| Copyright | (c) Roman Leshchinskiy 2008-2010 Alexey Kuleshevich 2020-2022 Aleksey Khudyakov 2020-2022 Andrew Lelechenko 2020-2022  | 
|---|---|
| License | BSD-style | 
| Maintainer | Haskell Libraries Team <libraries@haskell.org> | 
| Stability | experimental | 
| Portability | non-portable | 
| Safe Haskell | Safe-Inferred | 
| Language | Haskell2010 | 
Data.Vector.Fusion.Bundle.Monadic
Description
Monadic bundles.
Synopsis
- data Bundle m v a = Bundle {}
 - data Chunk v a = Chunk Int (forall m. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
 - lift :: Monad m => Bundle Id v a -> Bundle m v a
 - size :: Bundle m v a -> Size
 - sized :: Bundle m v a -> Size -> Bundle m v a
 - length :: Monad m => Bundle m v a -> m Int
 - null :: Monad m => Bundle m v a -> m Bool
 - empty :: Monad m => Bundle m v a
 - singleton :: Monad m => a -> Bundle m v a
 - cons :: Monad m => a -> Bundle m v a -> Bundle m v a
 - snoc :: Monad m => Bundle m v a -> a -> Bundle m v a
 - replicate :: Monad m => Int -> a -> Bundle m v a
 - replicateM :: Monad m => Int -> m a -> Bundle m v a
 - generate :: Monad m => Int -> (Int -> a) -> Bundle m v a
 - generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a
 - (++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a
 - head :: Monad m => Bundle m v a -> m a
 - last :: Monad m => Bundle m v a -> m a
 - (!!) :: Monad m => Bundle m v a -> Int -> m a
 - (!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a)
 - slice :: Monad m => Int -> Int -> Bundle m v a -> Bundle m v a
 - init :: Monad m => Bundle m v a -> Bundle m v a
 - tail :: Monad m => Bundle m v a -> Bundle m v a
 - take :: Monad m => Int -> Bundle m v a -> Bundle m v a
 - drop :: Monad m => Int -> Bundle m v a -> Bundle m v a
 - map :: Monad m => (a -> b) -> Bundle m v a -> Bundle m v b
 - mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b
 - mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m ()
 - trans :: (Monad m, Monad m') => (forall z. m z -> m' z) -> Bundle m v a -> Bundle m' v a
 - unbox :: Monad m => Bundle m v (Box a) -> Bundle m v a
 - concatMap :: Monad m => (a -> Bundle m v b) -> Bundle m v a -> Bundle m v b
 - flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size -> Bundle m v a -> Bundle m v b
 - indexed :: Monad m => Bundle m v a -> Bundle m v (Int, a)
 - indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int, a)
 - zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> m ()
 - zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
 - zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
 - zipWith4M :: Monad m => (a -> b -> c -> d -> m e) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e
 - zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f
 - zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v g
 - zipWith :: Monad m => (a -> b -> c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
 - zipWith3 :: Monad m => (a -> b -> c -> d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
 - zipWith4 :: Monad m => (a -> b -> c -> d -> e) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e
 - zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f
 - zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v g
 - zip :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v (a, b)
 - zip3 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v (a, b, c)
 - zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v (a, b, c, d)
 - zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v (a, b, c, d, e)
 - zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v (a, b, c, d, e, f)
 - eqBy :: Monad m => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool
 - cmpBy :: Monad m => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering
 - filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
 - filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
 - mapMaybeM :: Monad m => (a -> m (Maybe b)) -> Bundle m v a -> Bundle m v b
 - takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
 - takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
 - dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
 - dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
 - elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
 - notElem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
 - find :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe a)
