode -> Bool # (<=) :: BufferMode -> BufferMode -> Bool # (>) :: BufferMode -> BufferMode -> Bool # (>=) :: BufferMode -> BufferMode -> Bool # max :: BufferMode -> BufferMode -> BufferMode # min :: BufferMode -> BufferMode -> BufferMode # | |
| Ord Newline | Since: base-4.3.0.0 |
| Ord NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods compare :: NewlineMode -> NewlineMode -> Ordering # (<) :: NewlineMode -> NewlineMode -> Bool # (<=) :: NewlineMode -> NewlineMode -> Bool # (>) :: NewlineMode -> NewlineMode -> Bool # (>=) :: NewlineMode -> NewlineMode -> Bool # max :: NewlineMode -> NewlineMode -> NewlineMode # min :: NewlineMode -> NewlineMode -> NewlineMode # | |
| Ord IOMode | Since: base-4.2.0.0 |
| Ord Int16 | Since: base-2.1 |
| Ord Int32 | Since: base-2.1 |
| Ord Int64 | Since: base-2.1 |
| Ord Int8 | Since: base-2.1 |
| Ord Word16 | Since: base-2.1 |
| Ord Word32 | Since: base-2.1 |
| Ord Word64 | Since: base-2.1 |
| Ord Word8 | Since: base-2.1 |
| Ord ByteString | |
Defined in Data.ByteString.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods compare :: ByteString -> ByteString -> Ordering # (<) :: ByteString -> ByteString -> Bool # (<=) :: ByteString -> ByteString -> Bool # (>) :: ByteString -> ByteString -> Bool # (>=) :: ByteString -> ByteString -> Bool # max :: ByteString -> ByteString -> ByteString # min :: ByteString -> ByteString -> ByteString # | |
| Ord ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods compare :: ShortByteString -> ShortByteString -> Ordering # (<) :: ShortByteString -> ShortByteString -> Bool # (<=) :: ShortByteString -> ShortByteString -> Bool # (>) :: ShortByteString -> ShortByteString -> Bool # (>=) :: ShortByteString -> ShortByteString -> Bool # max :: ShortByteString -> ShortByteString -> ShortByteString # min :: ShortByteString -> ShortByteString -> ShortByteString # | |
| Ord IntSet | |
| Ord Ordering | |
Defined in GHC.Classes | |
| Ord TyCon | |
| Ord LogLevel | |
Defined in RIO.Prelude.Logger | |
| Ord LocalTime | |
Defined in Data.Time.LocalTime.Internal.LocalTime | |
| Ord ConcException | |
Defined in UnliftIO.Internals.Async Methods compare :: ConcException -> ConcException -> Ordering # (<) :: ConcException -> ConcException -> Bool # (<=) :: ConcException -> ConcException -> Bool # (>) :: ConcException -> ConcException -> Bool # (>=) :: ConcException -> ConcException -> Bool # max :: ConcException -> ConcException -> ConcException # min :: ConcException -> ConcException -> ConcException # | |
| Ord Integer | |
| Ord Natural | |
| Ord () | |
| Ord Bool | |
| Ord Char | |
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Ord Int | |
| Ord Word | |
| Ord (Async a) | |
Defined in Control.Concurrent.Async | |
| Ord a => Ord (ZipList a) | Since: base-4.7.0.0 |
| Ord a => Ord (Identity a) | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
| Ord a => Ord (Down a) | Since: base-4.6.0.0 |
| Ord p => Ord (Par1 p) | Since: base-4.7.0.0 |
| Integral a => Ord (Ratio a) | Since: base-2.0.1 |
| Ord a => Ord (IntMap a) | |
Defined in Data.IntMap.Internal | |
| Ord a => Ord (Seq a) | |
| Ord a => Ord (ViewL a) | |
Defined in Data.Sequence.Internal | |
| Ord a => Ord (ViewR a) | |
Defined in Data.Sequence.Internal | |
| Ord a => Ord (Set a) | |
| Ord a => Ord (Hashed a) | |
Defined in Data.Hashable.Class | |
| Ord a => Ord (HashSet a) | |
| Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
| Ord a => Ord (NonEmpty a) | Since: base-4.9.0.0 |
| Ord a => Ord (Maybe a) | Since: base-2.1 |
| Ord a => Ord (a) | |
| Ord a => Ord [a] | |
| (Ord a, Ord b) => Ord (Either a b) | Since: base-2.1 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| Ord (TypeRep a) | Since: base-4.4.0.0 |
| Ord (U1 p) | Since: base-4.7.0.0 |
| Ord (V1 p) | Since: base-4.9.0.0 |
| (Ord k, Ord v) => Ord (Map k v) | |
| (Ord k, Ord v) => Ord (HashMap k v) | The ordering is total and consistent with the |
Defined in Data.HashMap.Internal | |
| (Ord a, Ord b) => Ord (a, b) | |
| Ord a => Ord (Const a b) | Since: base-4.9.0.0 |
| Ord (f p) => Ord (Rec1 f p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (URec (Ptr ()) p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering # (<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # (>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool # max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p # | |
| Ord (URec Char p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| Ord (URec Int p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| (Ord e, Ord1 m, Ord a) => Ord (ErrorT e m a) | |
Defined in Control.Monad.Trans.Error | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord (f p), Ord (g p)) => Ord ((f :*: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord (f p), Ord (g p)) => Ord ((f :+: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord c => Ord (K1 i c p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
Defined in GHC.Classes | |
| Ord (f (g p)) => Ord ((f :.: g) p) | Since: base-4.7.0.0 |
Defined in GHC.Generics | |
| Ord (f p) => Ord (M1 i c f p) | Since: base-4.7.0.0 |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e) -> (a, b, c, d, e) -> Ordering # (<) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (<=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # (>=) :: (a, b, c, d, e) -> (a, b, c, d, e) -> Bool # max :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # min :: (a, b, c, d, e) -> (a, b, c, d, e) -> (a, b, c, d, e) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Ordering # (<) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (<=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # (>=) :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> Bool # max :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # min :: (a, b, c, d, e, f) -> (a, b, c, d, e, f) -> (a, b, c, d, e, f) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Ordering # (<) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (<=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # (>=) :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> Bool # max :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # min :: (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) -> (a, b, c, d, e, f, g) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Ordering # (<) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (<=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # (>=) :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> Bool # max :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # min :: (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) -> (a, b, c, d, e, f, g, h) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> Bool # max :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # min :: (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) -> (a, b, c, d, e, f, g, h, i) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # min :: (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) -> (a, b, c, d, e, f, g, h, i, j) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # min :: (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) -> (a, b, c, d, e, f, g, h, i, j, k) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # min :: (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) -> (a, b, c, d, e, f, g, h, i, j, k, l) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) -> (a, b, c, d, e, f, g, h, i, j, k, l, m) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n) # | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | |
Defined in GHC.Classes Methods compare :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Ordering # (<) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (<=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # (>=) :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> Bool # max :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # min :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) -> (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) # | |
Instances
| Data Ordering | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ordering -> c Ordering # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Ordering # toConstr :: Ordering -> Constr # dataTypeOf :: Ordering -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Ordering) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Ordering) # gmapT :: (forall b. Data b => b -> b) -> Ordering -> Ordering # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ordering -> r # gmapQ :: (forall d. Data d => d -> u) -> Ordering -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Ordering -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ordering -> m Ordering # | |
| Monoid Ordering | Since: base-2.1 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Bounded Ordering | Since: base-2.1 |
| Enum Ordering | Since: base-2.1 |
| Generic Ordering | |
| Read Ordering | Since: base-2.1 |
| Show Ordering | Since: base-2.1 |
| NFData Ordering | |
Defined in Control.DeepSeq | |
| Eq Ordering | |
| Ord Ordering | |
Defined in GHC.Classes | |
| Hashable Ordering | |
Defined in Data.Hashable.Class | |
| type Rep Ordering | Since: base-4.6.0.0 |
comparing :: Ord a => (b -> a) -> b -> b -> Ordering #
comparing p x y = compare (p x) (p y)
Useful combinator for use in conjunction with the xxxBy family
of functions from Data.List, for example:
... sortBy (comparing fst) ...
Proxy is a type that holds no data, but has a phantom parameter of
arbitrary type (or even kind). Its use is to provide type information, even
though there is no value available of that type (or it may be too costly to
create one).
