| Safe Haskell | Safe-Inferred |
|---|
Data.Universe.Instances.Reverse
- class Eq a where
- class Eq a => Ord a where
- class Show a where
- class Read a where
- class Foldable t where
- class (Functor t, Foldable t) => Traversable t where
- traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
- sequenceA :: Applicative f => t (f a) -> f (t a)
- mapM :: Monad m => (a -> m b) -> t a -> m (t b)
- sequence :: Monad m => t (m a) -> m (t a)
Documentation
A convenience module that imports the sibling modules Eq, Ord,
Show, Read, and Traversable to provide instances of these classes
for functions over finite inputs.
class Eq a where
The Eq class defines equality (==) and inequality (/=).
All the basic datatypes exported by the Prelude are instances of Eq,
and Eq may be derived for any datatype whose constituents are also
instances of Eq.
Instances
| Eq Bool | |
| Eq Char | |
| Eq Double | |
| Eq Float | |
| Eq Int | |
| Eq Ordering | |
| Eq Word | |
| Eq () | |
| Eq Text | |
| Eq Text | |
| Eq a => Eq [a] | |
| Eq a => Eq (Ratio a) | |
| (Finite a, Eq b) => Eq (a -> b) | |
| (Eq a, Eq b) => Eq (a, b) | |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined
datatype whose constituent types are in Ord. The declared order
of the constructors in the data declaration determines the ordering
in derived Ord instances. The Ordering datatype allows a single
comparison to determine the precise ordering of two objects.
Minimal complete definition: either compare or <=.
Using compare can be more efficient for complex types.
Instances
| Ord Bool | |
| Ord Char | |
| Ord Double | |
| Ord Float | |
| Ord Int | |
| Ord Ordering | |
| Ord Word | |
| Ord () | |
| Ord Text | |
| Ord Text | |
| Ord a => Ord [a] | |
| Integral a => Ord (Ratio a) | |
| (Finite a, Ord b) => Ord (a -> b) | |
| (Ord a, Ord b) => Ord (a, b) | |
| (Ord a, Ord b, Ord c) => Ord (a, b, c) | |
| (Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Show a where
Conversion of values to readable Strings.
Minimal complete definition: showsPrec or show.
Derived instances of Show have the following properties, which
are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where
showsPrec d (Leaf m) = showParen (d > app_prec) $
showString "Leaf " . showsPrec (app_prec+1) m
where app_prec = 10
showsPrec d (u :^: v) = showParen (d > up_prec) $
showsPrec (up_prec+1) u .
showString " :^: " .
showsPrec (up_prec+1) v
where up_prec = 5
Note that right-associativity of :^: is ignored. For example,
-
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that showsPrec started with.
Instances
| Show Bool | |
| Show Char | |
| Show Double | |
| Show Float | |
| Show Int | |
| Show Integer | |
| Show Ordering | |
| Show Word | |
| Show () | |
| Show Text | |
| Show Text | |
| Show a => Show [a] | |
| (Integral a, Show a) => Show (Ratio a) | |
| Show a => Show (Maybe a) | |
| (Finite a, Show a, Show b) => Show (a -> b) | |
| (Show a, Show b) => Show (a, b) | |
| (Show a, Show b, Show c) => Show (a, b, c) | |
| (Show a, Show b, Show c, Show d) => Show (a, b, c, d) | |
| (Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) | |
| (Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Read a where
Parsing of Strings, producing values.
Minimal complete definition: readsPrec (or, for GHC only, readPrec)
Derived instances of Read make the following assumptions, which
derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the
derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 98 is equivalent to
instance (Read a) => Read (Tree a) where
readsPrec d r = readParen (d > app_prec)
(\r -> [(Leaf m,t) |
("Leaf",s) <- lex r,
(m,t) <- readsPrec (app_prec+1) s]) r
++ readParen (d > up_prec)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec (up_prec+1) r,
(":^:",t) <- lex s,
(v,w) <- readsPrec (up_prec+1) t]) r
where app_prec = 10
up_prec = 5
Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where
readPrec = parens $ (prec app_prec $ do
Ident "Leaf" <- lexP
m <- step readPrec
return (Leaf m))
+++ (prec up_prec $ do
u <- step readPrec
Symbol ":^:" <- lexP
v <- step readPrec
return (u :^: v))
where app_prec = 10
up_prec = 5
readListPrec = readListPrecDefault
Methods
Arguments
| :: Int | the operator precedence of the enclosing
context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by
showsPrec, and delivers the value that
showsPrec started with.