 - findM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe a)
 - findIndex :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe Int)
 - findIndexM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe Int)
 - foldl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
 - foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
 - foldl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
 - foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
 - foldM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
 - fold1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
 - foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
 - foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
 - foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
 - foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
 - foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
 - fold1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
 - foldr :: Monad m => (a -> b -> b) -> b -> Bundle m v a -> m b
 - foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b
 - foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
 - foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
 - and :: Monad m => Bundle m v Bool -> m Bool
 - or :: Monad m => Bundle m v Bool -> m Bool
 - concatMapM :: Monad m => (a -> m (Bundle m v b)) -> Bundle m v a -> Bundle m v b
 - unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Bundle m u a
 - unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a
 - unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a
 - unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a
 - unfoldrExactN :: Monad m => Int -> (s -> (a, s)) -> s -> Bundle m u a
 - unfoldrExactNM :: Monad m => Int -> (s -> m (a, s)) -> s -> Bundle m u a
 - iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a
 - iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a
 - prescanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - postscanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - scanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
 - scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
 - scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
 - scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
 - scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
 - scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
 - enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a
 - enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a
 - enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a
 - toList :: Monad m => Bundle m v a -> m [a]
 - fromList :: Monad m => [a] -> Bundle m v a
 - fromListN :: Monad m => Int -> [a] -> Bundle m v a
 - unsafeFromList :: Monad m => Size -> [a] -> Bundle m v a
 - fromVector :: (Monad m, Vector v a) => v a -> Bundle m v a
 - reVector :: Monad m => Bundle m u a -> Bundle m v a
 - fromVectors :: forall m v a. (Monad m, Vector v a) => [v a] -> Bundle m v a
 - concatVectors :: (Monad m, Vector v a) => Bundle m u (v a) -> Bundle m v a
 - fromStream :: Monad m => Stream m a -> Size -> Bundle m v a
 - chunks :: Bundle m v a -> Stream m (Chunk v a)
 - elements :: Bundle m v a -> Stream m a
 
Documentation
Monadic streams
Constructors
| Bundle | |
Instances
| Eq1 (Bundle Id v) Source # | |
| Ord1 (Bundle Id v) Source # | |
Defined in Data.Vector.Fusion.Bundle  | |
| Monad m => Functor (Bundle m v) Source # | |
| Eq a => Eq (Bundle Id v a) Source # | |
| Ord a => Ord (Bundle Id v a) Source # | |
Defined in Data.Vector.Fusion.Bundle Methods compare :: Bundle Id v a -> Bundle Id v a -> Ordering # (<) :: Bundle Id v a -> Bundle Id v a -> Bool # (<=) :: Bundle Id v a -> Bundle Id v a -> Bool # (>) :: Bundle Id v a -> Bundle Id v a -> Bool # (>=) :: Bundle Id v a -> Bundle Id v a -> Bool #  | |
Size hints
Length
Construction
replicateM :: Monad m => Int -> m a -> Bundle m v a Source #
Yield a Bundle of values obtained by performing the monadic action the
 given number of times
generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a Source #
Generate a stream from its indices
(++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a infixr 5 Source #
Concatenate two Bundles
Accessing elements
(!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a) infixl 9 Source #
Element at the given position or Nothing if out of bounds
Substreams
Extract a substream of the given length starting at the given position.