Historically, is a safer alternative to the
Proxy :: Proxy a idiom.undefined :: a
>>>Proxy :: Proxy (Void, Int -> Int)Proxy
Proxy can even hold types of higher kinds,
>>>Proxy :: Proxy EitherProxy
>>>Proxy :: Proxy FunctorProxy
>>>Proxy :: Proxy complicatedStructureProxy
Constructors
| Proxy |
Instances
| Generic1 (Proxy :: k -> Type) | |
| Foldable (Proxy :: TYPE LiftedRep -> Type) | Since: base-4.7.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => Proxy m -> m # foldMap :: Monoid m => (a -> m) -> Proxy a -> m # foldMap' :: Monoid m => (a -> m) -> Proxy a -> m # foldr :: (a -> b -> b) -> b -> Proxy a -> b # foldr' :: (a -> b -> b) -> b -> Proxy a -> b # foldl :: (b -> a -> b) -> b -> Proxy a -> b # foldl' :: (b -> a -> b) -> b -> Proxy a -> b # foldr1 :: (a -> a -> a) -> Proxy a -> a # foldl1 :: (a -> a -> a) -> Proxy a -> a # elem :: Eq a => a -> Proxy a -> Bool # maximum :: Ord a => Proxy a -> a # minimum :: Ord a => Proxy a -> a # | |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Alternative (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| Applicative (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Functor (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Monad (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| MonadPlus (Proxy :: Type -> Type) | Since: base-4.9.0.0 |
| NFData1 (Proxy :: TYPE LiftedRep -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
| Hashable1 (Proxy :: Type -> Type) | |
Defined in Data.Hashable.Class | |
| Data t => Data (Proxy t) | Since: base-4.7.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) # toConstr :: Proxy t -> Constr # dataTypeOf :: Proxy t -> DataType # dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) # dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) # gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r # gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) # | |
| Monoid (Proxy s) | Since: base-4.7.0.0 |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| Enum (Proxy s) | Since: base-4.7.0.0 |
| Generic (Proxy t) | |
| Ix (Proxy s) | Since: base-4.7.0.0 |
Defined in Data.Proxy | |
| Read (Proxy t) | Since: base-4.7.0.0 |
| Show (Proxy s) | Since: base-4.7.0.0 |
| NFData (Proxy a) | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq (Proxy s) | Since: base-4.7.0.0 |
| Ord (Proxy s) | Since: base-4.7.0.0 |
| Hashable (Proxy a) | |
Defined in Data.Hashable.Class | |
| type Rep1 (Proxy :: k -> Type) | Since: base-4.6.0.0 |
| type Rep (Proxy t) | Since: base-4.6.0.0 |
The class of semigroups (types with an associative binary operation).
Instances should satisfy the following:
Since: base-4.9.0.0
Instances
| Semigroup Void | Since: base-4.9.0.0 |
| Semigroup Builder | |
| Semigroup ByteString | |
Defined in Data.ByteString.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods (<>) :: ByteString -> ByteString -> ByteString # sconcat :: NonEmpty ByteString -> ByteString # stimes :: Integral b => b -> ByteString -> ByteString # | |
| Semigroup ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods (<>) :: ShortByteString -> ShortByteString -> ShortByteString # sconcat :: NonEmpty ShortByteString -> ShortByteString # stimes :: Integral b => b -> ShortByteString -> ShortByteString # | |
| Semigroup IntSet | Since: containers-0.5.7 |
| Semigroup Ordering | Since: base-4.9.0.0 |
| Semigroup Utf8Builder | |
Defined in RIO.Prelude.Display Methods (<>) :: Utf8Builder -> Utf8Builder -> Utf8Builder # sconcat :: NonEmpty Utf8Builder -> Utf8Builder # stimes :: Integral b => b -> Utf8Builder -> Utf8Builder # | |
| Semigroup LogFunc | Perform both sets of actions per log entry. Since: rio-0.0.0.0 |
| Semigroup () | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Concurrently a) | Only defined by Since: async-2.1.0 |
Defined in Control.Concurrent.Async Methods (<>) :: Concurrently a -> Concurrently a -> Concurrently a # sconcat :: NonEmpty (Concurrently a) -> Concurrently a # stimes :: Integral b => b -> Concurrently a -> Concurrently a # | |
| Semigroup a => Semigroup (Identity a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Down a) | Since: base-4.11.0.0 |
| Semigroup p => Semigroup (Par1 p) | Since: base-4.12.0.0 |
| Semigroup (IntMap a) | Since: containers-0.5.7 |
| Semigroup (Seq a) | Since: containers-0.5.7 |
| Semigroup (MergeSet a) | |
| Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| Semigroup (GLogFunc msg) | Perform both sets of actions per log entry. Since: rio-0.1.13.0 |
| (Hashable a, Eq a) => Semigroup (HashSet a) | \(O(n+m)\) To obtain good performance, the smaller set must be presented as the first argument. Examples
|
| Semigroup (Vector a) | |
| Semigroup (NonEmpty a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Maybe a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (a) | Since: base-4.15 |
| Semigroup [a] | Since: base-4.9.0.0 |
| Semigroup (Either a b) | Since: base-4.9.0.0 |
| Semigroup (Proxy s) | Since: base-4.9.0.0 |
| Semigroup (U1 p) | Since: base-4.12.0.0 |
| Semigroup (V1 p) | Since: base-4.12.0.0 |
| Semigroup a => Semigroup (ST s a) | Since: base-4.11.0.0 |
| Ord k => Semigroup (Map k v) | |
| Semigroup a => Semigroup (RIO env a) | |
| (MonadUnliftIO m, Semigroup a) => Semigroup (Conc m a) | Since: unliftio-0.2.9.0 |
| (MonadUnliftIO m, Semigroup a) => Semigroup (Concurrently m a) | Only defined by Since: unliftio-0.1.0.0 |
Defined in UnliftIO.Internals.Async Methods (<>) :: Concurrently m a -> Concurrently m a -> Concurrently m a # sconcat :: NonEmpty (Concurrently m a) -> Concurrently m a # stimes :: Integral b => b -> Concurrently m a -> Concurrently m a # | |
| (Eq k, Hashable k) => Semigroup (HashMap k v) | If a key occurs in both maps, the mapping from the first will be the mapping in the result. Examples
|
| Semigroup b => Semigroup (a -> b) | Since: base-4.9.0.0 |
| (Semigroup a, Semigroup b) => Semigroup (a, b) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (Const a b) | Since: base-4.9.0.0 |
| Semigroup (f p) => Semigroup (Rec1 f p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) | Since: base-4.9.0.0 |
| (Semigroup (f p), Semigroup (g p)) => Semigroup ((f :*: g) p) | Since: base-4.12.0.0 |
| Semigroup c => Semigroup (K1 i c p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) | Since: base-4.9.0.0 |
| Semigroup (f (g p)) => Semigroup ((f :.: g) p) | Since: base-4.12.0.0 |
| Semigroup (f p) => Semigroup (M1 i c f p) | Since: base-4.12.0.0 |
| (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) | Since: base-4.9.0.0 |
A set of values a.
Instances
| Foldable Set | Folds in order of increasing key. |
Defined in Data.Set.Internal Methods fold :: Monoid m => Set m -> m # foldMap :: Monoid m => (a -> m) -> Set a -> m # foldMap' :: Monoid m => (a -> m) -> Set a -> m # foldr :: (a -> b -> b) -> b -> Set a -> b # foldr' :: (a -> b -> b) -> b -> Set a -> b # foldl :: (b -> a -> b) -> b -> Set a -> b # foldl' :: (b -> a -> b) -> b -> Set a -> b # foldr1 :: (a -> a -> a) -> Set a -> a # foldl1 :: (a -> a -> a) -> Set a -> a # elem :: Eq a => a -> Set a -> Bool # maximum :: Ord a => Set a -> a # | |
| Eq1 Set | Since: containers-0.5.9 |
| Ord1 Set | Since: containers-0.5.9 |
Defined in Data.Set.Internal | |
| Show1 Set | Since: containers-0.5.9 |
| Hashable1 Set | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| (Data a, Ord a) => Data (Set a) | |
Defined in Data.Set.Internal Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Set a -> c (Set a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Set a) # dataTypeOf :: Set a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Set a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Set a)) # gmapT :: (forall b. Data b => b -> b) -> Set a -> Set a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Set a -> r # gmapQ :: (forall d. Data d => d -> u) -> Set a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Set a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Set a -> m (Set a) # | |
| Ord a => Monoid (Set a) | |
| Ord a => Semigroup (Set a) | Since: containers-0.5.7 |
| Ord a => IsList (Set a) | Since: containers-0.5.6.2 |
| (Read a, Ord a) => Read (Set a) | |
| Show a => Show (Set a) | |
| NFData a => NFData (Set a) | |
Defined in Data.Set.Internal | |
| Eq a => Eq (Set a) | |
| Ord a => Ord (Set a) | |
| Hashable v => Hashable (Set v) | Since: hashable-1.3.4.0 |
Defined in Data.Hashable.Class | |
| type Item (Set a) | |
Defined in Data.Set.Internal | |
Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).
