Safe Haskell | Trustworthy |
---|---|
Language | Haskell2010 |
Universum.List.Reexport
Description
This module reexports functinons to work with list, NonEmpty
and String types.
Synopsis
- (++) :: [a] -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- zip :: [a] -> [b] -> [(a, b)]
- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
- transpose :: [[a]] -> [[a]]
- tails :: [a] -> [[a]]
- subsequences :: [a] -> [[a]]
- sortOn :: Ord b => (a -> b) -> [a] -> [a]
- sortBy :: (a -> a -> Ordering) -> [a] -> [a]
- sort :: Ord a => [a] -> [a]
- permutations :: [a] -> [[a]]
- isPrefixOf :: Eq a => [a] -> [a] -> Bool
- intersperse :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- inits :: [a] -> [[a]]
- genericTake :: Integral i => i -> [a] -> [a]
- genericSplitAt :: Integral i => i -> [a] -> ([a], [a])
- genericReplicate :: Integral i => i -> a -> [a]
- genericLength :: Num i => [a] -> i
- genericDrop :: Integral i => i -> [a] -> [a]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- unzip :: [(a, b)] -> ([a], [b])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- take :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- reverse :: [a] -> [a]
- replicate :: Int -> a -> [a]
- repeat :: a -> [a]
- iterate :: (a -> a) -> a -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- cycle :: [a] -> [a]
- break :: (a -> Bool) -> [a] -> ([a], [a])
- data NonEmpty a = a :| [a]
- tail :: NonEmpty a -> [a]
- nonEmpty :: [a] -> Maybe (NonEmpty a)
- last :: NonEmpty a -> a
- init :: NonEmpty a -> [a]
- head :: NonEmpty a -> a
- groupWith :: (Foldable f, Eq b) => (a -> b) -> f a -> [NonEmpty a]
- groupBy :: Foldable f => (a -> a -> Bool) -> f a -> [NonEmpty a]
- groupAllWith :: Ord b => (a -> b) -> [a] -> [NonEmpty a]
- group :: (Foldable f, Eq a) => f a -> [NonEmpty a]
- sortWith :: Ord b => (a -> b) -> [a] -> [a]
Documentation
(++) :: [a] -> [a] -> [a] infixr 5 #
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
filter :: (a -> Bool) -> [a] -> [a] #
\(\mathcal{O}(n)\). filter
, applied to a predicate and a list, returns
the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
>>>
filter odd [1, 2, 3]
[1,3]
zip :: [a] -> [b] -> [(a, b)] #
\(\mathcal{O}(\min(m,n))\). zip
takes two lists and returns a list of
corresponding pairs.
>>>
zip [1, 2] ['a', 'b']
[(1,'a'),(2,'b')]
If one input list is shorter than the other, excess elements of the longer list are discarded, even if one of the lists is infinite:
>>>
zip [1] ['a', 'b']
[(1,'a')]>>>
zip [1, 2] ['a']
[(1,'a')]>>>
zip [] [1..]
[]>>>
zip [1..] []
[]
zip
is right-lazy:
>>>
zip [] undefined
[]>>>
zip undefined []
*** Exception: Prelude.undefined ...
zip
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
unfoldr :: (b -> Maybe (a, b)) -> b -> [a] #
The unfoldr
function is a `dual' to foldr
: while foldr
reduces a list to a summary value, unfoldr
builds a list from
a seed value. The function takes the element and returns Nothing
if it is done producing the list or returns Just
(a,b)
, in which
case, a
is a prepended to the list and b
is used as the next
element in a recursive call. For example,
iterate f == unfoldr (\x -> Just (x, f x))
In some cases, unfoldr
can undo a foldr
operation:
unfoldr f' (foldr f z xs) == xs
if the following holds:
f' (f x y) = Just (x,y) f' z = Nothing
A simple use of unfoldr:
>>>
unfoldr (\b -> if b == 0 then Nothing else Just (b, b-1)) 10
[10,9,8,7,6,5,4,3,2,1]
The transpose
function transposes the rows and columns of its argument.
For example,
>>>
transpose [[1,2,3],[4,5,6]]
[[1,4],[2,5],[3,6]]
If some of the rows are shorter than the following rows, their elements are skipped:
>>>
transpose [[10,11],[20],[],[30,31,32]]
[[10,20,30],[11,31],[32]]
subsequences :: [a] -> [[a]] #
The subsequences
function returns the list of all subsequences of the argument.
>>>
subsequences "abc"
["","a","b","ab","c","ac","bc","abc"]
sortOn :: Ord b => (a -> b) -> [a] -> [a] #
Sort a list by comparing the results of a key function applied to each
element. sortOn f
is equivalent to sortBy (comparing f)
, but has the
performance advantage of only evaluating f
once for each element in the
input list. This is called the decorate-sort-undecorate paradigm, or
Schwartzian transform.
Elements are arranged from lowest to highest, keeping duplicates in the order they appeared in the input.