Instances
| Read Bool | |
| Read Char | |
| Read Double | |
| Read Float | |
| Read Int | |
| Read Integer | |
| Read Ordering | |
| Read Word | |
| Read () | |
| Read Lexeme | |
| Read Text | |
| Read Text | |
| Read a => Read [a] | |
| (Integral a, Read a) => Read (Ratio a) | |
| Read a => Read (Maybe a) | |
| (Finite a, Ord a, Read a, Read b) => Read (a -> b) | |
| (Read a, Read b) => Read (a, b) | |
| (Ix a, Read a, Read b) => Read (Array a b) | |
| (Read a, Read b, Read c) => Read (a, b, c) | |
| (Read a, Read b, Read c, Read d) => Read (a, b, c, d) | |
| (Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | |
| (Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Foldable t where
Data structures that can be folded.
Minimal complete definition: foldMap or foldr.
For example, given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Foldable Tree where
foldMap f Empty = mempty
foldMap f (Leaf x) = f x
foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r
This is suitable even for abstract types, as the monoid is assumed
to satisfy the monoid laws. Alternatively, one could define foldr:
instance Foldable Tree where
foldr f z Empty = z
foldr f z (Leaf x) = f x z
foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l
Methods
Combine the elements of a structure using a monoid.
foldMap :: Monoid m => (a -> m) -> t a -> m
Map each element of the structure to a monoid, and combine the results.
foldr :: (a -> b -> b) -> b -> t a -> b
foldr' :: (a -> b -> b) -> b -> t a -> b
Right-associative fold of a structure, but with strict application of the operator.
foldl :: (a -> b -> a) -> a -> t b -> a
foldl' :: (a -> b -> a) -> a -> t b -> a
Left-associative fold of a structure. but with strict application of the operator.
foldlf z =foldl'f z .toList
foldr1 :: (a -> a -> a) -> t a -> a
A variant of foldr that has no base case,
and thus may only be applied to non-empty structures.
foldr1f =foldr1f .toList
foldl1 :: (a -> a -> a) -> t a -> a
class (Functor t, Foldable t) => Traversable t where
Functors representing data structures that can be traversed from left to right.
Minimal complete definition: traverse or sequenceA.
Instances are similar to Functor, e.g. given a data type
data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)
a suitable instance would be
instance Traversable Tree where
traverse f Empty = pure Empty
traverse f (Leaf x) = Leaf <$> f x
traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r
This is suitable even for abstract types, as the laws for <*>
imply a form of associativity.
The superclass instances should satisfy the following:
- In the
Functorinstance,fmapshould be equivalent to traversal with the identity applicative functor (fmapDefault). - In the
Foldableinstance,foldMapshould be equivalent to traversal with a constant applicative functor (foldMapDefault).
Methods
traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
Map each element of a structure to an action, evaluate these actions from left to right, and collect the results.
sequenceA :: Applicative f => t (f a) -> f (t a)
Evaluate each action in the structure from left to right, and collect the results.
mapM :: Monad m => (a -> m b) -> t a -> m (t b)
Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results.
sequence :: Monad m => t (m a) -> m (t a)
Evaluate each monadic action in the structure from left to right, and collect the results.
Instances
| Traversable [] | |
| Traversable Maybe | |
| (Ord e, Finite e) => Traversable ((->) e) | |
| Ix i => Traversable (Array i) | |
| Traversable f => Traversable (ErrorT e f) |