Methods
fromString :: String -> a #
Instances
| IsString ByteString | Beware: |
Defined in Data.ByteString.Internal Methods fromString :: String -> ByteString # | |
| IsString ByteString | Beware: |
Defined in Data.ByteString.Lazy.Internal Methods fromString :: String -> ByteString # | |
| IsString ShortByteString | Beware: |
Defined in Data.ByteString.Short.Internal Methods fromString :: String -> ShortByteString # | |
| IsString Utf8Builder | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display Methods fromString :: String -> Utf8Builder # | |
| IsString a => IsString (Identity a) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Identity a # | |
| a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal Methods fromString :: String -> Seq a # | |
| (IsString a, Hashable a) => IsString (Hashed a) | |
Defined in Data.Hashable.Class Methods fromString :: String -> Hashed a # | |
| a ~ Char => IsString [a] |
Since: base-2.1 |
Defined in Data.String Methods fromString :: String -> [a] # | |
| IsString a => IsString (Const a b) | Since: base-4.9.0.0 |
Defined in Data.String Methods fromString :: String -> Const a b # | |
A space efficient, packed, unboxed Unicode text type.
Instances
decodeUtf8' :: ByteString -> Either UnicodeException Text #
Decode a ByteString containing UTF-8 encoded text.
If the input contains any invalid UTF-8 data, the relevant exception will be returned, otherwise the decoded text.
decodeUtf8With :: OnDecodeError -> ByteString -> Text #
Decode a ByteString containing UTF-8 encoded text.
NOTE: The replacement character returned by OnDecodeError
MUST be within the BMP plane; surrogate code points will
automatically be remapped to the replacement char U+FFFD
(since 0.11.3.0), whereas code points beyond the BMP will throw an
error (since 1.2.3.1); For earlier versions of text using
those unsupported code points would result in undefined behavior.
encodeUtf8 :: Text -> ByteString #
Encode text using UTF-8 encoding.
encodeUtf8Builder :: Text -> Builder #
Encode text to a ByteString Builder using UTF-8 encoding.
Since: text-1.1.0.0
data UnicodeException #
An exception type for representing Unicode encoding errors.
Constructors
| DecodeError String (Maybe Word8) | Could not decode a byte sequence because it was invalid under the given encoding, or ran out of input in mid-decode. |
| EncodeError String (Maybe Char) | Tried to encode a character that could not be represented under the given encoding, or ran out of input in mid-encode. |
Instances
| Exception UnicodeException | |
Defined in Data.Text.Encoding.Error Methods toException :: UnicodeException -> SomeException # | |
| Show UnicodeException | |
Defined in Data.Text.Encoding.Error Methods showsPrec :: Int -> UnicodeException -> ShowS # show :: UnicodeException -> String # showList :: [UnicodeException] -> ShowS # | |
| NFData UnicodeException | |
Defined in Data.Text.Encoding.Error Methods rnf :: UnicodeException -> () # | |
| Eq UnicodeException | |
Defined in Data.Text.Encoding.Error Methods (==) :: UnicodeException -> UnicodeException -> Bool # (/=) :: UnicodeException -> UnicodeException -> Bool # | |
lenientDecode :: OnDecodeError #
Replace an invalid input byte with the Unicode replacement character U+FFFD.
class (Functor t, Foldable t) => Traversable (t :: Type -> Type) where #
Functors representing data structures that can be transformed to
structures of the same shape by performing an Applicative (or,
therefore, Monad) action on each element from left to right.
A more detailed description of what same shape means, the various methods, how traversals are constructed, and example advanced use-cases can be found in the Overview section of Data.Traversable.
For the class laws see the Laws section of Data.Traversable.
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b) #
Map each element of a structure to an action, evaluate these actions
from left to right, and collect the results. For a version that ignores
the results see traverse_.
Examples
Basic usage:
In the first two examples we show each evaluated action mapping to the output structure.
>>>traverse Just [1,2,3,4]Just [1,2,3,4]
>>>traverse id [Right 1, Right 2, Right 3, Right 4]Right [1,2,3,4]
In the next examples, we show that Nothing and Left values short
circuit the created structure.
>>>traverse (const Nothing) [1,2,3,4]Nothing
>>>traverse (\x -> if odd x then Just x else Nothing) [1,2,3,4]Nothing
>>>traverse id [Right 1, Right 2, Right 3, Right 4, Left 0]Left 0
sequenceA :: Applicative f => t (f a) -> f (t a) #
Evaluate each action in the structure from left to right, and
collect the results. For a version that ignores the results
see sequenceA_.
Examples
Basic usage:
For the first two examples we show sequenceA fully evaluating a a structure and collecting the results.
>>>sequenceA [Just 1, Just 2, Just 3]Just [1,2,3]
>>>sequenceA [Right 1, Right 2, Right 3]Right [1,2,3]
The next two example show Nothing and Just will short circuit
the resulting structure if present in the input. For more context,
check the Traversable instances for Either and Maybe.
>>>sequenceA [Just 1, Just 2, Just 3, Nothing]Nothing
>>>sequenceA [Right 1, Right 2, Right 3, Left 4]Left 4
mapM :: Monad m => (a -> m b) -> t a -> m (t b) #
Map each element of a structure to a monadic action, evaluate
these actions from left to right, and collect the results. For
a version that ignores the results see mapM_.
Examples
sequence :: Monad m => t (m a) -> m (t a) #
Evaluate each monadic action in the structure from left to
right, and collect the results. For a version that ignores the
results see sequence_.
Examples
Basic usage:
The first two examples are instances where the input and
and output of sequence are isomorphic.
>>>sequence $ Right [1,2,3,4][Right 1,Right 2,Right 3,Right 4]
>>>sequence $ [Right 1,Right 2,Right 3,Right 4]Right [1,2,3,4]
The following examples demonstrate short circuit behavior
for sequence.
>>>sequence $ Left [1,2,3,4]Left [1,2,3,4]
>>>sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]Left 0
Instances
| Traversable ZipList | Since: base-4.9.0.0 |
| Traversable Identity | Since: base-4.9.0.0 |
| Traversable First | Since: base-4.8.0.0 |
| Traversable Last | Since: base-4.8.0.0 |
| Traversable Down | Since: base-4.12.0.0 |
| Traversable Dual | Since: base-4.8.0.0 |
| Traversable Product | Since: base-4.8.0.0 |
| Traversable Sum | Since: base-4.8.0.0 |
| Traversable Par1 | Since: base-4.9.0.0 |
| Traversable IntMap | Traverses in order of increasing key. |
| Traversable Digit | |
| Traversable Elem | |
| Traversable FingerTree | |
Defined in Data.Sequence.Internal Methods traverse :: Applicative f => (a -> f b) -> FingerTree a -> f (FingerTree b) # sequenceA :: Applicative f => FingerTree (f a) -> f (FingerTree a) # mapM :: Monad m => (a -> m b) -> FingerTree a -> m (FingerTree b) # sequence :: Monad m => FingerTree (m a) -> m (FingerTree a) # | |
| Traversable Node | |
| Traversable Seq | |
| Traversable ViewL | |
| Traversable ViewR | |
| Traversable Vector | |
| Traversable NonEmpty | Since: base-4.9.0.0 |
| Traversable Maybe | Since: base-2.1 |
| Traversable Solo | Since: base-4.15 |
| Traversable [] | Since: base-2.1 |
Defined in Data.Traversable | |
| Traversable (Either a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Proxy :: Type -> Type) | Since: base-4.7.0.0 |
| Ix i => Traversable (Array i) | Since: base-2.1 |
| Traversable (U1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UAddr :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UChar :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UInt :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (V1 :: Type -> Type) | Since: base-4.9.0.0 |
| Traversable (Map k) | Traverses in order of increasing key. |
| Traversable (HashMap k) | |
Defined in Data.HashMap.Internal | |
| Traversable ((,) a) | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
| Traversable (Const m :: Type -> Type) | Since: base-4.7.0.0 |
| Traversable f => Traversable (Ap f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Alt f) | Since: base-4.12.0.0 |
| Traversable f => Traversable (Rec1 f) | Since: base-4.9.0.0 |
| Traversable f => Traversable (ErrorT e f) | |
Defined in Control.Monad.Trans.Error | |
| (Traversable f, Traversable g) => Traversable (f :*: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| (Traversable f, Traversable g) => Traversable (f :+: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable (K1 i c :: Type -> Type) | Since: base-4.9.0.0 |
| (Traversable f, Traversable g) => Traversable (f :.: g) | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
| Traversable f => Traversable (M1 i c f) | Since: base-4.9.0.0 |
for :: (Traversable t, Applicative f) => t a -> (a -> f b) -> f (t b) #
forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) #
Boxed vectors, supporting efficient slicing.