Mapping
mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b Source #
Map a monadic function over a Bundle
mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m () Source #
Execute a monadic action for each element of the Bundle
trans :: (Monad m, Monad m') => (forall z. m z -> m' z) -> Bundle m v a -> Bundle m' v a Source #
Transform a Bundle to use a different monad
flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size -> Bundle m v a -> Bundle m v b Source #
Zipping
indexed :: Monad m => Bundle m v a -> Bundle m v (Int, a) Source #
Pair each element in a Bundle with its index
indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int, a) Source #
Pair each element in a Bundle with its index, starting from the right
 and counting down
zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c Source #
Zip two Bundles with the given monadic function
zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d Source #
zipWith4M :: Monad m => (a -> b -> c -> d -> m e) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e Source #
zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f Source #
zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v g Source #
zipWith3 :: Monad m => (a -> b -> c -> d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d Source #
zipWith4 :: Monad m => (a -> b -> c -> d -> e) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e Source #
zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f Source #
zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v g Source #
zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v (a, b, c, d) Source #
zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v (a, b, c, d, e) Source #
zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d -> Bundle m v e -> Bundle m v f -> Bundle m v (a, b, c, d, e, f) Source #
Comparisons
eqBy :: Monad m => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool Source #
Check if two Bundles are equal
cmpBy :: Monad m => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering Source #
Lexicographically compare two Bundles
Filtering
filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a Source #
Drop elements which do not satisfy the predicate
filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a Source #
Drop elements which do not satisfy the monadic predicate
mapMaybeM :: Monad m => (a -> m (Maybe b)) -> Bundle m v a -> Bundle m v b Source #
Apply monadic function to each element and drop all Nothings
Since: 0.12.2.0
takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a Source #
Longest prefix of elements that satisfy the predicate
takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a Source #
Longest prefix of elements that satisfy the monadic predicate
dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a Source #
Drop the longest prefix of elements that satisfy the predicate
dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a Source #
Drop the longest prefix of elements that satisfy the monadic predicate
Searching
elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool infix 4 Source #
Check whether the Bundle contains an element
Folding
foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a Source #
Left fold with a monadic operator
foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a Source #
Left fold over a non-empty Bundle with a monadic operator
foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a Source #
Left fold with a strict accumulator
foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a Source #
Left fold with a strict accumulator and a monadic operator
foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a Source #
Left fold over a non-empty Bundle with a strict accumulator
foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a Source #
Left fold over a non-empty Bundle with a strict accumulator and a
 monadic operator
foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b Source #
Right fold with a monadic operator
foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a Source #
Right fold over a non-empty stream
foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a Source #
Right fold over a non-empty stream with a monadic operator
Specialised folds
Unfolding
unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a Source #
Unfold with a monadic function
unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a Source #
Unfold at most n elements
unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a Source #
Unfold at most n elements with a monadic function.
unfoldrExactN :: Monad m => Int -> (s -> (a, s)) -> s -> Bundle m u a Source #
Unfold exactly n elements
Since: 0.12.2.0
unfoldrExactNM :: Monad m => Int -> (s -> m (a, s)) -> s -> Bundle m u a Source #
Unfold exactly n elements with a monadic function.
Since: 0.12.2.0
iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a Source #
O(n) Apply function \(\max(n - 1, 0)\) times to an initial value, producing a monadic bundle of exact length \(\max(n, 0)\). Zeroth element will contain the initial value.
iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a Source #
O(n) Apply monadic function \(\max(n - 1, 0)\) times to an initial value, producing a monadic bundle of exact length \(\max(n, 0)\). Zeroth element will contain the initial value.
Scans
prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Prefix scan with a monadic operator
prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a Source #
Prefix scan with strict accumulator
prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Prefix scan with strict accumulator and a monadic operator
postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Suffix scan with a monadic operator
postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a Source #
Suffix scan with strict accumulator
postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Suffix scan with strict accumulator and a monadic operator
scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Haskell-style scan with a monadic operator
scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a Source #
Haskell-style scan with strict accumulator
scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a Source #
Haskell-style scan with strict accumulator and a monadic operator
scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a Source #
Initial-value free scan over a Bundle
scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a Source #
Initial-value free scan over a Bundle with a monadic operator
scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a Source #
Initial-value free scan over a Bundle with a strict accumulator
scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a Source #
Initial-value free scan over a Bundle with a strict accumulator
 and a monadic operator
Enumerations
enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a Source #
Yield a Bundle of the given length containing the values x, x+y,
 x+y+y etc.
enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a Source #
Enumerate values
WARNING: This operation can be very inefficient. If at all possible, use
 enumFromStepN instead.
enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a Source #
Enumerate values with a given step.
WARNING: This operation is very inefficient. If at all possible, use
 enumFromStepN instead.
Conversions
fromListN :: Monad m => Int -> [a] -> Bundle m v a Source #
Convert the first n elements of a list to a Bundle