| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Data.Type.Ordinal.Peano
Contents
Description
Synopsis
- type Ordinal (n :: Nat) = Ordinal n
- pattern OLt :: () => forall (n1 :: Nat). (n1 < t) ~ True => Sing n1 -> Ordinal t
- pattern OZ :: forall (n :: Nat). () => (Z < n) ~ True => Ordinal n
- pattern OS :: forall (t :: Nat). SingI t => Ordinal t -> Ordinal (Succ t)
- od :: QuasiQuoter
- sNatToOrd' :: (m < n) ~ True => Sing n -> Sing m -> Ordinal n
- sNatToOrd :: (SingI n, (m < n) ~ True) => Sing m -> Ordinal n
- inclusion :: (n <= m) ~ True => Ordinal n -> Ordinal m
- inclusion' :: (n <= m) ~ True => Sing m -> Ordinal n -> Ordinal m
- ordToNatural :: Ordinal (n :: Nat) -> Natural
- unsafeNaturalToOrd :: SingI (n :: Nat) => Natural -> Ordinal n
- naturalToOrd :: SingI (n :: Nat) => Natural -> Maybe (Ordinal n)
- naturalToOrd' :: Sing (n :: Nat) -> Natural -> Maybe (Ordinal n)
- (@+) :: (SingI n, SingI m) => Ordinal n -> Ordinal m -> Ordinal (n + m)
- enumOrdinal :: Sing n -> [Ordinal n]
- absurdOrd :: Ordinal Z -> a
- vacuousOrd :: Functor f => f (Ordinal Z) -> f a
- ordToInt :: Ordinal n -> Int
- unsafeFromInt :: SingI n => Int -> Ordinal n
Data-types and pattern synonyms
pattern OZ :: forall (n :: Nat). () => (Z < n) ~ True => Ordinal n Source #
Pattern synonym representing the 0-th ordinal.
Since 0.7.0.0
pattern OS :: forall (t :: Nat). SingI t => Ordinal t -> Ordinal (Succ t) Source #
Pattern synonym represents (n+1)-th ordinal.OS n
Since 0.7.0.0
Quasi Quoter
This section provides QuasiQuoter for ordinals.
Note that, instance for Nums DOES NOT
checks boundary; with Ordinal, we can use literal with
boundary check.
For example, with od-XQuasiQuotes language extension enabled,
[ doesn't typechecks and causes compile-time error,
whilst od| 12 |] :: Ordinal 112 :: Ordinal 1 compiles but raises run-time error.
So, to enforce correctness, we recommend to use these quoters
instead of bare numerals.Num
od :: QuasiQuoter Source #
Quasiquoter for ordinal indexed by Peano numeral .Nat
Since 0.7.0.0
Conversion from cardinals to ordinals.
sNatToOrd' :: (m < n) ~ True => Sing n -> Sing m -> Ordinal n Source #
sNatToOrd' n m injects m as Ordinal n.
Since 0.7.0.0
sNatToOrd :: (SingI n, (m < n) ~ True) => Sing m -> Ordinal n Source #
sNatToOrd' with n inferred.
Since 0.7.0.0
inclusion :: (n <= m) ~ True => Ordinal n -> Ordinal m Source #
Inclusion function for ordinals.
Since 0.7.0.0
inclusion' :: (n <= m) ~ True => Sing m -> Ordinal n -> Ordinal m Source #
Inclusion function for ordinals with codomain inferred.
Since 0.7.0.0
Ordinal arithmetics
(@+) :: (SingI n, SingI m) => Ordinal n -> Ordinal m -> Ordinal (n + m) Source #
Ordinal addition.
Since 0.7.0.0
Elimination rules for Ordinal Z.
Ordinal ZabsurdOrd :: Ordinal Z -> a Source #
Since Ordinal 'Z is logically not inhabited, we can coerce it to any value.
Since 0.7.0.0