Instances
| MonadFail Vector | Since: vector-0.12.1.0 |
Defined in Data.Vector | |
| MonadFix Vector | This instance has the same semantics as the one for lists. Since: vector-0.12.2.0 |
Defined in Data.Vector | |
| MonadZip Vector | |
| Foldable Vector | |
Defined in Data.Vector Methods fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldMap' :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
| Eq1 Vector | |
| Ord1 Vector | |
Defined in Data.Vector | |
| Read1 Vector | |
Defined in Data.Vector | |
| Show1 Vector | |
| Traversable Vector | |
| Alternative Vector | |
| Applicative Vector | |
| Functor Vector | |
| Monad Vector | |
| MonadPlus Vector | |
| NFData1 Vector | Since: vector-0.12.1.0 |
Defined in Data.Vector | |
| Vector Vector a | |
Defined in Data.Vector Methods basicUnsafeFreeze :: Mutable Vector s a -> ST s (Vector a) # basicUnsafeThaw :: Vector a -> ST s (Mutable Vector s a) # basicLength :: Vector a -> Int # basicUnsafeSlice :: Int -> Int -> Vector a -> Vector a # basicUnsafeIndexM :: Vector a -> Int -> Box a # basicUnsafeCopy :: Mutable Vector s a -> Vector a -> ST s () # | |
| Data a => Data (Vector a) | |
Defined in Data.Vector Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
| Monoid (Vector a) | |
| Semigroup (Vector a) | |
| IsList (Vector a) | |
| Read a => Read (Vector a) | |
| Show a => Show (Vector a) | |
| NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
| Eq a => Eq (Vector a) | |
| Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
| type Mutable Vector | |
Defined in Data.Vector | |
| type Item (Vector a) | |
Defined in Data.Vector | |
Uninhabited data type
Since: base-4.8.0.0
Instances
| Data Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
| Semigroup Void | Since: base-4.9.0.0 |
| Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void Methods toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
| Generic Void | |
| Ix Void | Since: base-4.8.0.0 |
| Read Void | Reading a Since: base-4.8.0.0 |
| Show Void | Since: base-4.8.0.0 |
| NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq Void | Since: base-4.8.0.0 |
| Ord Void | Since: base-4.8.0.0 |
| Hashable Void | |
Defined in Data.Hashable.Class | |
| type Rep Void | Since: base-4.8.0.0 |
Since Void values logically don't exist, this witnesses the
logical reasoning tool of "ex falso quodlibet".
>>>let x :: Either Void Int; x = Right 5>>>:{case x of Right r -> r Left l -> absurd l :} 5
Since: base-4.8.0.0
Instances
| Data Word | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word # dataTypeOf :: Word -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) # gmapT :: (forall b. Data b => b -> b) -> Word -> Word # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r # gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word # | |
| Storable Word | Since: base-2.1 |
Defined in Foreign.Storable | |
| Bounded Word | Since: base-2.1 |
| Enum Word | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Integral Word | Since: base-2.1 |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Show Word | Since: base-2.1 |
| NFData Word | |
Defined in Control.DeepSeq | |
| Eq Word | |
| Ord Word | |
| Hashable Word | |
Defined in Data.Hashable.Class | |
| Display Word | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
| Unbox Word | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Word -> ST s (Vector Word) # basicUnsafeThaw :: Vector Word -> ST s (Mutable Vector s Word) # basicLength :: Vector Word -> Int # basicUnsafeSlice :: Int -> Int -> Vector Word -> Vector Word # basicUnsafeIndexM :: Vector Word -> Int -> Box Word # basicUnsafeCopy :: Mutable Vector s Word -> Vector Word -> ST s () # | |
| MVector MVector Word | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Word -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Word -> MVector s Word # basicOverlaps :: MVector s Word -> MVector s Word -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Word) # basicInitialize :: MVector s Word -> ST s () # basicUnsafeReplicate :: Int -> Word -> ST s (MVector s Word) # basicUnsafeRead :: MVector s Word -> Int -> ST s Word # basicUnsafeWrite :: MVector s Word -> Int -> Word -> ST s () # basicClear :: MVector s Word -> ST s () # basicSet :: MVector s Word -> Word -> ST s () # basicUnsafeCopy :: MVector s Word -> MVector s Word -> ST s () # basicUnsafeMove :: MVector s Word -> MVector s Word -> ST s () # basicUnsafeGrow :: MVector s Word -> Int -> ST s (MVector s Word) # | |
| Generic1 (URec Word :: k -> Type) | |
| Foldable (UWord :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UWord m -> m # foldMap :: Monoid m => (a -> m) -> UWord a -> m # foldMap' :: Monoid m => (a -> m) -> UWord a -> m # foldr :: (a -> b -> b) -> b -> UWord a -> b # foldr' :: (a -> b -> b) -> b -> UWord a -> b # foldl :: (b -> a -> b) -> b -> UWord a -> b # foldl' :: (b -> a -> b) -> b -> UWord a -> b # foldr1 :: (a -> a -> a) -> UWord a -> a # foldl1 :: (a -> a -> a) -> UWord a -> a # elem :: Eq a => a -> UWord a -> Bool # maximum :: Ord a => UWord a -> a # minimum :: Ord a => UWord a -> a # | |
| Traversable (UWord :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Word :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Generic (URec Word p) | |
| Show (URec Word p) | Since: base-4.9.0.0 |
| Eq (URec Word p) | Since: base-4.9.0.0 |
| Ord (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| newtype Vector Word | |
| data URec Word (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Word | |
| type Rep1 (URec Word :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Word p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
8-bit unsigned integer type
Instances
16-bit unsigned integer type
Instances
32-bit unsigned integer type
Instances
64-bit unsigned integer type
Instances
byteSwap16 :: Word16 -> Word16 #
Reverse order of bytes in Word16.
Since: base-4.7.0.0
byteSwap32 :: Word32 -> Word32 #
Reverse order of bytes in Word32.
Since: base-4.7.0.0
byteSwap64 :: Word64 -> Word64 #
Reverse order of bytes in Word64.
Since: base-4.7.0.0
The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.
Memory addresses are represented as values of type , for some
Ptr aa which is an instance of class Storable. The type argument to
Ptr helps provide some valuable type safety in FFI code (you can't
mix pointers of different types without an explicit cast), while
helping the Haskell type system figure out which marshalling method is
needed for a given pointer.
All marshalling between Haskell and a foreign language ultimately
boils down to translating Haskell data structures into the binary
representation of a corresponding data structure of the foreign
language and vice versa. To code this marshalling in Haskell, it is
necessary to manipulate primitive data types stored in unstructured
memory blocks. The class Storable facilitates this manipulation on
all types for which it is instantiated, which are the standard basic
types of Haskell, the fixed size Int types (Int8, Int16,
Int32, Int64), the fixed size Word types (Word8, Word16,
Word32, Word64), StablePtr, all types from Foreign.C.Types,
as well as Ptr.
Minimal complete definition
sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)
Instances
Representable types of kind *.
This class is derivable in GHC with the DeriveGeneric flag on.
A Generic instance must satisfy the following laws:
from.to≡idto.from≡id
Instances
Natural number
Invariant: numbers <= 0xffffffffffffffff use the NS constructor
Instances
| Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
| Enum Natural | Since: base-4.8.0.0 |
| Num Natural | Note that Since: base-4.8.0.0 |
| Read Natural | Since: base-4.8.0.0 |
| Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
| Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
| Show Natural | Since: base-4.8.0.0 |
| NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
| Eq Natural | |
| Ord Natural | |
| Hashable Natural | |
Defined in Data.Hashable.Class | |
The Bounded class is used to name the upper and lower limits of a
type. Ord is not a superclass of Bounded since types that are not
totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type;
minBound is the first constructor listed in the data declaration
and maxBound is the last.
Bounded may also be derived for single-constructor datatypes whose
constituent types are in Bounded.