>>>
sortOn fst [(2, "world"), (4, "!"), (1, "Hello")]
[(1,"Hello"),(2,"world"),(4,"!")]
Since: base-4.8.0.0
permutations :: [a] -> [[a]] #
The permutations
function returns the list of all permutations of the argument.
>>>
permutations "abc"
["abc","bac","cba","bca","cab","acb"]
isPrefixOf :: Eq a => [a] -> [a] -> Bool #
\(\mathcal{O}(\min(m,n))\). The isPrefixOf
function takes two lists and
returns True
iff the first list is a prefix of the second.
>>>
"Hello" `isPrefixOf` "Hello World!"
True
>>>
"Hello" `isPrefixOf` "Wello Horld!"
False
intersperse :: a -> [a] -> [a] #
\(\mathcal{O}(n)\). The intersperse
function takes an element and a list
and `intersperses' that element between the elements of the list. For
example,
>>>
intersperse ',' "abcde"
"a,b,c,d,e"
intercalate :: [a] -> [[a]] -> [a] #
intercalate
xs xss
is equivalent to (
.
It inserts the list concat
(intersperse
xs xss))xs
in between the lists in xss
and concatenates the
result.
>>>
intercalate ", " ["Lorem", "ipsum", "dolor"]
"Lorem, ipsum, dolor"
genericTake :: Integral i => i -> [a] -> [a] #
The genericTake
function is an overloaded version of take
, which
accepts any Integral
value as the number of elements to take.
genericSplitAt :: Integral i => i -> [a] -> ([a], [a]) #
The genericSplitAt
function is an overloaded version of splitAt
, which
accepts any Integral
value as the position at which to split.
genericReplicate :: Integral i => i -> a -> [a] #
The genericReplicate
function is an overloaded version of replicate
,
which accepts any Integral
value as the number of repetitions to make.
genericLength :: Num i => [a] -> i #
\(\mathcal{O}(n)\). The genericLength
function is an overloaded version
of length
. In particular, instead of returning an Int
, it returns any
type which is an instance of Num
. It is, however, less efficient than
length
.
>>>
genericLength [1, 2, 3] :: Int
3>>>
genericLength [1, 2, 3] :: Float
3.0
genericDrop :: Integral i => i -> [a] -> [a] #
The genericDrop
function is an overloaded version of drop
, which
accepts any Integral
value as the number of elements to drop.
zipWith :: (a -> b -> c) -> [a] -> [b] -> [c] #
\(\mathcal{O}(\min(m,n))\). zipWith
generalises zip
by zipping with the
function given as the first argument, instead of a tupling function.
zipWith (,) xs ys == zip xs ys zipWith f [x1,x2,x3..] [y1,y2,y3..] == [f x1 y1, f x2 y2, f x3 y3..]
For example,
is applied to two lists to produce the list of
corresponding sums:zipWith
(+)
>>>
zipWith (+) [1, 2, 3] [4, 5, 6]
[5,7,9]
zipWith
is right-lazy:
>>>
let f = undefined
>>>
zipWith f [] undefined
[]
zipWith
is capable of list fusion, but it is restricted to its
first list argument and its resulting list.
unzip :: [(a, b)] -> ([a], [b]) #
unzip
transforms a list of pairs into a list of first components
and a list of second components.
>>>
unzip []
([],[])>>>
unzip [(1, 'a'), (2, 'b')]
([1,2],"ab")
takeWhile :: (a -> Bool) -> [a] -> [a] #
takeWhile
, applied to a predicate p
and a list xs
, returns the
longest prefix (possibly empty) of xs
of elements that satisfy p
.
>>>
takeWhile (< 3) [1,2,3,4,1,2,3,4]
[1,2]>>>
takeWhile (< 9) [1,2,3]
[1,2,3]>>>
takeWhile (< 0) [1,2,3]
[]
take
n
, applied to a list xs
, returns the prefix of xs
of length n
, or xs
itself if n >=
.length
xs
>>>
take 5 "Hello World!"
"Hello">>>
take 3 [1,2,3,4,5]
[1,2,3]>>>
take 3 [1,2]
[1,2]>>>
take 3 []
[]>>>
take (-1) [1,2]
[]>>>
take 0 [1,2]
[]
It is an instance of the more general genericTake
,
in which n
may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) #
splitAt
n xs
returns a tuple where first element is xs
prefix of
length n
and second element is the remainder of the list:
>>>
splitAt 6 "Hello World!"
("Hello ","World!")>>>
splitAt 3 [1,2,3,4,5]
([1,2,3],[4,5])>>>
splitAt 1 [1,2,3]
([1],[2,3])>>>
splitAt 3 [1,2,3]
([1,2,3],[])>>>
splitAt 4 [1,2,3]
([1,2,3],[])>>>
splitAt 0 [1,2,3]
([],[1,2,3])>>>
splitAt (-1) [1,2,3]
([],[1,2,3])
It is equivalent to (
when take
n xs, drop
n xs)n
is not _|_
(splitAt _|_ xs = _|_
).
splitAt
is an instance of the more general genericSplitAt
,
in which n
may be of any integral type.
scanr :: (a -> b -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanr
is the right-to-left dual of scanl
. Note that the order of parameters on the accumulating function are reversed compared to scanl
.