Instances
| Bounded Associativity | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| Bounded Int16 | Since: base-2.1 |
| Bounded Int32 | Since: base-2.1 |
| Bounded Int64 | Since: base-2.1 |
| Bounded Int8 | Since: base-2.1 |
| Bounded Word16 | Since: base-2.1 |
| Bounded Word32 | Since: base-2.1 |
| Bounded Word64 | Since: base-2.1 |
| Bounded Word8 | Since: base-2.1 |
| Bounded Ordering | Since: base-2.1 |
| Bounded () | Since: base-2.1 |
| Bounded Bool | Since: base-2.1 |
| Bounded Char | Since: base-2.1 |
| Bounded Int | Since: base-2.1 |
| Bounded Levity | Since: base-4.16.0.0 |
| Bounded VecCount | Since: base-4.10.0.0 |
| Bounded VecElem | Since: base-4.10.0.0 |
| Bounded Word | Since: base-2.1 |
| Bounded a => Bounded (Identity a) | Since: base-4.9.0.0 |
| Bounded a => Bounded (Down a) | Swaps Since: base-4.14.0.0 |
| Bounded a => Bounded (a) | |
| Bounded (Proxy t) | Since: base-4.7.0.0 |
| (Bounded a, Bounded b) => Bounded (a, b) | Since: base-2.1 |
| Bounded a => Bounded (Const a b) | Since: base-4.9.0.0 |
| (Bounded a, Bounded b, Bounded c) => Bounded (a, b, c) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Instances
| Data Double | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double # toConstr :: Double -> Constr # dataTypeOf :: Double -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) # gmapT :: (forall b. Data b => b -> b) -> Double -> Double # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r # gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double # | |
| Storable Double | Since: base-2.1 |
| Floating Double | Since: base-2.1 |
| RealFloat Double | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Double -> Integer # floatDigits :: Double -> Int # floatRange :: Double -> (Int, Int) # decodeFloat :: Double -> (Integer, Int) # encodeFloat :: Integer -> Int -> Double # significand :: Double -> Double # scaleFloat :: Int -> Double -> Double # isInfinite :: Double -> Bool # isDenormalized :: Double -> Bool # isNegativeZero :: Double -> Bool # | |
| Read Double | Since: base-2.1 |
| NFData Double | |
Defined in Control.DeepSeq | |
| Eq Double | Note that due to the presence of
Also note that
|
| Ord Double | Note that due to the presence of
Also note that, due to the same,
|
| Hashable Double | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
| Display Double | |
Defined in RIO.Prelude.Display | |
| Unbox Double | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Double -> ST s (Vector Double) # basicUnsafeThaw :: Vector Double -> ST s (Mutable Vector s Double) # basicLength :: Vector Double -> Int # basicUnsafeSlice :: Int -> Int -> Vector Double -> Vector Double # basicUnsafeIndexM :: Vector Double -> Int -> Box Double # basicUnsafeCopy :: Mutable Vector s Double -> Vector Double -> ST s () # | |
| MVector MVector Double | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Double -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Double -> MVector s Double # basicOverlaps :: MVector s Double -> MVector s Double -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Double) # basicInitialize :: MVector s Double -> ST s () # basicUnsafeReplicate :: Int -> Double -> ST s (MVector s Double) # basicUnsafeRead :: MVector s Double -> Int -> ST s Double # basicUnsafeWrite :: MVector s Double -> Int -> Double -> ST s () # basicClear :: MVector s Double -> ST s () # basicSet :: MVector s Double -> Double -> ST s () # basicUnsafeCopy :: MVector s Double -> MVector s Double -> ST s () # basicUnsafeMove :: MVector s Double -> MVector s Double -> ST s () # basicUnsafeGrow :: MVector s Double -> Int -> ST s (MVector s Double) # | |
| Generic1 (URec Double :: k -> Type) | |
| Foldable (UDouble :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UDouble m -> m # foldMap :: Monoid m => (a -> m) -> UDouble a -> m # foldMap' :: Monoid m => (a -> m) -> UDouble a -> m # foldr :: (a -> b -> b) -> b -> UDouble a -> b # foldr' :: (a -> b -> b) -> b -> UDouble a -> b # foldl :: (b -> a -> b) -> b -> UDouble a -> b # foldl' :: (b -> a -> b) -> b -> UDouble a -> b # foldr1 :: (a -> a -> a) -> UDouble a -> a # foldl1 :: (a -> a -> a) -> UDouble a -> a # elem :: Eq a => a -> UDouble a -> Bool # maximum :: Ord a => UDouble a -> a # minimum :: Ord a => UDouble a -> a # | |
| Traversable (UDouble :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Double :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Generic (URec Double p) | |
| Show (URec Double p) | Since: base-4.9.0.0 |
| Eq (URec Double p) | Since: base-4.9.0.0 |
| Ord (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods compare :: URec Double p -> URec Double p -> Ordering # (<) :: URec Double p -> URec Double p -> Bool # (<=) :: URec Double p -> URec Double p -> Bool # (>) :: URec Double p -> URec Double p -> Bool # (>=) :: URec Double p -> URec Double p -> Bool # | |
| newtype Vector Double | |
| data URec Double (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Double | |
| type Rep1 (URec Double :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Double p) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of
arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types
whose constructors have no fields). The nullary constructors are
assumed to be numbered left-to-right by fromEnum from 0 through n-1.
See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum,
the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound
enumFromThen x y = enumFromThenTo x y bound
where
bound | fromEnum y >= fromEnum x = maxBound
| otherwise = minBoundInstances
File and directory names are values of type String, whose precise
meaning is operating system dependent. Files can be opened, yielding a
handle which can then be used to operate on the contents of that file.
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
Instances
| Data Float | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float # dataTypeOf :: Float -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) # gmapT :: (forall b. Data b => b -> b) -> Float -> Float # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r # gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float # | |
| Storable Float | Since: base-2.1 |
| Floating Float | Since: base-2.1 |
| RealFloat Float | Since: base-2.1 |
Defined in GHC.Float Methods floatRadix :: Float -> Integer # floatDigits :: Float -> Int # floatRange :: Float -> (Int, Int) # decodeFloat :: Float -> (Integer, Int) # encodeFloat :: Integer -> Int -> Float # significand :: Float -> Float # scaleFloat :: Int -> Float -> Float # isInfinite :: Float -> Bool # isDenormalized :: Float -> Bool # isNegativeZero :: Float -> Bool # | |
| Read Float | Since: base-2.1 |
| NFData Float | |
Defined in Control.DeepSeq | |
| Eq Float | Note that due to the presence of
Also note that
|
| Ord Float | Note that due to the presence of
Also note that, due to the same,
|
| Hashable Float | Note: prior to The Since: hashable-1.3.0.0 |
Defined in Data.Hashable.Class | |
| Display Float | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
| Unbox Float | |
Defined in Data.Vector.Unboxed.Base | |
| Vector Vector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicUnsafeFreeze :: Mutable Vector s Float -> ST s (Vector Float) # basicUnsafeThaw :: Vector Float -> ST s (Mutable Vector s Float) # basicLength :: Vector Float -> Int # basicUnsafeSlice :: Int -> Int -> Vector Float -> Vector Float # basicUnsafeIndexM :: Vector Float -> Int -> Box Float # basicUnsafeCopy :: Mutable Vector s Float -> Vector Float -> ST s () # | |
| MVector MVector Float | |
Defined in Data.Vector.Unboxed.Base Methods basicLength :: MVector s Float -> Int # basicUnsafeSlice :: Int -> Int -> MVector s Float -> MVector s Float # basicOverlaps :: MVector s Float -> MVector s Float -> Bool # basicUnsafeNew :: Int -> ST s (MVector s Float) # basicInitialize :: MVector s Float -> ST s () # basicUnsafeReplicate :: Int -> Float -> ST s (MVector s Float) # basicUnsafeRead :: MVector s Float -> Int -> ST s Float # basicUnsafeWrite :: MVector s Float -> Int -> Float -> ST s () # basicClear :: MVector s Float -> ST s () # basicSet :: MVector s Float -> Float -> ST s () # basicUnsafeCopy :: MVector s Float -> MVector s Float -> ST s () # basicUnsafeMove :: MVector s Float -> MVector s Float -> ST s () # basicUnsafeGrow :: MVector s Float -> Int -> ST s (MVector s Float) # | |
| Generic1 (URec Float :: k -> Type) | |
| Foldable (UFloat :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
Defined in Data.Foldable Methods fold :: Monoid m => UFloat m -> m # foldMap :: Monoid m => (a -> m) -> UFloat a -> m # foldMap' :: Monoid m => (a -> m) -> UFloat a -> m # foldr :: (a -> b -> b) -> b -> UFloat a -> b # foldr' :: (a -> b -> b) -> b -> UFloat a -> b # foldl :: (b -> a -> b) -> b -> UFloat a -> b # foldl' :: (b -> a -> b) -> b -> UFloat a -> b # foldr1 :: (a -> a -> a) -> UFloat a -> a # foldl1 :: (a -> a -> a) -> UFloat a -> a # elem :: Eq a => a -> UFloat a -> Bool # maximum :: Ord a => UFloat a -> a # minimum :: Ord a => UFloat a -> a # | |
| Traversable (UFloat :: Type -> Type) | Since: base-4.9.0.0 |
| Functor (URec Float :: TYPE LiftedRep -> Type) | Since: base-4.9.0.0 |
| Generic (URec Float p) | |
| Show (URec Float p) | |
| Eq (URec Float p) | |
| Ord (URec Float p) | |
Defined in GHC.Generics | |
| newtype Vector Float | |
| data URec Float (p :: k) | Used for marking occurrences of Since: base-4.9.0.0 |
| newtype MVector s Float | |
| type Rep1 (URec Float :: k -> Type) | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
| type Rep (URec Float p) | |
Defined in GHC.Generics | |
class Fractional a => Floating a where #
Trigonometric and hyperbolic functions and related functions.
The Haskell Report defines no laws for Floating. However, (, +)(
and *)exp are customarily expected to define an exponential field and have
the following properties:
exp (a + b)=exp a * exp bexp (fromInteger 0)=fromInteger 1
Minimal complete definition
pi, exp, log, sin, cos, asin, acos, atan, sinh, cosh, asinh, acosh, atanh
Instances
class Num a => Fractional a where #
Fractional numbers, supporting real division.
The Haskell Report defines no laws for Fractional. However, ( and
+)( are customarily expected to define a division ring and have the
following properties:*)
recipgives the multiplicative inversex * recip x=recip x * x=fromInteger 1
Note that it isn't customarily expected that a type instance of
Fractional implement a field. However, all instances in base do.
Minimal complete definition
fromRational, (recip | (/))
Methods
Fractional division.
Reciprocal fraction.
fromRational :: Rational -> a #
Conversion from a Rational (that is ).
A floating literal stands for an application of Ratio IntegerfromRational
to a value of type Rational, so such literals have type
(.Fractional a) => a
Instances
| Fractional a => Fractional (Identity a) | Since: base-4.9.0.0 |
| Fractional a => Fractional (Down a) | Since: base-4.14.0.0 |
| Integral a => Fractional (Ratio a) | Since: base-2.0.1 |
| Fractional a => Fractional (Const a b) | Since: base-4.9.0.0 |
A value of type is a computation which, when performed,
does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to
Main.main in your program. When your program is run, the I/O will
be performed. It isn't possible to perform I/O from an arbitrary
function, unless that function is itself in the IO monad and called
at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation
or the >> and >>= operations from the Monad
class.
Instances
| MonadFail IO | Since: base-4.9.0.0 |
Defined in Control.Monad.Fail | |
| MonadIO IO | Since: base-4.9.0.0 |
Defined in Control.Monad.IO.Class | |
| Alternative IO | Since: base-4.9.0.0 |
| Applicative IO | Since: base-2.1 |
| Functor IO | Since: base-2.1 |
| Monad IO | Since: base-2.1 |
| MonadPlus IO | Since: base-4.9.0.0 |
| MonadCatch IO | |
| MonadMask IO | |
| MonadThrow IO | |
Defined in Control.Monad.Catch | |
| PrimBase IO | |
| PrimMonad IO | |
| MonadUnliftIO IO | |
Defined in Control.Monad.IO.Unlift | |
| Monoid a => Monoid (IO a) | Since: base-4.9.0.0 |
| Semigroup a => Semigroup (IO a) | Since: base-4.10.0.0 |
| type PrimState IO | |
Defined in Control.Monad.Primitive | |
Arbitrary precision integers. In contrast with fixed-size integral types
such as Int, the Integer type represents the entire infinite range of
integers.
Integers are stored in a kind of sign-magnitude form, hence do not expect two's complement form when using bit operations.
If the value is small (fit into an Int), IS constructor is used.
Otherwise Integer and IN constructors are used to store a BigNat
representing respectively the positive or the negative value magnitude.
Invariant: Integer and IN are used iff value doesn't fit in IS
Instances
| Data Integer | Since: base-4.0.0.0 |
Defined in Data.Data Methods gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Integer -> c Integer # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer # toConstr :: Integer -> Constr # dataTypeOf :: Integer -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Integer) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Integer) # gmapT :: (forall b. Data b => b -> b) -> Integer -> Integer # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Integer -> r # gmapQ :: (forall d. Data d => d -> u) -> Integer -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Integer -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Integer -> m Integer # | |
| Enum Integer | Since: base-2.1 |
| Num Integer | Since: base-2.1 |
| Read Integer | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Show Integer | Since: base-2.1 |
| NFData Integer | |
Defined in Control.DeepSeq | |
| Eq Integer | |
| Ord Integer | |
| Hashable Integer | |
Defined in Data.Hashable.Class | |
| Display Integer | Since: rio-0.1.0.0 |
Defined in RIO.Prelude.Display | |
class (Real a, Enum a) => Integral a where #
Integral numbers, supporting integer division.
The Haskell Report defines no laws for Integral. However, Integral
instances are customarily expected to define a Euclidean domain and have the
following properties for the div/mod and quot/rem pairs, given
suitable Euclidean functions f and g:
x=y * quot x y + rem x ywithrem x y=fromInteger 0org (rem x y)<g yx=y * div x y + mod x ywithmod x y=fromInteger 0orf (mod x y)<f y
An example of a suitable Euclidean function, for Integer's instance, is
abs.
Methods
quot :: a -> a -> a infixl 7 #
integer division truncated toward zero
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
integer division truncated toward negative infinity
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
conversion to Integer
Instances
| Integral Int16 | Since: base-2.1 |
| Integral Int32 | Since: base-2.1 |
| Integral Int64 | Since: base-2.1 |
| Integral Int8 | Since: base-2.1 |
| Integral Word16 | Since: base-2.1 |
| Integral Word32 | Since: base-2.1 |
| Integral Word64 | Since: base-2.1 |
| Integral Word8 | Since: base-2.1 |
| Integral Integer | Since: base-2.0.1 |
Defined in GHC.Real | |
| Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
| Integral Int | Since: base-2.0.1 |
| Integral Word | Since: base-2.1 |
| Integral a => Integral (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods quot :: Identity a -> Identity a -> Identity a # rem :: Identity a -> Identity a -> Identity a # div :: Identity a -> Identity a -> Identity a # mod :: Identity a -> Identity a -> Identity a # quotRem :: Identity a -> Identity a -> (Identity a, Identity a) # divMod :: Identity a -> Identity a -> (Identity a, Identity a) # | |
| Integral a => Integral (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods quot :: Const a b -> Const a b -> Const a b # rem :: Const a b -> Const a b -> Const a b # div :: Const a b -> Const a b -> Const a b # mod :: Const a b -> Const a b -> Const a b # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) # divMod :: Const a b -> Const a b -> (Const a b, Const a b) # | |
Basic numeric class.
The Haskell Report defines no laws for Num. However, ( and +)( are
customarily expected to define a ring and have the following properties:*)
- Associativity of
(+) (x + y) + z=x + (y + z)- Commutativity of
(+) x + y=y + xis the additive identityfromInteger0x + fromInteger 0=xnegategives the additive inversex + negate x=fromInteger 0- Associativity of
(*) (x * y) * z=x * (y * z)is the multiplicative identityfromInteger1x * fromInteger 1=xandfromInteger 1 * x=x- Distributivity of
(with respect to*)(+) a * (b + c)=(a * b) + (a * c)and(b + c) * a=(b * a) + (c * a)
Note that it isn't customarily expected that a type instance of both Num
and Ord implement an ordered ring. Indeed, in base only Integer and
Rational do.
Methods
Unary negation.
Absolute value.
Sign of a number.
The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero)
or 1 (positive).
fromInteger :: Integer -> a #
Conversion from an Integer.