Also note that
head (scanr f z xs) == foldr f z xs.
>>>
scanr (+) 0 [1..4]
[10,9,7,4,0]>>>
scanr (+) 42 []
[42]>>>
scanr (-) 100 [1..4]
[98,-97,99,-96,100]>>>
scanr (\nextChar reversedString -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["abcdfoo","bcdfoo","cdfoo","dfoo","foo"]>>>
force $ scanr (+) 0 [1..]
*** Exception: stack overflow
scanl :: (b -> a -> b) -> b -> [a] -> [b] #
\(\mathcal{O}(n)\). scanl
is similar to foldl
, but returns a list of
successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]
Note that
last (scanl f z xs) == foldl f z xs
>>>
scanl (+) 0 [1..4]
[0,1,3,6,10]>>>
scanl (+) 42 []
[42]>>>
scanl (-) 100 [1..4]
[100,99,97,94,90]>>>
scanl (\reversedString nextChar -> nextChar : reversedString) "foo" ['a', 'b', 'c', 'd']
["foo","afoo","bafoo","cbafoo","dcbafoo"]>>>
scanl (+) 0 [1..]
* Hangs forever *
reverse
xs
returns the elements of xs
in reverse order.
xs
must be finite.
>>>
reverse []
[]>>>
reverse [42]
[42]>>>
reverse [2,5,7]
[7,5,2]>>>
reverse [1..]
* Hangs forever *
replicate :: Int -> a -> [a] #
replicate
n x
is a list of length n
with x
the value of
every element.
It is an instance of the more general genericReplicate
,
in which n
may be of any integral type.
>>>
replicate 0 True
[]>>>
replicate (-1) True
[]>>>
replicate 4 True
[True,True,True,True]
repeat
x
is an infinite list, with x
the value of every element.
>>>
take 20 $ repeat 17
[17,17,17,17,17,17,17,17,17...
iterate :: (a -> a) -> a -> [a] #
iterate
f x
returns an infinite list of repeated applications
of f
to x
:
iterate f x == [x, f x, f (f x), ...]
Note that iterate
is lazy, potentially leading to thunk build-up if
the consumer doesn't force each iterate. See iterate'
for a strict
variant of this function.
>>>
take 10 $ iterate not True
[True,False,True,False...>>>
take 10 $ iterate (+3) 42
[42,45,48,51,54,57,60,63...
drop
n xs
returns the suffix of xs
after the first n
elements, or []
if n >=
.length
xs
>>>
drop 6 "Hello World!"
"World!">>>
drop 3 [1,2,3,4,5]
[4,5]>>>
drop 3 [1,2]
[]>>>
drop 3 []
[]>>>
drop (-1) [1,2]
[1,2]>>>
drop 0 [1,2]
[1,2]
It is an instance of the more general genericDrop
,
in which n
may be of any integral type.
cycle
ties a finite list into a circular one, or equivalently,
the infinite repetition of the original list. It is the identity
on infinite lists.
>>>
cycle []
*** Exception: Prelude.cycle: empty list>>>
take 20 $ cycle [42]
[42,42,42,42,42,42,42,42,42,42...>>>
take 20 $ cycle [2, 5, 7]
[2,5,7,2,5,7,2,5,7,2,5,7...
break :: (a -> Bool) -> [a] -> ([a], [a]) #
break
, applied to a predicate p
and a list xs
, returns a tuple where
first element is longest prefix (possibly empty) of xs
of elements that
do not satisfy p
and second element is the remainder of the list:
>>>
break (> 3) [1,2,3,4,1,2,3,4]
([1,2,3],[4,1,2,3,4])>>>
break (< 9) [1,2,3]
([],[1,2,3])>>>
break (> 9) [1,2,3]
([1,2,3],[])
Non-empty (and non-strict) list type.
Since: base-4.9.0.0
Constructors
a :| [a] infixr 5 |
Instances
groupAllWith :: Ord b => (a -> b) -> [a] -> [NonEmpty a] #
groupAllWith
operates like groupWith
, but sorts the list
first so that each equivalence class has, at most, one list in the
output
group :: (Foldable f, Eq a) => f a -> [NonEmpty a] #
The group
function takes a stream and returns a list of
streams such that flattening the resulting list is equal to the
argument. Moreover, each stream in the resulting list
contains only equal elements. For example, in list notation:
'group' $ 'cycle' "Mississippi" = "M" : "i" : "ss" : "i" : "ss" : "i" : "pp" : "i" : "M" : "i" : ...