An integer literal represents the application of the function
fromInteger to the appropriate value of type Integer,
so such literals have type (.Num a) => a
Instances
| Num Int16 | Since: base-2.1 |
| Num Int32 | Since: base-2.1 |
| Num Int64 | Since: base-2.1 |
| Num Int8 | Since: base-2.1 |
| Num Word16 | Since: base-2.1 |
| Num Word32 | Since: base-2.1 |
| Num Word64 | Since: base-2.1 |
| Num Word8 | Since: base-2.1 |
| Num CodePoint | |
Defined in Data.Text.Encoding | |
| Num DecoderState | |
Defined in Data.Text.Encoding Methods (+) :: DecoderState -> DecoderState -> DecoderState # (-) :: DecoderState -> DecoderState -> DecoderState # (*) :: DecoderState -> DecoderState -> DecoderState # negate :: DecoderState -> DecoderState # abs :: DecoderState -> DecoderState # signum :: DecoderState -> DecoderState # fromInteger :: Integer -> DecoderState # | |
| Num Integer | Since: base-2.1 |
| Num Natural | Note that Since: base-4.8.0.0 |
| Num Int | Since: base-2.1 |
| Num Word | Since: base-2.1 |
| Num a => Num (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity | |
| Num a => Num (Down a) | Since: base-4.11.0.0 |
| Integral a => Num (Ratio a) | Since: base-2.0.1 |
| Num a => Num (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
class (Num a, Ord a) => Real a where #
Methods
toRational :: a -> Rational #
the rational equivalent of its real argument with full precision
Instances
| Real Int16 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int16 -> Rational # | |
| Real Int32 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int32 -> Rational # | |
| Real Int64 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int64 -> Rational # | |
| Real Int8 | Since: base-2.1 |
Defined in GHC.Int Methods toRational :: Int8 -> Rational # | |
| Real Word16 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word16 -> Rational # | |
| Real Word32 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word32 -> Rational # | |
| Real Word64 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word64 -> Rational # | |
| Real Word8 | Since: base-2.1 |
Defined in GHC.Word Methods toRational :: Word8 -> Rational # | |
| Real Integer | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Integer -> Rational # | |
| Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real Methods toRational :: Natural -> Rational # | |
| Real Int | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Int -> Rational # | |
| Real Word | Since: base-2.1 |
Defined in GHC.Real Methods toRational :: Word -> Rational # | |
| Real a => Real (Identity a) | Since: base-4.9.0.0 |
Defined in Data.Functor.Identity Methods toRational :: Identity a -> Rational # | |
| Real a => Real (Down a) | Since: base-4.14.0.0 |
Defined in Data.Ord Methods toRational :: Down a -> Rational # | |
| Integral a => Real (Ratio a) | Since: base-2.0.1 |
Defined in GHC.Real Methods toRational :: Ratio a -> Rational # | |
| Real a => Real (Const a b) | Since: base-4.9.0.0 |
Defined in Data.Functor.Const Methods toRational :: Const a b -> Rational # | |
class (RealFrac a, Floating a) => RealFloat a where #
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer #
a constant function, returning the radix of the representation
(often 2)
floatDigits :: a -> Int #
a constant function, returning the number of digits of
floatRadix in the significand
floatRange :: a -> (Int, Int) #
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) #
The function decodeFloat applied to a real floating-point
number returns the significand expressed as an Integer and an
appropriately scaled exponent (an Int). If
yields decodeFloat x(m,n), then x is equal in value to m*b^^n, where b
is the floating-point radix, and furthermore, either m and n
are both zero or else b^(d-1) <= , where abs m < b^dd is
the value of .
In particular, floatDigits x. If the type
contains a negative zero, also decodeFloat 0 = (0,0).
The result of decodeFloat (-0.0) = (0,0) is unspecified if either of
decodeFloat x or isNaN x is isInfinite xTrue.
encodeFloat :: Integer -> Int -> a #
encodeFloat performs the inverse of decodeFloat in the
sense that for finite x with the exception of -0.0,
.
uncurry encodeFloat (decodeFloat x) = x is one of the two closest representable
floating-point numbers to encodeFloat m nm*b^^n (or ±Infinity if overflow
occurs); usually the closer, but if m contains too many bits,
the result may be rounded in the wrong direction.
exponent corresponds to the second component of decodeFloat.
and for finite nonzero exponent 0 = 0x,
.
If exponent x = snd (decodeFloat x) + floatDigits xx is a finite floating-point number, it is equal in value to
, where significand x * b ^^ exponent xb is the
floating-point radix.
The behaviour is unspecified on infinite or NaN values.
significand :: a -> a #
The first component of decodeFloat, scaled to lie in the open
interval (-1,1), either 0.0 or of absolute value >= 1/b,
where b is the floating-point radix.
The behaviour is unspecified on infinite or NaN values.
scaleFloat :: Int -> a -> a #
multiplies a floating-point number by an integer power of the radix
True if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool #
True if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool #
True if the argument is too small to be represented in
normalized format
isNegativeZero :: a -> Bool #
True if the argument is an IEEE negative zero
True if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments.
For real floating x and y, computes the angle
(from the positive x-axis) of the vector from the origin to the
point atan2 y x(x,y). returns a value in the range [atan2 y x-pi,
pi]. It follows the Common Lisp semantics for the origin when
signed zeroes are supported. , with atan2 y 1y in a type
that is RealFloat, should return the same value as .
A default definition of atan yatan2 is provided, but implementors
can provide a more accurate implementation.
Instances
class (Real a, Fractional a) => RealFrac a where #
Extracting components of fractions.
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) #
The function properFraction takes a real fractional number x
and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate
and round functions are in terms of properFraction.
truncate :: Integral b => a -> b #
returns the integer nearest truncate xx between zero and x
round :: Integral b => a -> b #
returns the nearest integer to round xx;
the even integer if x is equidistant between two integers
ceiling :: Integral b => a -> b #
returns the least integer not less than ceiling xx
floor :: Integral b => a -> b #
returns the greatest integer not greater than floor xx
Conversion of values to readable Strings.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Instances
error :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => [Char] -> a #
error stops execution and displays an error message.
fromIntegral :: (Integral a, Num b) => a -> b #
general coercion from integral types
gcd :: Integral a => a -> a -> a #
is the non-negative factor of both gcd x yx and y of which
every common factor of x and y is also a factor; for example
, gcd 4 2 = 2, gcd (-4) 6 = 2 = gcd 0 44. = gcd 0 00.
(That is, the common divisor that is "greatest" in the divisibility
preordering.)
Note: Since for signed fixed-width integer types, ,
the result may be negative if one of the arguments is abs minBound < 0 (and
necessarily is if the other is minBound0 or ) for such types.minBound
lcm :: Integral a => a -> a -> a #
is the smallest positive integer that both lcm x yx and y divide.
realToFrac :: (Real a, Fractional b) => a -> b #
general coercion to fractional types
seq :: forall {r :: RuntimeRep} a (b :: TYPE r). a -> b -> b infixr 0 #
The value of seq a b is bottom if a is bottom, and
otherwise equal to b. In other words, it evaluates the first
argument a to weak head normal form (WHNF). seq is usually
introduced to improve performance by avoiding unneeded laziness.
A note on evaluation order: the expression seq a b does
not guarantee that a will be evaluated before b.
The only guarantee given by seq is that the both a
and b will be evaluated before seq returns a value.
In particular, this means that b may be evaluated before
a. If you need to guarantee a specific order of evaluation,
you must use the function pseq from the "parallel" package.
uncurry :: (a -> b -> c) -> (a, b) -> c #
uncurry converts a curried function to a function on pairs.
Examples
>>>uncurry (+) (1,2)3
>>>uncurry ($) (show, 1)"1"
>>>map (uncurry max) [(1,2), (3,4), (6,8)][2,4,8]
undefined :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a #
($!) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #
Strict (call-by-value) application operator. It takes a function and an argument, evaluates the argument to weak head normal form (WHNF), then calls the function with that value.
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 #
raise a number to an integral power
Defines the exit codes that a program can return.
Constructors
| ExitSuccess | indicates successful termination; |
| ExitFailure Int | indicates program failure with an exit code. The exact interpretation of the code is operating-system dependent. In particular, some values may be prohibited (e.g. 0 on a POSIX-compliant system). |
Instances
| Exception ExitCode | Since: base-4.1.0.0 |
Defined in GHC.IO.Exception Methods toException :: ExitCode -> SomeException # fromException :: SomeException -> Maybe ExitCode # displayException :: ExitCode -> String # | |
| Generic ExitCode | |
| Read ExitCode | |
| Show ExitCode | |
| NFData ExitCode | Since: deepseq-1.4.2.0 |
Defined in Control.DeepSeq | |
| Eq ExitCode | |
| Ord ExitCode | |
Defined in GHC.IO.Exception | |
| type Rep ExitCode | |
Defined in GHC.IO.Exception type Rep ExitCode = D1 ('MetaData "ExitCode" "GHC.IO.Exception" "base" 'False) (C1 ('MetaCons "ExitSuccess" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExitFailure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int))) | |
Parsing of Strings, producing values.
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefaultWhy do both readsPrec and readPrec exist, and why does GHC opt to
implement readPrec in derived Read instances instead of readsPrec?
The reason is that readsPrec is based on the ReadS type, and although
ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient
parser data structure.
readPrec, on the other hand, is based on a much more efficient ReadPrec
datatype (a.k.a "new-style parsers"), but its definition relies on the use
of the RankNTypes language extension. Therefore, readPrec (and its
cousin, readListPrec) are marked as GHC-only. Nevertheless, it is
recommended to use readPrec instead of readsPrec whenever possible
for the efficiency improvements it brings.
As mentioned above, derived Read instances in GHC will implement
readPrec instead of readsPrec. The default implementations of
readsPrec (and its cousin, readList) will simply use readPrec under
the hood. If you are writing a Read instance by hand, it is recommended
to write it like so:
instanceReadT wherereadPrec= ...readListPrec=readListPrecDefault
Instances
| Read Void | Reading a Since: base-4.8.0.0 |
| Read Associativity | Since: base-4.6.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS Associativity # readList :: ReadS [Associativity] # | |
| Read DecidedStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS DecidedStrictness # readList :: ReadS [DecidedStrictness] # | |
| Read Fixity | Since: base-4.6.0.0 |
| Read SourceStrictness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceStrictness # readList :: ReadS [SourceStrictness] # | |
| Read SourceUnpackedness | Since: base-4.9.0.0 |
Defined in GHC.Generics Methods readsPrec :: Int -> ReadS SourceUnpackedness # readList :: ReadS [SourceUnpackedness] # | |
| Read SeekMode | Since: base-4.2.0.0 |
| Read ExitCode | |
| Read BufferMode | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS BufferMode # readList :: ReadS [BufferMode] # readPrec :: ReadPrec BufferMode # readListPrec :: ReadPrec [BufferMode] # | |
| Read Newline | Since: base-4.3.0.0 |
| Read NewlineMode | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types Methods readsPrec :: Int -> ReadS NewlineMode # readList :: ReadS [NewlineMode] # readPrec :: ReadPrec NewlineMode # readListPrec :: ReadPrec [NewlineMode] # | |
| Read IOMode | Since: base-4.2.0.0 |
| Read Int16 | Since: base-2.1 |
| Read Int32 | Since: base-2.1 |
| Read Int64 | Since: base-2.1 |
| Read Int8 | Since: base-2.1 |
| Read GeneralCategory | Since: base-2.1 |
Defined in GHC.Read Methods readsPrec :: Int -> ReadS GeneralCategory # readList :: ReadS [GeneralCategory] # | |
| Read Word16 | Since: base-2.1 |
| Read Word32 | Since: base-2.1 |
| Read Word64 | Since: base-2.1 |
| Read Word8 | Since: base-2.1 |
| Read Lexeme | Since: base-2.1 |
| Read ByteString | |
Defined in Data.ByteString.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
| Read ByteString | |
Defined in Data.ByteString.Lazy.Internal Methods readsPrec :: Int -> ReadS ByteString # readList :: ReadS [ByteString] # readPrec :: ReadPrec ByteString # readListPrec :: ReadPrec [ByteString] # | |
| Read ShortByteString | |
Defined in Data.ByteString.Short.Internal Methods readsPrec :: Int -> ReadS ShortByteString # readList :: ReadS [ShortByteString] # | |
| Read IntSet | |
| Read Ordering | Since: base-2.1 |
| Read LogLevel | |
| Read Integer | Since: base-2.1 |
| Read Natural | Since: base-4.8.0.0 |
| Read () | Since: base-2.1 |
| Read Bool | Since: base-2.1 |
| Read Char | Since: base-2.1 |
| Read Double | Since: base-2.1 |
| Read Float | Since: base-2.1 |
| Read Int | Since: base-2.1 |
| Read Word | Since: base-4.5.0.0 |
| Read a => Read (ZipList a) | Since: base-4.7.0.0 |
| Read a => Read (Identity a) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read a => Read (Down a) | This instance would be equivalent to the derived instances of the
Since: base-4.7.0.0 |
| Read p => Read (Par1 p) | Since: base-4.7.0.0 |
| (Integral a, Read a) => Read (Ratio a) | Since: base-2.1 |
| Read e => Read (IntMap e) | |
| Read a => Read (Seq a) | |
| Read a => Read (ViewL a) | |
| Read a => Read (ViewR a) | |
| (Read a, Ord a) => Read (Set a) | |
| (Eq a, Hashable a, Read a) => Read (HashSet a) | |
| Read a => Read (Vector a) | |
| Read a => Read (NonEmpty a) | Since: base-4.11.0.0 |
| Read a => Read (Maybe a) | Since: base-2.1 |
| Read a => Read (a) | Since: base-4.15 |
| Read a => Read [a] | Since: base-2.1 |
| (Read a, Read b) => Read (Either a b) | Since: base-3.0 |
| Read (Proxy t) | Since: base-4.7.0.0 |
| (Ix a, Read a, Read b) => Read (Array a b) | Since: base-2.1 |
| Read (U1 p) | Since: base-4.9.0.0 |
| Read (V1 p) | Since: base-4.9.0.0 |
| (Ord k, Read k, Read e) => Read (Map k e) | |
| (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) | |
| (Read a, Read b) => Read (a, b) | Since: base-2.1 |
| Read a => Read (Const a b) | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
| Read (f p) => Read (Rec1 f p) | Since: base-4.7.0.0 |
| (Read e, Read1 m, Read a) => Read (ErrorT e m a) | |
| (Read a, Read b, Read c) => Read (a, b, c) | Since: base-2.1 |
| (Read (f p), Read (g p)) => Read ((f :*: g) p) | Since: base-4.7.0.0 |
| (Read (f p), Read (g p)) => Read ((f :+: g) p) | Since: base-4.7.0.0 |
| Read c => Read (K1 i c p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d) => Read (a, b, c, d) | Since: base-2.1 |
| Read (f (g p)) => Read ((f :.: g) p) | Since: base-4.7.0.0 |
| Read (f p) => Read (M1 i c f p) | Since: base-4.7.0.0 |
| (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | Since: base-2.1 |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) | Since: base-2.1 |
Defined in GHC.Read | |
readMaybe :: Read a => String -> Maybe a #
Parse a string using the Read instance.
Succeeds if there is exactly one valid result.
>>>readMaybe "123" :: Maybe IntJust 123
>>>readMaybe "hello" :: Maybe IntNothing
Since: base-4.6.0.0
Unbox
class (Vector Vector a, MVector MVector a) => Unbox a #
Instances
type LByteString = ByteString #
toStrictBytes :: LByteString -> ByteString #
Text
traceM :: Applicative f => Text -> f () #
Since: rio-0.1.0.0
traceEvent :: Text -> a -> a #
Since: rio-0.1.0.0
traceEventIO :: MonadIO m => Text -> m () #
Since: rio-0.1.0.0
traceMarker :: Text -> a -> a #
Since: rio-0.1.0.0
traceMarkerIO :: MonadIO m => Text -> m () #
Since: rio-0.1.0.0
traceStack :: Text -> a -> a #
Since: rio-0.1.0.0
Show
traceShowId :: Show a => a -> a #
Since: rio-0.1.0.0
traceShowIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowM :: (Show a, Applicative f) => a -> f () #
Since: rio-0.1.0.0
traceShowEvent :: Show a => a -> b -> b #
Since: rio-0.1.0.0
traceShowEventIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowMarker :: Show a => a -> b -> b #
Since: rio-0.1.0.0
traceShowMarkerIO :: (Show a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceShowStack :: Show a => a -> b -> b #
Since: rio-0.1.0.0
Display
traceDisplay :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayId :: Display a => a -> a #
Since: rio-0.1.0.0
traceDisplayIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayM :: (Display a, Applicative f) => a -> f () #
Since: rio-0.1.0.0
traceDisplayEvent :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayEventIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayMarker :: Display a => a -> b -> b #
Since: rio-0.1.0.0
traceDisplayMarkerIO :: (Display a, MonadIO m) => a -> m () #
Since: rio-0.1.0.0
traceDisplayStack :: Display a => a -> b -> b #
Since: rio-0.1.0.0